Routing Algorithms McGraw-Hill The McGraw-Hill Companies, Inc., 2001

Size: px
Start display at page:

Download "Routing Algorithms McGraw-Hill The McGraw-Hill Companies, Inc., 2001"

Transcription

1 Routing Algorithms

2 Main issue is how the routers that constitute the network layer of a network cooperate to find the best routes between all pairs of stations. Routing algorithm at a router decides which output line an incoming packet should go, i.e. making a routing decision. McGraw-Hill Classified The McGraw-Hill e-material Companies, Inc.,

3

4 Adaptive Algorithm (Dynamic Routing) change their routing decisions (based on factors) to reflect changes in the topology Non Adaptive Algorithm (Static Routing) choice of the route to use to get from source I to destination J (for all I and J) is computed in advance, off-line, and downloaded to the routers when the network is booted McGraw-Hill Classified The McGraw-Hill e-material Companies, Inc.,

5 Adaptive Algorithms Distance Vector Routing Link State Routing Hierarchical Routing Broadcast Routing Multicast Routing Routing for Mobile Hosts Routing in Ad Hoc Networks Non Adaptive Algorithms Shortest Path Routing Flooding McGraw-Hill Classified The McGraw-Hill e-material Companies, Inc.,

6 Each router periodically shares its knowledge about the entire network with its neighbors. Three key steps: 1. Knowledge about the whole network. 2. Routing only to neighbors. 3. Information sharing at regular intervals.

7 Example of an Internet

8 The Concept of Distance Vector Routing

9 Distance Vector Routing Table In Distance vector routing, each router periodically shares its knowledge about the entire network with its neighbors.

10 Routing Table Distribution

11 Final Routing Tables

12 Each router shares its knowledge of its neighborhood with every other router in the internetwork. Three key steps: 1. Knowledge about the neighborhood. 2. To all Routers. 3. Information sharing when there is a change.

13 Concept of Link State Routing

14 Cost in Link State Routing

15 Link State Packet

16 Link State Database

17 Costs in the Dijkstra Algorithm

18 Shortest Path Calculation, Part I

19 Shortest Path Calculation, Part II

20 Shortest Path Calculation, Part III

21 Shortest Path Calculation, Part IV

22 Shortest Path Calculation, Part V

23 Shortest Path Calculation, Part VI

24 Shortest Path Calculation, Part VII

25 Shortest Path Calculation, Part VIII

26 Shortest Path Calculation, Part IX

27 Shortest Path Calculation, Part X

28 Shortest Path Calculation, Part XI

29 Shortest Path Calculation, Part XII

30 Shortest Path Calculation, Part XIII

31 Routing Table for Router A

32 Internet growth translates into Routing table growth. In Hierarchical Routing, the routers are divided into regions. Each router knowing all the details about its own region, but knowing nothing about the internal structure of other regions. Routing Procedure: Route first to the Region Then network within the Region Then particular node within the network

33

34

35 McGraw-Hill The McGraw-Hill Companies, Inc.,

36 Broadcast Send same packet to all receivers. all usually limited in some way LAN, subnet, organization

37 Sending a packet to all destinations simultaneously is called Broadcasting. Direct Method: Source sends a distinct packet to each destination routers in the subnet: 1. Wasteful of the bandwidth. 2. It requires source to have a list of all destinations. Flooding: Ordinarily ill suited for point-to-point communication: Generates to many packets, and Consumes to much bandwidth. McGraw-Hill Veton Këpuska April The 26, McGraw-Hill 2014 Companies, Inc.,

38 Multi-destination Routing Each packets contains: A list of destinations, or A bit map indicating the desired destinations. When packet arrives at a router: The router checks all the destinations to determine the set of output lines that will be needed. Generates a new copy of the packed for each output line to be used and includes in each packet only those destinations that are to use the line. After a sufficient number of hops, each packed will carry only one destination and can be treated as normal packet. Multi-destination routing is like separately addressed packets, except that when several packets must follow the same route, one of them pays full fare and the rest ride free. McGraw-Hill Veton Këpuska April The 26, McGraw-Hill 2014 Companies, Inc.,

39 Spanning Tree: It is a subset of the subnet that includes all routers but contains no loops. Each router knows which of its lines belong to the spanning tree, it can copy an incoming broadcast packet onto all the spanning tree lines except the one it arrived on. Makes excellent use of bandwidth (generates absolute minimum number of packets necessary to do the job) Must have knowledge of some spanning tree for the method to be applicable. Information available in some instances (e.g., link state routing) Information not available (e.g., distance vector routing) McGraw-Hill Veton Këpuska April The 26, McGraw-Hill 2014 Companies, Inc.,

40 Reverse Path Forwarding: Router checks if the broadcast packet arrived on the line that is normally used for sending packets to the source of the broadcast. If so, there is excellent chance that the broadcast packet itself followed the best route from the router and is therefore the first copy to arrive at the router. The router forwards copies of it onto all lines except the one it arrived on. If the broadcast packet arrived on a line other than the preferred one for reaching the source, the packet is discarded as a likely duplicate. McGraw-Hill Veton Këpuska April The 26, McGraw-Hill 2014 Companies, Inc.,

41 April 26, 2014 Veton Këpuska 41 Example of Reverse path Forwarding A B C D G J O M N L K H E I F A B C D G J O M N L K H E I F A subnet A sink tree for router I

42 The tree build by reverse path forwarding. After 5 hops and 24 packets the broadcasting terminates compared to 14 packets had the sink tree been followed exactly I F H J N A D E K G O M O E C G D N K H B L H L B McGraw-Hill Veton Këpuska April The 26, McGraw-Hill 2014 Companies, Inc.,

Computer Networks. Routing

Computer Networks. Routing Computer Networks Routing Topics Link State Routing (Continued) Hierarchical Routing Broadcast Routing Sending distinct packets Flooding Multi-destination routing Using spanning tree Reverse path forwarding

More information

Computer Networks 1 (Mạng Máy Tính 1) Lectured by: Dr. Phạm Trần Vũ

Computer Networks 1 (Mạng Máy Tính 1) Lectured by: Dr. Phạm Trần Vũ Computer Networks 1 (Mạng Máy Tính 1) Lectured by: Dr. Phạm Trần Vũ Lecture 5: Network Layer Reference: Chapter 5 - Computer Networks, Andrew S. Tanenbaum, 4th Edition, Prentice Hall, 2003. Contents The

More information

5.2 Routing Algorithms

5.2 Routing Algorithms CEN445 Network Protocols and Algorithms Chapter 5 Network Layer 5. Routing Algorithms Dr. Mostafa Hassan Dahshan Department of Computer Engineering College of Computer and Information Sciences King Saud

More information

Telecommunication Protocols Laboratory Course. Lecture 3

Telecommunication Protocols Laboratory Course. Lecture 3 Telecommunication Protocols Laboratory Course Lecture 3 Course map Last time: we discussed protocols of the Medium Access Control (MAC) sub-layer Deal with broadcast channels and their (multi-party) protocols

More information

Chapter 5 (Week 9) The Network Layer ANDREW S. TANENBAUM COMPUTER NETWORKS FOURTH EDITION PP BLM431 Computer Networks Dr.

Chapter 5 (Week 9) The Network Layer ANDREW S. TANENBAUM COMPUTER NETWORKS FOURTH EDITION PP BLM431 Computer Networks Dr. Chapter 5 (Week 9) The Network Layer ANDREW S. TANENBAUM COMPUTER NETWORKS FOURTH EDITION PP. 343-396 1 5.1. NETWORK LAYER DESIGN ISSUES 5.2. ROUTING ALGORITHMS 5.3. CONGESTION CONTROL ALGORITHMS 5.4.

More information

Fairness Example: high priority for nearby stations Optimality Efficiency overhead

Fairness Example: high priority for nearby stations Optimality Efficiency overhead Routing Requirements: Correctness Simplicity Robustness Under localized failures and overloads Stability React too slow or too fast Fairness Example: high priority for nearby stations Optimality Efficiency

More information

UNIT 2 ROUTING ALGORITHMS

UNIT 2 ROUTING ALGORITHMS UNIT ROUTING ALGORITHMS Routing Algorithms Structure Page Nos..0 Introduction 3. Objectives 3. Flooding 3.3 Shortest Path Routing Algorithm 5.4 Distance Vector Routing 6.4. Comparison.4. The Count-to-Infinity

More information

Chapter 22 Network Layer: Delivery, Forwarding, and Routing 22.1

Chapter 22 Network Layer: Delivery, Forwarding, and Routing 22.1 Chapter 22 Network Layer: Delivery, Forwarding, and Routing 22.1 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. 22-3 UNICAST ROUTING PROTOCOLS 22.2 A routing

More information

Routing Algorithms. CS158a Chris Pollett Apr 4, 2007.

Routing Algorithms. CS158a Chris Pollett Apr 4, 2007. Routing Algorithms CS158a Chris Pollett Apr 4, 2007. Outline Routing Algorithms Adaptive/non-adaptive algorithms The Optimality Principle Shortest Path Routing Flooding Distance Vector Routing Routing

More information

Hierarchical Routing. Our routing study thus far - idealization all routers identical network flat not true in practice

Hierarchical Routing. Our routing study thus far - idealization all routers identical network flat not true in practice Hierarchical Routing Our routing study thus far - idealization all routers identical network flat not true in practice scale: with 200 million destinations: can t store all destinations in routing tables!

More information

Routing in packet-switching networks

Routing in packet-switching networks Routing in packet-switching networks Circuit switching vs. Packet switching Most of WANs based on circuit or packet switching Circuit switching designed for voice Resources dedicated to a particular call

More information

UNIT III NETWORK LAYER 1. What are the network support layers and the user support layers? Network support layers: The network support layers are Physical layer, Data link layer and Network layer. These

More information

ITEC310 Computer Networks II

ITEC310 Computer Networks II ITEC310 Computer Networks II Chapter 22 Network Layer:, and Routing Department of Information Technology Eastern Mediterranean University Objectives 2/131 After completing this chapter you should be able

More information

Network Layer, Part 2 Routing. Terminology

Network Layer, Part 2 Routing. Terminology Network Layer, Part Routing These slides are created by Dr. Huang of George Mason University. Students registered in Dr. Huang s courses at GMU can make a single machine readable copy and print a single

More information

Lecture 9: Switched Ethernet Features: STP and VLANs

Lecture 9: Switched Ethernet Features: STP and VLANs Lecture 9: Switched Ethernet Features: STP and VLANs Dr. Mohammed Hawa Electrical Engineering Department University of Jordan EE426: Communication Networks Ethernet Switch Features The following features

More information

II. Principles of Computer Communications Network and Transport Layer

II. Principles of Computer Communications Network and Transport Layer II. Principles of Computer Communications Network and Transport Layer A. Internet Protocol (IP) IPv4 Header An IP datagram consists of a header part and a text part. The header has a 20-byte fixed part

More information

IPv6 PIM. Based on the forwarding mechanism, IPv6 PIM falls into two modes:

IPv6 PIM. Based on the forwarding mechanism, IPv6 PIM falls into two modes: Overview Protocol Independent Multicast for IPv6 () provides IPv6 multicast forwarding by leveraging static routes or IPv6 unicast routing tables generated by any IPv6 unicast routing protocol, such as

More information

ECE 435 Network Engineering Lecture 11

ECE 435 Network Engineering Lecture 11 ECE 435 Network Engineering Lecture 11 Vince Weaver http://web.eece.maine.edu/~vweaver vincent.weaver@maine.edu 5 October 2017 Announcements Back from Memsys. Related things: fast memories for network

More information

Lehrstuhl für Informatik 4 Kommunikation und verteilte Systeme. Auxiliary Protocols

Lehrstuhl für Informatik 4 Kommunikation und verteilte Systeme. Auxiliary Protocols Auxiliary Protocols IP serves only for sending packets with well-known addresses. Some questions however remain open, which are handled by auxiliary protocols: Address Resolution Protocol (ARP) Reverse

More information

Computer Networks. Routing Algorithms

Computer Networks. Routing Algorithms Computer Networks Routing Algorithms Topics Routing Algorithms Shortest Path (Dijkstra Algorithm) Distance Vector Routing Count to infinity problem Solutions for count to infinity problem Link State Routing

More information

We will discuss about three different static routing algorithms 1. Shortest Path Routing 2. Flooding 3. Flow Based Routing

We will discuss about three different static routing algorithms 1. Shortest Path Routing 2. Flooding 3. Flow Based Routing In this lecture we will discuss about Routing algorithms Congestion algorithms Lecture 19 The routing algorithm is that part of the network layer software, which is responsible for deciding which output

More information

DATA COMMUNICATOIN NETWORKING

DATA COMMUNICATOIN NETWORKING DATA COMMUNICATOIN NETWORKING Instructor: Ouldooz Baghban Karimi Course Book & Slides: Computer Networking, A Top-Down Approach By: Kurose, Ross Introduction Course Overview Basics of Computer Networks

More information

C13b: Routing Problem and Algorithms

C13b: Routing Problem and Algorithms CISC 7332X T6 C13b: Routing Problem and Algorithms Hui Chen Department of Computer & Information Science CUNY Brooklyn College 11/20/2018 CUNY Brooklyn College 1 Acknowledgements Some pictures used in

More information

Multicast Communications. Slide Set were original prepared by Dr. Tatsuya Susa

Multicast Communications. Slide Set were original prepared by Dr. Tatsuya Susa Multicast Communications Slide Set were original prepared by Dr. Tatsuya Susa Outline 1. Advantages of multicast 2. Multicast addressing 3. Multicast Routing Protocols 4. Multicast in the Internet 5. IGMP

More information

Multicast overview. Introduction to multicast. Information transmission techniques. Unicast

Multicast overview. Introduction to multicast. Information transmission techniques. Unicast Contents Multicast overview 1 Introduction to multicast 1 Information transmission techniques 1 Multicast features 3 Common notations in multicast 4 Multicast advantages and applications 4 Multicast models

More information

Introduction... xiii Chapter 1: Introduction to Computer Networks and Internet Computer Networks Uses of Computer Networks...

Introduction... xiii Chapter 1: Introduction to Computer Networks and Internet Computer Networks Uses of Computer Networks... Table of Contents Introduction... xiii Chapter 1: Introduction to Computer Networks and Internet... 1 1.1 Computer Networks... 1 1.1.1 Advantages of Computer Networks... 2 1.1.2 Disadvantages of Computer

More information

Network Layer (Routing)

Network Layer (Routing) Network Layer (Routing) Topics Network service models Datagrams (packets), virtual circuits IP (Internet Protocol) Internetworking Forwarding (Longest Matching Prefix) Helpers: ARP and DHCP Fragmentation

More information

List of groups known at each router. Router gets those using IGMP. And where they are in use Where members are located. Enhancement to OSPF

List of groups known at each router. Router gets those using IGMP. And where they are in use Where members are located. Enhancement to OSPF Multicast OSPF OSPF Open Shortest Path First Link State Protocol Use Dijkstra s algorithm (SPF) Calculate shortest path from the router to every possible destination Areas Limit the information volume

More information

Multicast overview. Introduction to multicast. Information transmission techniques. Unicast

Multicast overview. Introduction to multicast. Information transmission techniques. Unicast Contents Multicast overview 1 Introduction to multicast 1 Information transmission techniques 1 Multicast features 3 Common notations in multicast 4 Multicast benefits and applications 4 Multicast models

More information

Why multicast? The concept of multicast Multicast groups Multicast addressing Multicast routing protocols MBONE Multicast applications Conclusions

Why multicast? The concept of multicast Multicast groups Multicast addressing Multicast routing protocols MBONE Multicast applications Conclusions Tuomo Karhapää tuomo.karhapaa@otaverkko.fi Otaverkko Oy Why multicast? The concept of multicast Multicast groups Multicast addressing Multicast routing protocols MBONE Multicast applications Conclusions

More information

Token Ring VLANs and Related Protocols

Token Ring VLANs and Related Protocols Token Ring VLANs and Related Protocols CHAPTER 4 Token Ring VLANs A VLAN is a logical group of LAN segments, independent of physical location, with a common set of requirements. For example, several end

More information

IP Multicast Technology Overview

IP Multicast Technology Overview IP multicast is a bandwidth-conserving technology that reduces traffic by delivering a single stream of information simultaneously to potentially thousands of businesses and homes. Applications that take

More information

Chapter 7: Routing Dynamically. Routing & Switching

Chapter 7: Routing Dynamically. Routing & Switching Chapter 7: Routing Dynamically Routing & Switching The Evolution of Dynamic Routing Protocols Dynamic routing protocols used in networks since the late 1980s Newer versions support the communication based

More information

Distributed Queue Dual Bus

Distributed Queue Dual Bus Distributed Queue Dual Bus IEEE 802.3 to 802.5 protocols are only suited for small LANs. They cannot be used for very large but non-wide area networks. IEEE 802.6 DQDB is designed for MANs It can cover

More information

ECE 435 Network Engineering Lecture 11

ECE 435 Network Engineering Lecture 11 ECE 435 Network Engineering Lecture 11 Vince Weaver http://web.eece.maine.edu/~vweaver vincent.weaver@maine.edu 11 October 2018 Midterm on Tues Announcements 1 HW#4 Review maine.edu created? What is a

More information

Growth. Individual departments in a university buy LANs for their own machines and eventually want to interconnect with other campus LANs.

Growth. Individual departments in a university buy LANs for their own machines and eventually want to interconnect with other campus LANs. Internetworking Multiple networks are a fact of life: Growth. Individual departments in a university buy LANs for their own machines and eventually want to interconnect with other campus LANs. Fault isolation,

More information

EEC-484/584 Computer Networks

EEC-484/584 Computer Networks EEC-484/584 Computer Networks Lecture 13 wenbing@ieee.org (Lecture nodes are based on materials supplied by Dr. Louise Moser at UCSB and Prentice-Hall) Outline 2 Review of lecture 12 Routing Congestion

More information

Layer 3: Network Layer. 9. Mar INF-3190: Switching and Routing

Layer 3: Network Layer. 9. Mar INF-3190: Switching and Routing Layer 3: Network Layer 9. Mar. 2005 1 INF-3190: Switching and Routing Network Layer Goal Enable data transfer from end system to end system End systems Several hops, (heterogeneous) subnetworks Compensate

More information

Routing protocols in WSN

Routing protocols in WSN Routing protocols in WSN 1.1 WSN Routing Scheme Data collected by sensor nodes in a WSN is typically propagated toward a base station (gateway) that links the WSN with other networks where the data can

More information

Chapter 5. The Network Layer FATİH ŞAHİN Network Layer Design Isues. Store-and-Forward Packet Switching

Chapter 5. The Network Layer FATİH ŞAHİN Network Layer Design Isues. Store-and-Forward Packet Switching Chapter 5 The Network Layer FATİH ŞAHİN 2007513806 Network Layer Design Isues Store-and-Forward Packet Switching Services Provided to the Transport Layer Implementation of Connectionless Service Implementation

More information

Performance Evaluation of Various Routing Protocols in MANET

Performance Evaluation of Various Routing Protocols in MANET 208 Performance Evaluation of Various Routing Protocols in MANET Jaya Jacob 1,V.Seethalakshmi 2 1 II MECS,Sri Shakthi Institute of Science and Technology, Coimbatore, India 2 Associate Professor-ECE, Sri

More information

Top-Down Network Design, Ch. 7: Selecting Switching and Routing Protocols. Top-Down Network Design. Selecting Switching and Routing Protocols

Top-Down Network Design, Ch. 7: Selecting Switching and Routing Protocols. Top-Down Network Design. Selecting Switching and Routing Protocols Top-Down Network Design Chapter Seven Selecting Switching and Routing Protocols Copyright 2010 Cisco Press & Priscilla Oppenheimer 1 Switching 2 Page 1 Objectives MAC address table Describe the features

More information

Auxiliary Protocols. Internet Layer. Address Resolution Protocol. Delivery of IP Packets

Auxiliary Protocols. Internet Layer. Address Resolution Protocol. Delivery of IP Packets Internet Layer Auxiliary Protocols aw division into three tasks: Data transfer over a global network oute decision at the sub-nodes Control of the network or transmission status outing Protocols outing

More information

Internetworking Terms. Internet Structure. Internet Structure. Chapter 15&16 Internetworking. Internetwork Structure & Terms

Internetworking Terms. Internet Structure. Internet Structure. Chapter 15&16 Internetworking. Internetwork Structure & Terms Chapter 15&16 Internetworking Internetwork Structure & Terms Internetworking Architecture Features Connection/Connectionless Architecture Fragmentation & Reassembly Internet Protocol & Services Addressing

More information

The Spanning Tree Protocol

The Spanning Tree Protocol Università Ca Foscari di Venezia Dipartimento di Informatica Corso di Sistemi Distribuiti 2009 Presentation outline Introduction 1 Introduction Local internetworking Motivations 2 High level description

More information

Lecture 4. The Network Layer (cont d)

Lecture 4. The Network Layer (cont d) Lecture 4 The Network Layer (cont d) Agenda Routing Tables Unicast and Multicast Routing Protocols Routing Algorithms Link State and Distance Vector Routing Information and Open Shortest Path First Protocols

More information

Module 8. Routing. Version 2 ECE, IIT Kharagpur

Module 8. Routing. Version 2 ECE, IIT Kharagpur Module 8 Routing Lesson 27 Routing II Objective To explain the concept of same popular routing protocols. 8.2.1 Routing Information Protocol (RIP) This protocol is used inside our autonomous system and

More information

CIS 83 Midterm Spring 2004 Answer Sheet Name Score Grade Question Answer Question Answer

CIS 83 Midterm Spring 2004 Answer Sheet Name Score Grade Question Answer Question Answer CIS 83 Midterm Spring 2004 Answer Sheet Name: Score: Grade: Question Answer Question Answer 1 A B C D E F 51 A B C D E F 2 A B C D E F 52 A B C D E F 3 A B C D E F 53 A B C D E F 4 A B C D E F 54 A B C

More information

Routing. 4. Mar INF-3190: Switching and Routing

Routing. 4. Mar INF-3190: Switching and Routing Routing 4. Mar. 004 1 INF-3190: Switching and Routing Routing: Foundations! Task! To define the route of packets through the network! From the source! To the destination system! Routing algorithm! Defines

More information

EITF25 Internet Routing. Jens A Andersson

EITF25 Internet Routing. Jens A Andersson EITF25 Internet Routing Jens A Andersson Study Guide Kihl & Andersson: Ch 8, 9.3 9.4 Stallings: Ch 19.1 & 19.2 Forouzan 5th ed Ch 20.1 20.3, 21.1 21.2 Routing The Routing Concept Unicast Routing Multicast

More information

Jaringan Komputer. Network Layer. Network Layer. Network Layer. Network Layer Design Issues. Store-and-Forward Packet Switching

Jaringan Komputer. Network Layer. Network Layer. Network Layer. Network Layer Design Issues. Store-and-Forward Packet Switching Network Layer Jaringan Komputer Network Layer Concerned with getting packets from the source all the way to the destination May require making many hops at intermediate routers along the way Contrasts

More information

The Interconnection Structure of. The Internet. EECC694 - Shaaban

The Interconnection Structure of. The Internet. EECC694 - Shaaban The Internet Evolved from the ARPANET (the Advanced Research Projects Agency Network), a project funded by The U.S. Department of Defense (DOD) in 1969. ARPANET's purpose was to provide the U.S. Defense

More information

CHAPTER 9: PACKET SWITCHING N/W & CONGESTION CONTROL

CHAPTER 9: PACKET SWITCHING N/W & CONGESTION CONTROL CHAPTER 9: PACKET SWITCHING N/W & CONGESTION CONTROL Dr. Bhargavi Goswami, Associate Professor head, Department of Computer Science, Garden City College Bangalore. PACKET SWITCHED NETWORKS Transfer blocks

More information

Top-Down Network Design

Top-Down Network Design Top-Down Network Design Chapter Seven Selecting Switching and Routing Protocols Original slides by Cisco Press & Priscilla Oppenheimer Selection Criteria for Switching and Routing Protocols Network traffic

More information

MULTICAST EXTENSIONS TO OSPF (MOSPF)

MULTICAST EXTENSIONS TO OSPF (MOSPF) MULTICAST EXTENSIONS TO OSPF (MOSPF) Version 2 of the Open Shortest Path First (OSPF) routing protocol is defined in RFC-1583. It is an Interior Gateway Protocol (IGP) specifically designed to distribute

More information

Configuring Port-Based Traffic Control

Configuring Port-Based Traffic Control CHAPTER 18 This chapter describes how to configure port-based traffic control features on the Catalyst 3750 Metro switch. For complete syntax and usage information for the commands used in this chapter,

More information

Lecture 13: Link-state Routing. CSE 123: Computer Networks Alex C. Snoeren

Lecture 13: Link-state Routing. CSE 123: Computer Networks Alex C. Snoeren Lecture 3: Link-state Routing CSE 23: Computer Networks Alex C. Snoeren Lecture 3 Overview Routing overview Intra vs. Inter-domain routing Link-state routing protocols 2 Router Tasks Forwarding Move packet

More information

SRM ARTS AND SCIENCE COLLEGE SRM NAGAR, KATTANKULATHUR

SRM ARTS AND SCIENCE COLLEGE SRM NAGAR, KATTANKULATHUR SRM ARTS AND SCIENCE COLLEGE SRM NAGAR, KATTANKULATHUR 603203 DEPARTMENT OF COMPUTER SCIENCE & APPLICATIONS LESSON PLAN (207-208) Course / Branch : M.Sc CS Total Hours : 45 Subject Name : Computer Networks

More information

Multicast Communications

Multicast Communications Multicast Communications Multicast communications refers to one-to-many or many-tomany communications. Unicast Broadcast Multicast Dragkedja IP Multicasting refers to the implementation of multicast communication

More information

Request for Comments: S. Gabe Nortel (Northern Telecom) Ltd. May Nortel s Virtual Network Switching (VNS) Overview

Request for Comments: S. Gabe Nortel (Northern Telecom) Ltd. May Nortel s Virtual Network Switching (VNS) Overview Network Working Group Request for Comments: 2340 Category: Informational B. Jamoussi D. Jamieson D. Williston S. Gabe Nortel (Northern Telecom) Ltd. May 1998 Status of this Memo Nortel s Virtual Network

More information

Overview. Problem: Find lowest cost path between two nodes Factors static: topology dynamic: load

Overview. Problem: Find lowest cost path between two nodes Factors static: topology dynamic: load Dynamic Routing Overview Forwarding vs Routing forwarding: to select an output port based on destination address and routing table routing: process by which routing table is built Network as a Graph C

More information

Connecting to the Network

Connecting to the Network Connecting to the Network Networking for Home and Small Businesses Chapter 3 1 Objectives Explain the concept of networking and the benefits of networks. Explain the concept of communication protocols.

More information

Table of Contents 1 PIM Configuration 1-1

Table of Contents 1 PIM Configuration 1-1 Table of Contents 1 PIM Configuration 1-1 PIM Overview 1-1 Introduction to PIM-DM 1-2 How PIM-DM Works 1-2 Introduction to PIM-SM 1-4 How PIM-SM Works 1-5 Introduction to Administrative Scoping in PIM-SM

More information

William Stallings Data and Computer Communications. Chapter 10 Packet Switching

William Stallings Data and Computer Communications. Chapter 10 Packet Switching William Stallings Data and Computer Communications Chapter 10 Packet Switching Principles Circuit switching designed for voice Resources dedicated to a particular call Much of the time a data connection

More information

Computer Networks Prof. Ashok K. Agrawala

Computer Networks Prof. Ashok K. Agrawala CMSC417 Computer Networks Prof. Ashok K. Agrawala 2017 Ashok Agrawala September 25, 2018 Fall 2018 CMSC417 1 Message, Segment, Packet, and Frame Fall 2018 CMSC417 2 Hierarchical Routing Hierarchical routing.

More information

Routing Protocols of IGP. Koji OKAMURA Kyushu University, Japan

Routing Protocols of IGP. Koji OKAMURA Kyushu University, Japan Routing Protocols of IGP Koji OKAMURA Kyushu University, Japan Routing Protocol AS (Autonomous System) Is operated autonomous in the organization. 6bit IGP (Interior Gateway Protocol) Routing Control inside

More information

Routing. Advanced Computer Networks: Routing 1

Routing. Advanced Computer Networks: Routing 1 Routing Advanced Computer Networks: Routing 1 Gateway To internet or wide area network Metropolitan Area Network (MAN) s s Organization Servers Backbone R S R R Departmental Server s R S R s S R s s s

More information

Token Ring VLANs and Related Protocols

Token Ring VLANs and Related Protocols CHAPTER 4 Token Ring VLANs and Related Protocols A VLAN is a logical group of LAN segments, independent of physical location, with a common set of requirements. For example, several end stations might

More information

Chapter 3 Part 2 Switching and Bridging. Networking CS 3470, Section 1

Chapter 3 Part 2 Switching and Bridging. Networking CS 3470, Section 1 Chapter 3 Part 2 Switching and Bridging Networking CS 3470, Section 1 Refresher We can use switching technologies to interconnect links to form a large network What is a hub? What is a switch? What is

More information

Routing, Routing Algorithms & Protocols

Routing, Routing Algorithms & Protocols Routing, Routing Algorithms & Protocols Computer Networks Lecture 6 http://goo.gl/pze5o8 Circuit-Switched and Packet-Switched WANs 2 Circuit-Switched Networks Older (evolved from telephone networks), a

More information

A COMPARISON OF REACTIVE ROUTING PROTOCOLS DSR, AODV AND TORA IN MANET

A COMPARISON OF REACTIVE ROUTING PROTOCOLS DSR, AODV AND TORA IN MANET ISSN: 2278 1323 All Rights Reserved 2016 IJARCET 296 A COMPARISON OF REACTIVE ROUTING PROTOCOLS DSR, AODV AND TORA IN MANET Dr. R. Shanmugavadivu 1, B. Chitra 2 1 Assistant Professor, Department of Computer

More information

ICS 351: Today's plan. distance-vector routing game link-state routing OSPF

ICS 351: Today's plan. distance-vector routing game link-state routing OSPF ICS 351: Today's plan distance-vector routing game link-state routing OSPF distance-vector routing game 1. prepare a list of all neighbors and the links to them, and the metric for each link 2. create

More information

Multicast Technology White Paper

Multicast Technology White Paper Multicast Technology White Paper Keywords: Multicast, IGMP, IGMP Snooping, PIM, MBGP, MSDP, and SSM Mapping Abstract: The multicast technology implements high-efficiency point-to-multipoint data transmission

More information

Lecture 6. TCP/IP Network Layer (4)

Lecture 6. TCP/IP Network Layer (4) Lecture 6 TCP/IP Network Layer (4) Outline (Network Layer) Principles behind network layer services: Virtual circuit and datagram networks Routing algorithms Link State Distance Vector Hierarchical Routing

More information

Chapter 5. The Network Layer. Network Layer Design Isues. Store-and-Forward Packet Switching 10/7/2010. Implementation of Connectionless Service

Chapter 5. The Network Layer. Network Layer Design Isues. Store-and-Forward Packet Switching 10/7/2010. Implementation of Connectionless Service Network Layer Design Isues Chapter 5 The Network Layer Store-and-Forward Packet Switching Services Provided to the Transport Layer Implementation of Connectionless Service Implementation of Connection-Oriented

More information

Chapter 5. The Network Layer

Chapter 5. The Network Layer Chapter 5 The Network Layer 1 Network Layer Design Isues Store-and-Forward Packet Switching Services Provided to the Transport Layer Implementation of Connectionless Service Implementation of Connection-Oriented

More information

CS-461 Internetworking. Dr. Mohamed Aboutabl

CS-461 Internetworking. Dr. Mohamed Aboutabl CS-461 Internetworking Dr. Mohamed Aboutabl http://www.cs.jmu.edu/users/aboutams The McGraw-Hill Companies, Inc., 2000 1 Chapter 1 Introduction The McGraw-Hill Companies, Inc., 2000 2 Internet today Network

More information

Course Routing Classification Properties Routing Protocols 1/39

Course Routing Classification Properties Routing Protocols 1/39 Course 8 3. Routing Classification Properties Routing Protocols 1/39 Routing Algorithms Types Static versus dynamic Single-path versus multipath Flat versus hierarchical Host-intelligent versus router-intelligent

More information

Chapter 5. The Network Layer. CEN Chapter 5 1

Chapter 5. The Network Layer. CEN Chapter 5 1 Chapter 5 The Network Layer CEN 445 - Chapter 5 1 Network Layer Design Isues Store-and-Forward Packet Switching Services Provided to the Transport Layer Implementation of Connectionless Service Implementation

More information

Lesson 5-2: Open Shortest Path First Protocol

Lesson 5-2: Open Shortest Path First Protocol Unit 5: Intradomain and Interdomain Routing Protocols Lesson 5-2: Open Shortest Path First Protocol At a Glance The Open Shortest Path First (OSPF) protocol was developed to answer problems that RIP could

More information

Content. 1. Introduction. 2. The Ad-hoc On-Demand Distance Vector Algorithm. 3. Simulation and Results. 4. Future Work. 5.

Content. 1. Introduction. 2. The Ad-hoc On-Demand Distance Vector Algorithm. 3. Simulation and Results. 4. Future Work. 5. Rahem Abri Content 1. Introduction 2. The Ad-hoc On-Demand Distance Vector Algorithm Path Discovery Reverse Path Setup Forward Path Setup Route Table Management Path Management Local Connectivity Management

More information

Chapter 2 Review Questions

Chapter 2 Review Questions Chapter 2 Review Questions The following questions are designed to test your understanding of this chapter s material. For more information on how to get additional questions, please see www.lammle.com/ccn

More information

Lecture on Computer Networks

Lecture on Computer Networks Lecture on Computer Networks Historical Development Copyright (c) 28 Dr. Thomas Haenselmann (Saarland University, Germany). Permission is granted to copy, distribute and/or modify this document under the

More information

Lecture 9. Network Layer (cont d) Network Layer 1-1

Lecture 9. Network Layer (cont d) Network Layer 1-1 Lecture 9 Network Layer (cont d) Network Layer 1-1 Agenda Routing Tables Unicast and Multicast Routing Protocols Routing Algorithms Link State and Distance Vector Routing Information and Open Shortest

More information

BTEC Level 3 Extended Diploma

BTEC Level 3 Extended Diploma BTEC Level 3 Extended Diploma Unit 9 Computer Network Routing and Routing Protocols BTEC Level 3 Extended Diploma Introduction to Routing Routing is the process that a router uses to forward packets toward

More information

ECE 4450:427/527 - Computer Networks Spring 2017

ECE 4450:427/527 - Computer Networks Spring 2017 ECE 4450:427/527 - Computer Networks Spring 2017 Dr. Nghi Tran Department of Electrical & Computer Engineering Lecture 6.1: Internetworking Dr. Nghi Tran (ECE-University of Akron) ECE 4450:427/527 Computer

More information

Chapter 6. The Network Layer

Chapter 6. The Network Layer Chapter 6 The Network Layer 1 Network Layer Design Isues Store-and-Forward Packet Switching Services Provided to the Transport Layer Implementation of Connectionless Service Implementation of Connection-Oriented

More information

EEC-684/584 Computer Networks

EEC-684/584 Computer Networks EEC-684/584 Computer Networks Lecture 14 wenbing@ieee.org (Lecture nodes are based on materials supplied by Dr. Louise Moser at UCSB and Prentice-Hall) Outline 2 Review of last lecture Internetworking

More information

3.5 CONNECTING DEVICES

3.5 CONNECTING DEVICES 3.5 CONNECTING DEVICES LANs or WANs do not normally operate in isolation. They are connected to one another or to the Internet. To connect LANs and WANs together we use connecting devices. Connecting devices

More information

OSPF Protocol Overview on page 187. OSPF Standards on page 188. OSPF Area Terminology on page 188. OSPF Routing Algorithm on page 190

OSPF Protocol Overview on page 187. OSPF Standards on page 188. OSPF Area Terminology on page 188. OSPF Routing Algorithm on page 190 Chapter 17 OSPF Protocol Overview The Open Shortest Path First (OSPF) protocol is an interior gateway protocol (IGP) that routes packets within a single autonomous system (AS). OSPF uses link-state information

More information

Performance Evaluation of Mesh - Based Multicast Routing Protocols in MANET s

Performance Evaluation of Mesh - Based Multicast Routing Protocols in MANET s Performance Evaluation of Mesh - Based Multicast Routing Protocols in MANET s M. Nagaratna Assistant Professor Dept. of CSE JNTUH, Hyderabad, India V. Kamakshi Prasad Prof & Additional Cont. of. Examinations

More information

Homework 3 Discussion

Homework 3 Discussion Homework 3 Discussion Address Resolution Protocol (ARP) Data Link Layer Network Layer Data Link Layer Network Layer Protocol Data Unit(PDU) Frames Packets Typical Device Switch/Bridge Router Range Local

More information

IP Addressing and Subnetting

IP Addressing and Subnetting IP Addressing and Subnetting Internet Layer The purpose of the Internet layer is to send packets from a network node and have them arrive at the destination node independent of the path taken. Internet

More information

Chapter 12. Routing and Routing Protocols 12-1

Chapter 12. Routing and Routing Protocols 12-1 Chapter 12 Routing and Routing Protocols 12-1 Routing in Circuit Switched Network Many connections will need paths through more than one switch Need to find a route Efficiency Resilience Public telephone

More information

Inter-networking. Problem. 3&4-Internetworking.key - September 20, LAN s are great but. We want to connect them together. ...

Inter-networking. Problem. 3&4-Internetworking.key - September 20, LAN s are great but. We want to connect them together. ... 1 Inter-networking COS 460 & 540 2 Problem 3 LAN s are great but We want to connect them together...across the world Inter-networking 4 Internet Protocol (IP) Routing The Internet Multicast* Multi-protocol

More information

What is Multicasting? Multicasting Fundamentals. Unicast Transmission. Agenda. L70 - Multicasting Fundamentals. L70 - Multicasting Fundamentals

What is Multicasting? Multicasting Fundamentals. Unicast Transmission. Agenda. L70 - Multicasting Fundamentals. L70 - Multicasting Fundamentals What is Multicasting? Multicasting Fundamentals Unicast transmission transmitting a packet to one receiver point-to-point transmission used by most applications today Multicast transmission transmitting

More information

Chapter 6. The Network Layer

Chapter 6. The Network Layer Chapter 6 The Network Layer 1 Network Layer Design Isues Store-and-Forward Packet Switching Services Provided to the Transport Layer Implementation of Connectionless Service Implementation of Connection-Oriented

More information

VI. ROUTING. - "routing protocol" nodes exchange information to ensure consistent understanding of paths

VI. ROUTING. - routing protocol nodes exchange information to ensure consistent understanding of paths (a) General Concepts VI. ROUTING - "routing" determination of suitable (i.e., least cost) path from a source to every destination (i.e., which nodes/switches/routers are in path) - "routing protocol" nodes

More information

ICMP, ARP, RARP, IGMP

ICMP, ARP, RARP, IGMP Internet Layer Lehrstuhl für Informatik 4 Raw division into three tasks: Data transfer over a global network Route decision at the sub-nodes Control of the network or transmission status Routing Protocols

More information

IP Multicast. What is multicast?

IP Multicast. What is multicast? IP Multicast 1 What is multicast? IP(v4) allows a host to send packets to a single host (unicast), or to all hosts (broadcast). Multicast allows a host to send packets to a subset of all host called a

More information