Queueing Networks. Lund University /

Size: px
Start display at page:

Download "Queueing Networks. Lund University /"

Transcription

1 Queueing Networks

2 Queueing Networks - Definition A queueing network is a network of nodes in which each node is a queue The output of one queue is connected to the input of another queue We will only consider M/M/n queues here analysis of more general queueing networks gets complicated fast

3

4 Open and Closed Queueing Networks A closed queueing network is one in which packets (or customers, tasks, etc) never enter or leave the network.

5 Open and Closed Queueing Networks An open queueing network is one in which packets may join a node's queue from outside the network and after processing, may leave the network entirely.

6 Consider a simple two-node queueing network where the output of the first node forms the input of the second node Each queue has one server and Markovian service times Node 1 is M/M/1 with average arrival rate λ and average service time 1/μ, where λ < μ What is the average arrival rate at the input of the second node?

7 Consider a simple two-node queueing network where the output of the first node forms the input of the second node Each queue has one server and Markovian service times Node 1 is M/M/1 Node 2:?/M/1 What is the distribution of the interdeparture times of the first node? i.e. the times between when packets leave node 1 This will be the distribution for packet arrival times at node 2

8 Burke's Theorem The interdeparture times from a Markovian (M/M/n) queue are exponentially distributed with the same parameter as the interarrival times. A Poisson process So node 2 is also M/M/1, with This means we can anaylse each queue independently! We can keep adding more nodes without increasing the complexity of our analysis just take one node at a time Burke's theorem holds for M/M/n queues, not just M/M/1.

9 Jackson Networks An open network of M/M/n queues Each node can receive traffic from other nodes and from outside the network Traffic from each node can go to other nodes, or leave the network

10 Jackson Networks N: total number of nodes in the network λi: total incoming average traffic rate to node i γi: average rate of traffic entering node i from outside the network rij: probability a packet leaving node i will then go to node j Note r need not be 0 a packet may immediately return to ii the node it just left So the probability that a packet leaves the network after leaving node i is given by

11 Jackson Networks Find the total average arrival rate to node i by summing over all incoming traffic: In general this total input will not be a Poisson process But Jackson showed that each node behaves as though it were!

12

13 Jackson Networks The state variable for the entire system of N nodes consists of the vector where is the number of packets (including those currently in service) at the ith node. Let the equilibrium probability associated with a given state be denoted and the probability of finding customers in the ith node be

14 Jackson's Theorem The joint probability distribution for all nodes is the product of the distributions for the individual nodes and each system is given by the solution to the classical M/M/n So we can treat each node as an M/M/n queue, even though the input is not necessarily Markovian

15 Gordon-Newell Networks Closed queueing networks with a fixed number of customers, K No new customers can enter the network and no customers can leave they are trapped and can only go from queue to queue

16 Gordon-Newell Networks In a Gordon-Newell network, the equilibirum probabilities are given by where is the number of customers currently in service at node i and (mi is the number of servers at node i)

17 Gordon-Newell Networks The function G(K) is given by where the sum is computed over all possible state vectors k Thus we also have a product form for Gordon-Newell networks but it is a lot messier! This is because the fixed number of customers introduces a dependency between the elements of the state vector

18 Gordon-Newell Networks What if we let? If we arrange the nodes in order of ratio of customers being served to number of servers, i.e. It can be shown that for any state in which i.e. we get an infinite number of customers in node 1, forming a bottleneck for the entire network.

19 Gordon-Newell Networks But for the other nodes just like for a Jackson network

20 What is an example of a system that can be modelled as a Jackson network?

21 References Kleinrock, Leonard. "Queueing systems. volume 1: Theory." (1975). Burke, Paul J. "The output of a queuing system." Operations Research 4.6 (1956): Jackson, James R. "Networks of waiting lines." Operations Research 5.4 (1957): Gordon, William J., and Gordon F. Newell. "Closed queuing systems with exponential servers." Operations research 15.2 (1967):

Queuing Networks. Renato Lo Cigno. Simulation and Performance Evaluation Queuing Networks - Renato Lo Cigno 1

Queuing Networks. Renato Lo Cigno. Simulation and Performance Evaluation Queuing Networks - Renato Lo Cigno 1 Queuing Networks Renato Lo Cigno Simulation and Performance Evaluation 2014-15 Queuing Networks - Renato Lo Cigno 1 Moving between Queues Queuing Networks - Renato Lo Cigno - Interconnecting Queues 2 Moving

More information

Queuing Systems. 1 Lecturer: Hawraa Sh. Modeling & Simulation- Lecture -4-21/10/2012

Queuing Systems. 1 Lecturer: Hawraa Sh. Modeling & Simulation- Lecture -4-21/10/2012 Queuing Systems Queuing theory establishes a powerful tool in modeling and performance analysis of many complex systems, such as computer networks, telecommunication systems, call centers, manufacturing

More information

UNIT 4: QUEUEING MODELS

UNIT 4: QUEUEING MODELS UNIT 4: QUEUEING MODELS 4.1 Characteristics of Queueing System The key element s of queuing system are the customer and servers. Term Customer: Can refer to people, trucks, mechanics, airplanes or anything

More information

Introduction to Queuing Systems

Introduction to Queuing Systems Introduction to Queuing Systems Queuing Theory View network as collections of queues FIFO data-structures Queuing theory provides probabilistic analysis of these queues Examples: Average length Probability

More information

Advanced Internet Technologies

Advanced Internet Technologies Advanced Internet Technologies Chapter 3 Performance Modeling Dr.-Ing. Falko Dressler Chair for Computer Networks & Internet Wilhelm-Schickard-Institute for Computer Science University of Tübingen http://net.informatik.uni-tuebingen.de/

More information

Model suitable for virtual circuit networks

Model suitable for virtual circuit networks . The leinrock Independence Approximation We now formulate a framework for approximation of average delay per packet in telecommunications networks. Consider a network of communication links as shown in

More information

Teletraffic theory (for beginners)

Teletraffic theory (for beginners) Teletraffic theory (for beginners) samuli.aalto@hut.fi teletraf.ppt S-38.8 - The Principles of Telecommunications Technology - Fall 000 Contents Purpose of Teletraffic Theory Network level: switching principles

More information

Cover sheet for Assignment 3

Cover sheet for Assignment 3 Faculty of Arts and Science University of Toronto CSC 358 - Introduction to Computer Networks, Winter 2018, LEC0101 Cover sheet for Assignment 3 Due Monday March 5, 10:00am. Complete this page and attach

More information

Read Chapter 4 of Kurose-Ross

Read Chapter 4 of Kurose-Ross CSE 422 Notes, Set 4 These slides contain materials provided with the text: Computer Networking: A Top Down Approach,5th edition, by Jim Kurose and Keith Ross, Addison-Wesley, April 2009. Additional figures

More information

Understanding Disconnection and Stabilization of Chord

Understanding Disconnection and Stabilization of Chord Understanding Disconnection and Stabilization of Chord Zhongmei Yao Joint work with Dmitri Loguinov Internet Research Lab Department of Computer Science Texas A&M University, College Station, TX 77843

More information

PARALLEL ALGORITHMS FOR IP SWITCHERS/ROUTERS

PARALLEL ALGORITHMS FOR IP SWITCHERS/ROUTERS THE UNIVERSITY OF NAIROBI DEPARTMENT OF ELECTRICAL AND INFORMATION ENGINEERING FINAL YEAR PROJECT. PROJECT NO. 60 PARALLEL ALGORITHMS FOR IP SWITCHERS/ROUTERS OMARI JAPHETH N. F17/2157/2004 SUPERVISOR:

More information

TELCOM 2130 Queueing Theory. David Tipper Associate Professor Graduate Telecommunications and Networking Program. University of Pittsburgh

TELCOM 2130 Queueing Theory. David Tipper Associate Professor Graduate Telecommunications and Networking Program. University of Pittsburgh TELCOM 2130 Queueing Theory David Tipper Associate Professor Graduate Telecommunications and Networking Program University of Pittsburgh Learning Objective To develop the modeling and mathematical skills

More information

Queuing Networks Modeling Virtual Laboratory

Queuing Networks Modeling Virtual Laboratory Queuing Networks Modeling Virtual Laboratory Dr. S. Dharmaraja Department of Mathematics IIT Delhi http://web.iitd.ac.in/~dharmar Queues Notes 1 1 Outline Introduction Simple Queues Performance Measures

More information

3. Examples. Contents. Classical model for telephone traffic (1) Classical model for telephone traffic (2)

3. Examples. Contents. Classical model for telephone traffic (1) Classical model for telephone traffic (2) Contents Model for telephone traffic Packet level model for data traffic Flow level model for elastic data traffic Flow level model for streaming data traffic lect03.ppt S-38.45 - Introduction to Teletraffic

More information

Queueing Networks 32-1

Queueing Networks 32-1 Queueing Networks Raj Jain Washington University in Saint Louis Jain@eecs.berkeley.edu or Jain@wustl.edu A Mini-Course offered at UC Berkeley, Sept-Oct 2012 These slides and audio/video recordings are

More information

ETSN01 Exam Solutions

ETSN01 Exam Solutions ETSN01 Exam Solutions March 014 Question 1 (a) See p17 of the cellular systems slides for a diagram and the full procedure. The main points here were that the HLR needs to be queried to determine the location

More information

MODELING OF SMART GRID TRAFFICS USING NON- PREEMPTIVE PRIORITY QUEUES

MODELING OF SMART GRID TRAFFICS USING NON- PREEMPTIVE PRIORITY QUEUES MODELING OF SMART GRID TRAFFICS USING NON- PREEMPTIVE PRIORITY QUEUES Contents Smart Grid Model and Components. Future Smart grid components. Classification of Smart Grid Traffic. Brief explanation of

More information

TCP performance analysis through. processor sharing modeling

TCP performance analysis through. processor sharing modeling TCP performance analysis through processor sharing modeling Pasi Lassila a,b, Hans van den Berg a,c, Michel Mandjes a,d, and Rob Kooij c a Faculty of Mathematical Sciences, University of Twente b Networking

More information

Chapter 5. Minimization of Average Completion Time and Waiting Time in Cloud Computing Environment

Chapter 5. Minimization of Average Completion Time and Waiting Time in Cloud Computing Environment Chapter 5 Minimization of Average Completion Time and Waiting Time in Cloud Computing Cloud computing is the use of the Internet for the tasks the users performing on their computer. Cloud computing, also

More information

Stochastic Processing Networks: What, Why and How? Ruth J. Williams University of California, San Diego

Stochastic Processing Networks: What, Why and How? Ruth J. Williams University of California, San Diego Stochastic Processing Networks: What, Why and How? Ruth J. Williams University of California, San Diego http://www.math.ucsd.edu/~williams 1 OUTLINE! What is a Stochastic Processing Network?! Applications!

More information

Simulation Studies of the Basic Packet Routing Problem

Simulation Studies of the Basic Packet Routing Problem Simulation Studies of the Basic Packet Routing Problem Author: Elena Sirén 48314u Supervisor: Pasi Lassila February 6, 2001 1 Abstract In this paper the simulation of a basic packet routing problem using

More information

The A* traffic process in a queue with feedback

The A* traffic process in a queue with feedback The A traffic process in a queue with feedback Elizabeth Varki Abstract This paper establishes the A traffic process in queueing networks. The A traffic process links open and closed networks, and explains

More information

Performance Evaluation of Scheduling Mechanisms for Broadband Networks

Performance Evaluation of Scheduling Mechanisms for Broadband Networks Performance Evaluation of Scheduling Mechanisms for Broadband Networks Gayathri Chandrasekaran Master s Thesis Defense The University of Kansas 07.31.2003 Committee: Dr. David W. Petr (Chair) Dr. Joseph

More information

Queueing Theory. M/M/1 and M/M/m Queues

Queueing Theory. M/M/1 and M/M/m Queues Queueing Theory M/M/1 and M/M/m Queues Why queuing theory? Reason about the system Analyze different components Determine bottlenecks Queues are a core aspect of complex systems Art of Computer Systems

More information

DDSS: Dynamic Dedicated Servers Scheduling for Multi Priority Level Classes in Cloud Computing

DDSS: Dynamic Dedicated Servers Scheduling for Multi Priority Level Classes in Cloud Computing DDSS: Dynamic Dedicated Servers Scheduling for Multi Priority Level Classes in Cloud Computing Husnu Saner Narman Md. Shohrab Hossain Mohammed Atiquzzaman School of Computer Science University of Oklahoma,

More information

Outline. Application examples

Outline. Application examples Outline Application examples Google page rank algorithm Aloha protocol Virtual circuit with window flow control Store-and-Forward packet-switched network Interactive system with infinite servers 1 Example1:

More information

Teletraffic theory I: Queuing theory

Teletraffic theory I: Queuing theory Teletraffic theory I: Queuing theory Lecturer: Dmitri A. Moltchanov E-mail: moltchan@cs.tut.fi http://www.cs.tut.fi/kurssit/tlt-2716/ 1. Place of the course TLT-2716 is a part of Teletraffic theory five

More information

This formula shows that partitioning the network decreases the total traffic if 1 N R (1 + p) < N R p < 1, i.e., if not all the packets have to go

This formula shows that partitioning the network decreases the total traffic if 1 N R (1 + p) < N R p < 1, i.e., if not all the packets have to go Chapter 3 Problem 2 In Figure 3.43 of the text every node transmits R bps, and we assume that both network partitions consist of 1 N nodes. So the total traffic generated by the nodes 2 of each Ethernet

More information

Analytic Performance Models for Bounded Queueing Systems

Analytic Performance Models for Bounded Queueing Systems Analytic Performance Models for Bounded Queueing Systems Praveen Krishnamurthy Roger D. Chamberlain Praveen Krishnamurthy and Roger D. Chamberlain, Analytic Performance Models for Bounded Queueing Systems,

More information

Lecture 8: Using Mathematica to Simulate Markov Processes. Pasi Lassila Department of Communications and Networking

Lecture 8: Using Mathematica to Simulate Markov Processes. Pasi Lassila Department of Communications and Networking Lecture 8: Using Mathematica to Simulate Markov Processes Pasi Lassila Department of Communications and Networking Aim of the lecture Use Mathematica to implement simple examples We consider 2 examples

More information

Introduction to Performance Engineering and Modeling

Introduction to Performance Engineering and Modeling Introduction to Performance Engineering and Modeling Dr. Michele Mazzucco Software Engineering Group Michele.Mazzucco@ut.ee http://math.ut.ee/~mazzucco What is Performance Engineering? Whether you design,

More information

Multi-threaded, discrete event simulation of distributed computing systems

Multi-threaded, discrete event simulation of distributed computing systems Multi-threaded, discrete event simulation of distributed computing systems Iosif C. Legrand California Institute of Technology, Pasadena, CA, U.S.A Abstract The LHC experiments have envisaged computing

More information

Where Are We? Basics: Network Classification Network Architecture Reliable Data Transfer Delay Models Implementation: Protocol Design

Where Are We? Basics: Network Classification Network Architecture Reliable Data Transfer Delay Models Implementation: Protocol Design Where Are We? Basics: Network Classification Network Architecture Reliable Data Transfer Delay Models Implementation: Protocol Design Layered Architecture Layered Architecture Data Link Layer Functionality

More information

Why is scheduling so difficult?

Why is scheduling so difficult? Queueing Page 1 Why is scheduling so difficult? Wednesday, November 8, 2017 7:35 AM Scheduling is a matter of great controversy. Should it be fair? (O(log n)) Should it instead be fast? (O(1)) As well,

More information

Optimum Scheduling and Memory Management in Input Queued Switches with Finite Buffer Space

Optimum Scheduling and Memory Management in Input Queued Switches with Finite Buffer Space University of Pennsylvania ScholarlyCommons Departmental Papers (ESE) Department of Electrical & Systems Engineering March 23 Optimum Scheduling and Memory Management in Input Queued Switches with Finite

More information

Queuing Systems. Computer Exercise 2. Loss Systems and Queuing Networks

Queuing Systems. Computer Exercise 2. Loss Systems and Queuing Networks Queuing Systems Computer Exercise 2 Loss Systems and Queuing Networks 1 Instructions To be able to understand the computer exercise and to complete it within the given time limits, you have to prepare

More information

EP2200 Queueing theory and teletraffic systems

EP2200 Queueing theory and teletraffic systems EP2200 Queueing theory and teletraffic systems Viktoria Fodor Laboratory of Communication Networks School of Electrical Engineering Lecture 1 If you want to model networks Or a complex data flow A queue's

More information

EP2200 Queueing theory and teletraffic systems

EP2200 Queueing theory and teletraffic systems EP2200 Queueing theory and teletraffic systems Viktoria Fodor Laboratory of Communication Networks School of Electrical Engineering Lecture 1 If you want to model networks Or a complex data flow A queue's

More information

CPET 565/CPET 499 Mobile Computing Systems. Lecture 8. Data Dissemination and Management. 2 of 3

CPET 565/CPET 499 Mobile Computing Systems. Lecture 8. Data Dissemination and Management. 2 of 3 CPET 565/CPET 499 Mobile Computing Systems Lecture 8 and Management 2 of 3 Based on the Text used in the course: Fundamentals of Mobile & Pervasive Computing, 2005, by Frank Adelstein, et. al, from McGraw-Hill

More information

A Rant on Queues. Van Jacobson. July 26, MIT Lincoln Labs Lexington, MA

A Rant on Queues. Van Jacobson. July 26, MIT Lincoln Labs Lexington, MA A Rant on Queues Van Jacobson July 26, 2006 MIT Lincoln Labs Lexington, MA Unlike the phone system, the Internet supports communication over paths with diverse, time varying, bandwidth. This means we often

More information

Characterizing Internet Load as a Non-regular Multiplex of TCP Streams

Characterizing Internet Load as a Non-regular Multiplex of TCP Streams Characterizing Internet Load as a Non-regular Multiplex of TCP Streams J. Aracil, D. Morató Dpto. Automática y Computación Universidad Pública de Navarra {javier.aracil,daniel.morato}@unavarra.es http://www.tlm.unavarra.es

More information

Web application performance

Web application performance Web application performance A Lecture for LinuxDays 2017 by Ing. Tomáš Vondra Cloud Architect at Capacity planning Marketing gives you: estimate of the number of customers and its trend > You need to translate

More information

An Efficient Queuing Model for Resource Sharing in Cloud Computing

An Efficient Queuing Model for Resource Sharing in Cloud Computing The International Journal Of Engineering And Science (IJES) Volume 3 Issue 10 Pages 36-43 2014 ISSN (e): 2319 1813 ISSN (p): 2319 1805 An Efficient Queuing Model for Resource Sharing in Cloud Computing

More information

Application of QNA to analyze the Queueing Network Mobility Model of MANET

Application of QNA to analyze the Queueing Network Mobility Model of MANET 1 Application of QNA to analyze the Queueing Network Mobility Model of MANET Harsh Bhatia 200301208 Supervisor: Dr. R. B. Lenin Co-Supervisors: Prof. S. Srivastava Dr. V. Sunitha Evaluation Committee no:

More information

TELE Switching Systems and Architecture. Assignment Week 10 Lecture Summary - Traffic Management (including scheduling)

TELE Switching Systems and Architecture. Assignment Week 10 Lecture Summary - Traffic Management (including scheduling) TELE9751 - Switching Systems and Architecture Assignment Week 10 Lecture Summary - Traffic Management (including scheduling) Student Name and zid: Akshada Umesh Lalaye - z5140576 Lecturer: Dr. Tim Moors

More information

Mean Value Analysis and Related Techniques

Mean Value Analysis and Related Techniques Mean Value Analysis and Related Techniques Raj Jain Washington University in Saint Louis Saint Louis, MO 63130 Jain@cse.wustl.edu Audio/Video recordings of this lecture are available at: 34-1 Overview

More information

Congestion Control in Communication Networks

Congestion Control in Communication Networks Congestion Control in Communication Networks Introduction Congestion occurs when number of packets transmitted approaches network capacity Objective of congestion control: keep number of packets below

More information

ETSN01 Advanced Telecommunication Course Outline 2016

ETSN01 Advanced Telecommunication Course Outline 2016 ETSN01 Advanced Telecommunication Course Outline 2016 1 Objectives At the end of this course, you should be able to: Evalaute wireless network systems and identify their performance goals and constraints

More information

Models. Motivation Timing Diagrams Metrics Evaluation Techniques. TOC Models

Models. Motivation Timing Diagrams Metrics Evaluation Techniques. TOC Models Models Motivation Timing Diagrams Metrics Evaluation Techniques TOC Models Motivation Understanding Network Behavior Improving Protocols Verifying Correctness of Implementation Detecting Faults Choosing

More information

WEB OBJECT SIZE SATISFYING MEAN WAITING TIME IN MULTIPLE ACCESS ENVIRONMENT

WEB OBJECT SIZE SATISFYING MEAN WAITING TIME IN MULTIPLE ACCESS ENVIRONMENT International Journal of Computer Networks & Communications (IJCNC) Vol.6, No.4, July 014 WEB OBJECT SIZE SATISFYING MEAN WAITING TIME IN MULTIPLE ACCESS ENVIRONMENT Y. J. Lee Department of Technology

More information

EAI Endorsed Transactions on Industrial Networks And Intelligent Systems

EAI Endorsed Transactions on Industrial Networks And Intelligent Systems EAI Endorsed Transactions on Industrial Networs And Intelligent Systems Research Article Coupling of the synchronization stations of an Extended Kanban system Leandros A. Maglaras, * University of Surrey,

More information

ECSE-4670: Computer Communication Networks (CCN) Informal Quiz 3

ECSE-4670: Computer Communication Networks (CCN) Informal Quiz 3 ECSE-4670: Computer Communication Networks (CCN) Informal Quiz 3 : shivkuma@ecse.rpi.edu Biplab Sikdar: sikdab@rpi.edu 1 T F Slotted ALOHA has improved utilization since the window of vulnerability is

More information

On the application of forking nodes to product-form queueing networks

On the application of forking nodes to product-form queueing networks INTERNATIONAL JOURNAL OF COMMUNICATION SYSTEMS Int. J. Commun. Syst. (in press) Published online in Wiley InterScience (www.interscience.wiley.com)..881 On the application of forking nodes to product-form

More information

Lecture 5: Performance Analysis I

Lecture 5: Performance Analysis I CS 6323 : Modeling and Inference Lecture 5: Performance Analysis I Prof. Gregory Provan Department of Computer Science University College Cork Slides: Based on M. Yin (Performability Analysis) Overview

More information

CNCL: Contents. Extra material (1)

CNCL: Contents. Extra material (1) CNCL: Contents CNCL C++ library for supporting event driven simulations Learning CNCL by examples Example 1: GI/GI/1 system, combined queue and server Example 2: steady state simulation using independent

More information

Intelligent Service Influence Evaluation for SIP Proxy Server Performance

Intelligent Service Influence Evaluation for SIP Proxy Server Performance Intelligent Service Influence Evaluation for SIP Proxy Server Performance Remigijus Gedmantas Department of Telecommunication, Kaunas University of Technology, Student st. 50 439, LT-5368 Kaunas, Lithuania,

More information

ROORKEE COLLEGE OF ENGINEERING

ROORKEE COLLEGE OF ENGINEERING ROORKEE COLLEGE OF ENGINEERING OPERATIONS RESEARCH LECTURE NOTES RAHUL BHARTI Assistant Professor RCE, ROORKEE Introduction The mathematical models which tells to optimise (minimize or maximise) the objective

More information

Inconsistency of Logical and Physical Topologies for Overlay Networks and Its Effect on File Transfer Delay

Inconsistency of Logical and Physical Topologies for Overlay Networks and Its Effect on File Transfer Delay Inconsistency of Logical and Physical Topologies for Overlay Networks and Its Effect on File Transfer Delay Yasuo Tamura a, Shoji Kasahara a,, Yutaka Takahashi a, Satoshi Kamei b, and Ryoichi Kawahara

More information

EECS 3214 Midterm Test Winter 2017 March 2, 2017 Instructor: S. Datta. 3. You have 120 minutes to complete the exam. Use your time judiciously.

EECS 3214 Midterm Test Winter 2017 March 2, 2017 Instructor: S. Datta. 3. You have 120 minutes to complete the exam. Use your time judiciously. EECS 3214 Midterm Test Winter 2017 March 2, 2017 Instructor: S. Datta Name (LAST, FIRST): Student number: Instructions: 1. If you have not done so, put away all books, papers, and electronic communication

More information

How Harmful The Paradox Can Be In The Cohen-Kelly Computer Network Model Using A Non-Cooperative Dynamic Load Balancing Policy

How Harmful The Paradox Can Be In The Cohen-Kelly Computer Network Model Using A Non-Cooperative Dynamic Load Balancing Policy How Harmful The Paradox Can Be In The Cohen-Kelly Computer Network Model Using A Non-Cooperative Dynamic Load Balancing Policy SAID FATHY EL-ZOGHDY 1 Menoufia University Faculty of Science Department of

More information

Unified analytical models of parallel and distributed computing

Unified analytical models of parallel and distributed computing American Journal of Networks and Communications 2014; 3(1): 1-12 Published online February 28, 2014 (http://www.sciencepublishinggroup.com/j/ajnc) doi: 10.11648/j.ajnc.20140301.11 Unified analytical s

More information

Two-Heterogeneous Server Markovian Queueing Model with Discouraged Arrivals, Reneging and Retention of Reneged Customers

Two-Heterogeneous Server Markovian Queueing Model with Discouraged Arrivals, Reneging and Retention of Reneged Customers International Journal of Operations Research International Journal of Operations Research Vol. 11, No. 2, 064 068 2014) Two-Heterogeneous Server Markovian Queueing Model with Discouraged Arrivals, Reneging

More information

A performance analytical model for Network-on-Chip with constant service time routers

A performance analytical model for Network-on-Chip with constant service time routers A performance analytical model for Network-on-Chip with constant service time routers Nikita Nikitin Univ. Politècnica de Catalunya Barcelona, pain nnikitin@lsi.upc.edu Jordi Cortadella Univ. Politècnica

More information

CS 3640: Introduction to Networks and Their Applications

CS 3640: Introduction to Networks and Their Applications CS 3640: Introduction to Networks and Their Applications Fall 2018, Lecture 4: Packet switching performance metrics Instructor: Rishab Nithyanand Teaching Assistant: Md. Kowsar Hossain 1 You should Be

More information

Congestion Control in TCP

Congestion Control in TCP Congestion Control in TCP Antonio Carzaniga Faculty of Informatics University of Lugano May 6, 2005 Outline Intro to congestion control Input rate vs. output throughput Congestion window Congestion avoidance

More information

Delay and Capacity Analysis of Structured P2P Overlay for Lookup Service

Delay and Capacity Analysis of Structured P2P Overlay for Lookup Service Delay and Capacity Analysis of Structured P2P Overlay for Lookup Service Jagadish Ghimire, Mehdi Mani, Noel Crespi, Teerapat Sanguankotchakorn November 13, 2011 Abstract In this paper, we provide an analytical

More information

Mean Value Analysis and Related Techniques

Mean Value Analysis and Related Techniques Mean Value Analysis and Related Techniques 34-1 Overview 1. Analysis of Open Queueing Networks 2. Mean-Value Analysis 3. Approximate MVA 4. Balanced Job Bounds 34-2 Analysis of Open Queueing Networks Used

More information

* Department of Computer Science, University of Pisa, Pisa, Italy Department of Elect. Engineering, University of Roma Tor Vergata, Rome, Italy

* Department of Computer Science, University of Pisa, Pisa, Italy Department of Elect. Engineering, University of Roma Tor Vergata, Rome, Italy A SURVEY OF PRODUCT-FORM QUEUEING NETWORKS WITH BLOCKING AND THEIR EQUIVALENCES Simonetta BALSAMO * and Vittoria DE NITTO PERSONE' * Department of Computer Science, University of Pisa, Pisa, Italy Department

More information

MODELS FOR QUEUING SYSTEMS

MODELS FOR QUEUING SYSTEMS 0 MODELS FOR QUEUING SYSTEMS Omor Sharif University of South Carolina Department of Civil and Environmental Engineering 00 Main Street Columbia, SC 0 Telephone: (0) -0 Fax: (0) -00 Email: omor.sharif@gmail.com

More information

Chapter 3 MEDIA ACCESS CONTROL

Chapter 3 MEDIA ACCESS CONTROL Chapter 3 MEDIA ACCESS CONTROL Distributed Computing Group Mobile Computing Winter 2005 / 2006 Overview Motivation SDMA, FDMA, TDMA Aloha Adaptive Aloha Backoff protocols Reservation schemes Polling Distributed

More information

A model for the evaluation of storage hierarchies

A model for the evaluation of storage hierarchies ~ The The design of the storage component is essential to the achieving of a good overall cost-performance balance in a computing system. A method is presented for quickly assessing many of the technological

More information

Optimal Routing and Scheduling in Multihop Wireless Renewable Energy Networks

Optimal Routing and Scheduling in Multihop Wireless Renewable Energy Networks Optimal Routing and Scheduling in Multihop Wireless Renewable Energy Networks ITA 11, San Diego CA, February 2011 MHR. Khouzani, Saswati Sarkar, Koushik Kar UPenn, UPenn, RPI March 23, 2011 Khouzani, Sarkar,

More information

QUEUEING NETWORKS- CUSTOMERS, SIGNALS,

QUEUEING NETWORKS- CUSTOMERS, SIGNALS, Journal of Applied Mathematics and Stochastic Analysis, 14:4 (2001), 421-426. QUEUEING NETWORKS- CUSTOMERS, SIGNALS, AND PRODUCT FORM SOLUTIONS by X. Chao, M. Miyazawa, and M. Pincdo and INTRODUCTION TO

More information

Dynamic Routing on Networks with Fixed-Size Buffers

Dynamic Routing on Networks with Fixed-Size Buffers 1 Dynamic Routing on Networks with Fixed-Size Buffers William Aiello Eyal Kushilevitz Rafail Ostrovsky Adi Rosén AT&T Labs Technion Telcordia Tech. Technion 2 Simple Packet Network Model directed graph

More information

Computational Queuing Analysis: An Application to Traffic Flow Analysis of the NAS

Computational Queuing Analysis: An Application to Traffic Flow Analysis of the NAS Computational Queuing Analysis: An Application to Traffic Flow Analysis of the NAS Prasenjit Sengupta *, Monish D. Tandale *, and P. K. Menon Optimal Synthesis Inc., Los Altos, CA 94022-2777 The application

More information

SUPPORT OF HANDOVER IN MOBILE ATM NETWORKS

SUPPORT OF HANDOVER IN MOBILE ATM NETWORKS SUPPORT OF HANDOVER IN MOBILE ATM NETWORKS Péter Fazekas fazekasp@hit.hit.bme.hu Tel: (36) 1-463-3256 Fax: (36) 1-463-3263 Department of Telecommunications Pázmány Péter sétany 1/D Polytechnic University

More information

SIMULATION OF NETWORK CONGESTION RATE BASED ON QUEUING THEORY USING OPNET

SIMULATION OF NETWORK CONGESTION RATE BASED ON QUEUING THEORY USING OPNET SIMULATION OF NETWORK CONGESTION RATE BASED ON QUEUING THEORY USING OPNET Nitesh Kumar Singh 1, Dr. Manoj Aggrawal 2 1, 2 Computer Science, Sunriase University, (India) ABSTRACT Most University networks

More information

Codes for Storage with Queues for Access

Codes for Storage with Queues for Access Codes for Storage with Queues for Access Mentors: Dr. Emina Soljanin and Graduate Student Amir Behrouzi-Far Dalton Burke 1 Elise Catania 2 1 University of Colorado Denver 2 University of Rochester DIMACS

More information

Queuing Networks, MVA, Bottleneck Analysis

Queuing Networks, MVA, Bottleneck Analysis Queuing Networks, MVA, Bottleneck Analysis Advanced Systems Lab November 16, 2017 (Advanced Systems Lab) Queuing Networks, MVA, Bottleneck Analysis November 16, 2017 1 / 21 Network of Queues Last Week:

More information

Lecture 14: M/G/1 Queueing System with Priority

Lecture 14: M/G/1 Queueing System with Priority Lecture 14: M/G/1 Queueing System with Priority Dr. Mohammed Hawa Electrical Engineering Department University of Jordan EE723: Telephony. Priority Queueing Systems Until the moment, we assumed identical

More information

Introduction to Performance Engineering and Modeling

Introduction to Performance Engineering and Modeling Introduction to Performance Engineering and Modeling Dr. Michele Mazzucco Software Engineering Group Michele.Mazzucco@ut.ee http://math.ut.ee/~mazzucco Today s lecture is not about performance and modeling

More information

048866: Packet Switch Architectures

048866: Packet Switch Architectures 048866: Packet Switch Architectures Output-Queued Switches Deterministic Queueing Analysis Fairness and Delay Guarantees Dr. Isaac Keslassy Electrical Engineering, Technion isaac@ee.technion.ac.il http://comnet.technion.ac.il/~isaac/

More information

Problem Set 2 (Due: Friday, October 19, 2018)

Problem Set 2 (Due: Friday, October 19, 2018) Electrical and Computer Engineering Memorial Univerity of Newfoundland ENGI 9876 - Advanced Data Network Fall 2018 Problem Set 2 (Due: Friday, October 19, 2018) Quetion 1 Conider an M/M/1 model of a queue

More information

Lecture 9 November 12, Wireless Access. Graduate course in Communications Engineering. University of Rome La Sapienza. Rome, Italy

Lecture 9 November 12, Wireless Access. Graduate course in Communications Engineering. University of Rome La Sapienza. Rome, Italy Lecture 9 November 12, 2018 Wireless Access Graduate course in Communications Engineering University of Rome La Sapienza Rome, Italy 2018-2019 Medium Access Control Scheduled access Classification of wireless

More information

Operating Systems and Networks Recitation Session 4

Operating Systems and Networks Recitation Session 4 Systems Group Department of Computer Science ETH Zürich Operating Systems and Networks Recitation Session 4 25/03/2011 Simon Gerber Group 5 Checksum 5/10/13 2 1 s complement sum 1000 0110 0101 1110 1st

More information

Calculating Call Blocking and Utilization for Communication Satellites that Use Dynamic Resource Allocation

Calculating Call Blocking and Utilization for Communication Satellites that Use Dynamic Resource Allocation Calculating Call Blocking and Utilization for Communication Satellites that Use Dynamic Resource Allocation Leah Rosenbaum Mohit Agrawal Leah Birch Yacoub Kureh Nam Lee UCLA Institute for Pure and Applied

More information

10. Network dimensioning

10. Network dimensioning Partly based on slide material by Samuli Aalto and Jorma Virtamo ELEC-C7210 Modeling and analysis of communication networks 1 Contents Introduction Parameters: topology, routing and traffic Dimensioning

More information

A Novel Scheduling and Queue Management Scheme for Multi-band Mobile Routers

A Novel Scheduling and Queue Management Scheme for Multi-band Mobile Routers A Novel Scheduling and Queue Management Scheme for Multi-band Mobile Routers Mohammed Atiquzzaman Md. Shohrab Hossain Husnu Saner Narman Telecommunications and Networking Research Lab The University of

More information

Multimedia Communication Services Traffic Modeling and Streaming

Multimedia Communication Services Traffic Modeling and Streaming Multimedia Communication Services Traffic Modeling and Streaming Medium Access Control algorithms Introduction and details on Aloha networks with infinite nodes Università degli Studi di Brescia A.A. 2014/2015

More information

Parallelism in Network Systems

Parallelism in Network Systems High Performance Switching Telecom Center Workshop: and outing Sept 4, 997. Parallelism in Network Systems Joint work with Sundar Iyer HP Labs, 0 th September, 00 Nick McKeown Professor of Electrical Engineering

More information

ETSN01 Exam. March 16th am 1pm

ETSN01 Exam. March 16th am 1pm ETSN01 Exam March 16th 2017 8am 1pm Instructions Clearly label each page you hand in with your name or identifier and the page number in the bottom right hand corner. Materials allowed: calculator, writing

More information

Network Traffic Characterisation

Network Traffic Characterisation Modeling Modeling Theory Outline 1 2 The Problem Assumptions 3 Standard Car Model The Packet Train Model The Self - Similar Model 4 Random Variables and Stochastic Processes The Poisson and Exponential

More information

Chapter 6 Queuing Disciplines. Networking CS 3470, Section 1

Chapter 6 Queuing Disciplines. Networking CS 3470, Section 1 Chapter 6 Queuing Disciplines Networking CS 3470, Section 1 Flow control vs Congestion control Flow control involves preventing senders from overrunning the capacity of the receivers Congestion control

More information

International Conference on Advances in Mechanical Engineering and Industrial Informatics (AMEII 2015)

International Conference on Advances in Mechanical Engineering and Industrial Informatics (AMEII 2015) International Conference on Advances in Mechanical Engineering and Industrial Informatics (AMEII 2015) A Cross Traffic Estimate Model for Optical Burst Switching Networks Yujue WANG 1, Dawei NIU 2, b,

More information

Can Multiple Subchannels Improve the Delay Performance of RTS/CTS-based MAC Schemes?

Can Multiple Subchannels Improve the Delay Performance of RTS/CTS-based MAC Schemes? Can Multiple Subchannels Improve the Delay Performance of RTS/CTS-based MAC Schemes? By: Jing Deng, Yunghsiang S. Han, and Sanjeev R. Kulkarni. J. Deng, Y. S. Han, and S. R. Kulkarni, "Can Multiple Subchannels

More information

Motivation: Wireless Packet-Based Transport

Motivation: Wireless Packet-Based Transport Wireless Networks I: Protocols & Architectures Hans-Peter Schwefel, Haibo Wang, Petar Popovski Mm1 IP Mobility Support (hps) Mm2 Wireless Multicast (hw) Mm3 Ad-hoc networks (pp) Mm4 Introduction to performance

More information

CS 556 Advanced Computer Networks Spring Solutions to Midterm Test March 10, YOUR NAME: Abraham MATTA

CS 556 Advanced Computer Networks Spring Solutions to Midterm Test March 10, YOUR NAME: Abraham MATTA CS 556 Advanced Computer Networks Spring 2011 Solutions to Midterm Test March 10, 2011 YOUR NAME: Abraham MATTA This test is closed books. You are only allowed to have one sheet of notes (8.5 11 ). Please

More information

M/G/c/K PERFORMANCE MODELS

M/G/c/K PERFORMANCE MODELS M/G/c/K PERFORMANCE MODELS J. MacGregor Smith Department of Mechanical and Industrial Engineering, University of Massachusetts Amherst, Massachusetts 01003 e-mail: jmsmith@ecs.umass.edu Abstract Multi-server

More information

Best-Effort versus Reservations Revisited

Best-Effort versus Reservations Revisited Best-Effort versus Reservations Revisited Oliver Heckmann and Jens B Schmitt 2 KOM Multimedia Communications Lab, TU Darmstadt, Germany 2 DISCO Distributed Computer Systems Lab, University of Kaiserslautern,

More information

Power Laws in ALOHA Systems

Power Laws in ALOHA Systems Power Laws in ALOHA Systems E6083: lecture 7 Prof. Predrag R. Jelenković Dept. of Electrical Engineering Columbia University, NY 10027, USA predrag@ee.columbia.edu February 28, 2007 Jelenković (Columbia

More information