Explaining BGP Slow Table Transfers

Size: px
Start display at page:

Download "Explaining BGP Slow Table Transfers"

Transcription

1 1 / 14 Explaining BGP Slow Table Transfers - Implementing a TCP delay analyzer Pei-chun Cheng, Jong Han Park, Keyur Patel +, Shane Amante, Lixia Zhang UCLA, + Cisco, Level3

2 2 / 14 BGP table transfer Massive routing updates... Affect a large portion of a router s BGP table Session resets or major route changes

3 2 / 14 BGP table transfer Massive routing updates... Affect a large portion of a router s BGP table Session resets or major route changes X X

4 2 / 14 BGP table transfer Massive routing updates... Affect a large portion of a router s BGP table Session resets or major route changes... is slow!? anecdotal common knowledge up to minutes reason remains unknown X X

5 2 / 14 BGP table transfer Massive routing updates... Affect a large portion of a router s BGP table Session resets or major route changes... is slow!? anecdotal common knowledge up to minutes reason remains unknown X X Goal: explain the transfer time... effectively!

6 2 / 14 BGP table transfer Massive routing updates... Affect a large portion of a router s BGP table Session resets or major route changes... is slow!? anecdotal common knowledge up to minutes reason remains unknown X X Goal: explain the transfer time... effectively! Idea: investigate the transport (TCP) behavior

7 3 / 14 Why TCP trace? A sample BGP table transfer (low tput: 76 kbps) 5.3 MB 560 sec

8 3 / 14 Why TCP trace? A sample BGP table transfer (low tput: 76 kbps) 5.3 MB 560 sec Delays due to recurring retransmissions

9 3 / 14 Why TCP trace? A sample BGP table transfer (low tput: 76 kbps) 5.3 MB Delays due to receiver awnd 560 sec Delays due to recurring retransmissions

10 3 / 14 Why TCP trace? A sample BGP table transfer (low tput: 76 kbps) 5.3 MB Due to sender cwnd Delays due to receiver awnd 560 sec Delays due to recurring retransmissions

11 4 / 14 TCP induced delay Message delay seen at the BGP level Timestamp Delay Prefix Path / / / / / / /

12 4 / 14 TCP induced delay Message delay seen at the BGP level Timestamp Delay Prefix Path / / / / / / / Sequence (/1000) retransmission time (transport-induced delay) 1500 packet Retransmission ack.seq Time (sec)

13 4 / 14 TCP induced delay Message delay seen at the BGP level Timestamp Delay Prefix Path / / False attribution?... Overlook transport / issues / / / / Sequence (/1000) retransmission time (transport-induced delay) 1500 packet Retransmission ack.seq Time (sec)

14 4 / 14 TCP induced delay Message delay seen at the BGP level Timestamp Delay Prefix Path / / False attribution?... Overlook transport / issues / / / / How to detect? Visual inspection Hard to quantify Call for a delay analysis tool!! Sequence (/1000) retransmission time (transport-induced delay) 1500 packet Retransmission ack.seq Time (sec)

15 T-DAT: TCP Delay Analysis Tool Automatically identify delay contributors Which Application (BGP), TCP, Network Where Sender, Receiver, Network path Series-based approach Convert TCP trace to various event series Represent TCP transmission, retransmission, ACK, etc 2-tuple: [start time, end time], event data Infer delay contributors from the series Series: Advertised window event duration event data [t1, t3] 3 [t3, t5] 4 [t5, -] 2 Series: Outstanding packets event duration event data [t2, t3] 3 [t4, t5] / 14

16 T-DAT: TCP Delay Analysis Tool Automatically identify delay contributors Which Application (BGP), TCP, Network Where Sender, Receiver, Network path Series-based approach Convert TCP trace to various event series Represent TCP transmission, retransmission, ACK, etc 2-tuple: [start time, end time], event data Infer delay contributors from the series Series: Advertised window event duration event data [t1, t3] 3 [t3, t5] 4 [t5, -] 2 Series: Outstanding packets event duration event data [t2, t3] 3 [t4, t5] / 14

17 T-DAT: TCP Delay Analysis Tool Automatically identify delay contributors Which Application (BGP), TCP, Network Where Sender, Receiver, Network path Series-based approach Convert TCP trace to various event series Represent TCP transmission, retransmission, ACK, etc 2-tuple: [start time, end time], event data Infer delay contributors from the series Series: Advertised window event duration event data [t1, t3] 3 [t3, t5] 4 [t5, -] 2 Series: Outstanding packets event duration event data [t2, t3] 3 [t4, t5] / 14

18 6 / 14 T-DAT operations in brief Operation TCP trace Extraction Interpretation adv.seq ack.seq Packet Retransmission Transmission time Upstream loss Series Downstream loss Send BGP limited Send TCP CWD bounded Recv BGP limited Recv TCP ADV bounded Time (sec)

19 6 / 14 T-DAT operations in brief Operation TCP trace Series Transmission time Upstream loss Downstream loss Send BGP limited Send TCP CWD bounded Recv BGP limited Extraction adv.seq ack.seq Interpretation Packet (1) Convert trace to various delay seriesretransmission Represent TCP behaviors Recv TCP ADV bounded Time (sec)

20 6 / 14 T-DAT operations in brief Operation TCP trace Series Transmission time Upstream loss Downstream loss Send BGP limited Send TCP CWD bounded Recv BGP limited Extraction adv.seq ack.seq Interpretation Packet (1) Convert trace to various delay seriesretransmission Represent TCP behaviors Recv TCP ADV bounded (2) Calculate a delay contribution of each series: (series size / analysis period) Ex: 0.3 (30% of time spent in retransmission) Time (sec)

21 7 / 14 Output delay contributors 8 delay contributors Delay vector : V = (r 1, r 2,..., r 8 ), r i = size(series i ) AnalysisPeriod, i = Ex: ( 0.27, 0.43, 0.11, 0.01, 0.00, 0.01, 0.01, 0 ) BGP(2) TCP(2) Network(4) 3 contributing groups Group vector : G = (R s, R r, R n), R g = size( Series i ), g {s, r, n} AnalysisPeriod Ex: ( 0.38, 0.43, 0.01 ) Send Recv Net

22 7 / 14 Output delay contributors 8 delay contributors Delay vector : V = (r 1, r 2,..., r 8 ), r i = size(series i ) AnalysisPeriod, i = Ex: ( 0.27, 0.43, 0.11, 0.01, 0.00, 0.01, 0.01, 0 ) BGP(2) TCP(2) Network(4) 3 contributing groups Group vector : G = (R s, R r, R n), R g = size( Series i ), g {s, r, n} AnalysisPeriod Ex: ( 0.38, 0.43, 0.01 ) Send Recv Net

23 7 / 14 Output delay contributors 8 delay contributors Delay vector : V = (r 1, r 2,..., r 8 ), r i = size(series i ) AnalysisPeriod, i = Ex: ( 0.27, 0.43, 0.11, 0.01, 0.00, 0.01, 0.01, 0 ) BGP(2) TCP(2) Network(4) 3 contributing groups Group vector : G = (R s, R r, R n), R g = size( Series i ), g {s, r, n} AnalysisPeriod Ex: ( 0.38, 0.43, 0.01 ) Send Recv Net

24 7 / 14 Output delay contributors 8 delay contributors Delay vector : V = (r 1, r 2,..., r 8 ), r i = size(series i ) AnalysisPeriod, i = Ex: ( 0.27, 0.43, 0.11, 0.01, 0.00, 0.01, 0.01, 0 ) BGP(2) TCP(2) Network(4) 3 contributing groups Group vector : G = (R s, R r, R n), R g = size( Series i ), g {s, r, n} AnalysisPeriod Ex: ( 0.38, 0.43, 0.01 ) Send Recv Net Apply to BGP table transfers

25 8 / 14 Apply to BGP Data (ISP A and RouteViews) Trace Duration Collector # Pkts/Bytes # Rtrs TCP BGP # BGP Tables Name (M/GB) Transfers ISP A Vendor 1023 / Yes ISP A Quagga 909 / Yes Yes / / RV Vendor 176 / 47 59* Yes - 94 DISCLAIMER: Monitoring sessions!! NOT actual operational BGP sessions

26 8 / 14 Apply to BGP Data (ISP A and RouteViews) Trace Duration Collector # Pkts/Bytes # Rtrs TCP BGP # BGP Tables Name (M/GB) Transfers ISP A Vendor 1023 / Yes ISP A Quagga 909 / Yes Yes / / RV Vendor 176 / 47 59* Yes - 94 DISCLAIMER: Monitoring sessions!! NOT actual operational BGP sessions

27 8 / 14 Apply to BGP Data (ISP A and RouteViews) Trace Duration Collector # Pkts/Bytes # Rtrs TCP BGP # BGP Tables Name (M/GB) Transfers ISP A Vendor 1023 / Yes ISP A Quagga 909 / Yes Yes / / RV Vendor 176 / 47 59* Yes - 94 MCT DISCLAIMER: Monitoring sessions!! NOT actual operational BGP sessions

28 8 / 14 Apply to BGP Data (ISP A and RouteViews) Trace Duration Collector # Pkts/Bytes # Rtrs TCP BGP # BGP Tables Name (M/GB) Transfers ISP A Vendor 1023 / Yes ISP A Quagga 909 / Yes Yes / / RV Vendor 176 / 47 59* Yes - 94 MCT MCT pcap2bgp DISCLAIMER: Monitoring sessions!! NOT actual operational BGP sessions

29 8 / 14 Apply to BGP Data (ISP A and RouteViews) Trace Duration Collector # Pkts/Bytes # Rtrs TCP BGP # BGP Tables Name (M/GB) Transfers ISP A Vendor 1023 / Yes ISP A Quagga 909 / Yes Yes / / RV Vendor 176 / 47 59* Yes - 94 MCT MCT pcap2bgp DISCLAIMER: Monitoring sessions!! NOT actual operational BGP sessions

30 9 / 14 Find delay contributors - ISP A ISP A table transfers Plot the group delay ratio, Ex: (0.7, 0.3, 0.0) Network delay is usually low The failing side of a session tends to have more impact Receiver-side Delay Ratio Vendor collector 1 All Slower receiver Slower sender Sender-side Delay Ratio (only March May 2009) Receiver-side Delay Ratio Quagga collector Network. bounded Sender-side Delay Ratio All

31 9 / 14 Find delay contributors - ISP A ISP A table transfers Plot the group delay ratio, Ex: (0.7, 0.3, 0.0) Network delay is usually low The failing side of a session tends to have more impact Receiver-side Delay Ratio Vendor collector Slower receiver All Sender triggered Slower sender Sender-side Delay Ratio (only March May 2009) Receiver-side Delay Ratio Quagga collector Network. bounded All Sender triggered Sender-side Delay Ratio

32 10 / 14 Find delay contributors - RouteViews RouteViews table transfers From heterogeneous routers Across Internet Receiver-side Delay Ratio All Sender triggered Sender-side Delay Ratio

33 10 / 14 Find delay contributors - RouteViews RouteViews table transfers From heterogeneous routers Across Internet Receiver-side Delay Ratio 1 Slower receiver All Sender triggered TCP trace Slower receiver (30 seconds) 16KB adv. window for 86% of time tput adv. window / RTT (0.04, 0, 0.02, 86.6, 0, 0, 0.05, 0) adv ack Sender-side Delay Ratio POI series Retransmission Recv.BGP bounded Recv.ADV bounded Send.BGP bounded Send.CWD bounded Time (sec)

34 10 / 14 Receiver-side Delay Ratio Find delay contributors - RouteViews RouteViews table transfers From heterogeneous routers Across Internet All Sender triggered Slower sender Sender-side Delay Ratio TCP trace POI series Lazy sender (160 seconds) The sender often pauses transmission Remains idle for 92% of time (0.92, 0, 0.02, 0, 0, 0, 0, 0) Retransmission Recv.BGP bounded Recv.ADV bounded Send.BGP bounded Send.CWD bounded Recovery adv ack Time (sec)

35 10 / 14 Find delay contributors - RouteViews RouteViews table transfers From heterogeneous routers Across Internet Receiver-side Delay Ratio Retransmission All Sender triggered TCP trace Congestion limited (70 seconds) 67% time in recovering the packet loss (0.08, 0.15, 0.15, 0.50, 0, 0, 0.67, 0) Recovery adv ack Sender-side Delay Ratio POI series Retransmission Recv.BGP bounded Recv.ADV bounded Send.BGP bounded Send.CWD bounded Time (sec)

36 11 / 14 Example Screenshot $ tcptrace -G tcp.pcap > tcp tsg.xpl $ t-dat tcp tsg.xpl > tcp ser.xpl $ BGPlot tcp tsg.xpl tcp ser.xpl

37 12 / 14 Summary A TCP delay analysis tool Require TCP trace (tcpdump) Automatically suggest the reasons of transfer delay Demonstrate the usage using BGP monitoring data One ISP and RouteViews Can apply to operational sessions The tool and detail report will be available at (

38 13 / 14 Potential Usage Augment the existing BGP monitoring settings Enable TCP investigation Reduce transport-induced artifact Allow potential in-band monitoring

39 13 / 14 Potential Usage Augment the existing BGP monitoring settings Enable TCP investigation Reduce transport-induced artifact Allow potential in-band monitoring (1) TCP processor (2) Visualization tool (3) BGP extractor (4) T-DAT

40 13 / 14 Potential Usage Augment the existing BGP monitoring settings Enable TCP investigation Reduce transport-induced artifact Allow potential in-band monitoring (1) TCP processor (2) Visualization tool (3) BGP extractor (4) T-DAT

41 14 / 14 On-going Work Improve the tool Parameter / threshold settings Support other TCP variations? Collect BGP/TCP traces ISPA RouteViews UCLA Explore the tool usage for other TCP applications

42 Thanks! 14 / 14

Identifying BGP Routing Table Transfer. !Machu Picchu!

Identifying BGP Routing Table Transfer. !Machu Picchu! Identifying BGP Routing Table Transfer Beichuan Zhang (Univ. Of Arizona) Vamsi Kambhampati (Colorado State Univ.) Daniel Massey (Colorado State Univ.) Mohit Lad (Univ. Of California, LA) Lixia Zhang (Univ.

More information

TCP Congestion Control

TCP Congestion Control TCP Congestion Control What is Congestion The number of packets transmitted on the network is greater than the capacity of the network Causes router buffers (finite size) to fill up packets start getting

More information

TCP Congestion Control

TCP Congestion Control What is Congestion TCP Congestion Control The number of packets transmitted on the network is greater than the capacity of the network Causes router buffers (finite size) to fill up packets start getting

More information

TCP Congestion Control 65KB W

TCP Congestion Control 65KB W TCP Congestion Control 65KB W TO 3DA 3DA TO 0.5 0.5 0.5 0.5 3 3 1 SS SS CA SS CA TCP s Congestion Window Maintenance TCP maintains a congestion window (cwnd), based on packets Sender s window is limited

More information

Transmission Control Protocol. ITS 413 Internet Technologies and Applications

Transmission Control Protocol. ITS 413 Internet Technologies and Applications Transmission Control Protocol ITS 413 Internet Technologies and Applications Contents Overview of TCP (Review) TCP and Congestion Control The Causes of Congestion Approaches to Congestion Control TCP Congestion

More information

Network Protocols. Transmission Control Protocol (TCP) TDC375 Autumn 2009/10 John Kristoff DePaul University 1

Network Protocols. Transmission Control Protocol (TCP) TDC375 Autumn 2009/10 John Kristoff DePaul University 1 Network Protocols Transmission Control Protocol (TCP) TDC375 Autumn 2009/10 John Kristoff DePaul University 1 IP review IP provides just enough connected ness Global addressing Hop by hop routing IP over

More information

CS Transport. Outline. Window Flow Control. Window Flow Control

CS Transport. Outline. Window Flow Control. Window Flow Control CS 54 Outline indow Flow Control (Very brief) Review of TCP TCP throughput modeling TCP variants/enhancements Transport Dr. Chan Mun Choon School of Computing, National University of Singapore Oct 6, 005

More information

TCP WISE: One Initial Congestion Window Is Not Enough

TCP WISE: One Initial Congestion Window Is Not Enough TCP WISE: One Initial Congestion Window Is Not Enough Xiaohui Nie $, Youjian Zhao $, Guo Chen, Kaixin Sui, Yazheng Chen $, Dan Pei $, MiaoZhang, Jiyang Zhang $ 1 Motivation Web latency matters! latency

More information

Investigating occurrence of duplicate updates in BGP announcements

Investigating occurrence of duplicate updates in BGP announcements Investigating occurrence of duplicate updates in BGP announcements Jonathan Park, Dan Jen, Mohit Lab, Shane Amante, Danny McPherson, Lixia Zhang GROW @ IETF75 July 27, 2009 Why This Work All BGP update

More information

Congestion Control 3/16/09

Congestion Control 3/16/09 Congestion Control Outline Resource Allocation Queuing TCP Congestion Control Spring 009 CSE3064 Issues Two sides of the same coin pre-allocate resources so at to avoid congestion control congestion if

More information

CS321: Computer Networks Congestion Control in TCP

CS321: Computer Networks Congestion Control in TCP CS321: Computer Networks Congestion Control in TCP Dr. Manas Khatua Assistant Professor Dept. of CSE IIT Jodhpur E-mail: manaskhatua@iitj.ac.in Causes and Cost of Congestion Scenario-1: Two Senders, a

More information

image 3.8 KB Figure 1.6: Example Web Page

image 3.8 KB Figure 1.6: Example Web Page image. KB image 1 KB Figure 1.: Example Web Page and is buffered at a router, it must wait for all previously queued packets to be transmitted first. The longer the queue (i.e., the more packets in the

More information

Fast Retransmit. Problem: coarsegrain. timeouts lead to idle periods Fast retransmit: use duplicate ACKs to trigger retransmission

Fast Retransmit. Problem: coarsegrain. timeouts lead to idle periods Fast retransmit: use duplicate ACKs to trigger retransmission Fast Retransmit Problem: coarsegrain TCP timeouts lead to idle periods Fast retransmit: use duplicate ACKs to trigger retransmission Packet 1 Packet 2 Packet 3 Packet 4 Packet 5 Packet 6 Sender Receiver

More information

8. TCP Congestion Control

8. TCP Congestion Control 8. TCP Congestion Control 1 TCP Congestion Control Slow-start increase Multiplicative decrease Congestion avoidance Measurement of variation Exponential timer backoff 2002 Yanghee Choi 2 Congestion Control

More information

An In-depth Study of LTE: Effect of Network Protocol and Application Behavior on Performance

An In-depth Study of LTE: Effect of Network Protocol and Application Behavior on Performance An In-depth Study of LTE: Effect of Network Protocol and Application Behavior on Performance Authors: Junxian Huang, Feng Qian, Yihua Guo, Yuanyuan Zhou, Qiang Xu, Z. Morley Mao, Subhabrata Sen, Oliver

More information

Outline Computer Networking. TCP slow start. TCP modeling. TCP details AIMD. Congestion Avoidance. Lecture 18 TCP Performance Peter Steenkiste

Outline Computer Networking. TCP slow start. TCP modeling. TCP details AIMD. Congestion Avoidance. Lecture 18 TCP Performance Peter Steenkiste Outline 15-441 Computer Networking Lecture 18 TCP Performance Peter Steenkiste Fall 2010 www.cs.cmu.edu/~prs/15-441-f10 TCP congestion avoidance TCP slow start TCP modeling TCP details 2 AIMD Distributed,

More information

Advanced Computer Networks

Advanced Computer Networks Advanced Computer Networks Congestion control in TCP Contents Principles TCP congestion control states Congestion Fast Recovery TCP friendly applications Prof. Andrzej Duda duda@imag.fr http://duda.imag.fr

More information

CSE 473 Introduction to Computer Networks. Exam 2. Your name here: 11/7/2012

CSE 473 Introduction to Computer Networks. Exam 2. Your name here: 11/7/2012 CSE 473 Introduction to Computer Networks Jon Turner Exam 2 Your name here: 11/7/2012 1. (10 points). The diagram at right shows a DHT with 16 nodes. Each node is labeled with the first value in its range

More information

TCP congestion control:

TCP congestion control: TCP congestion control: Probing for usable bandwidth: Ideally: transmit as fast as possible (cwnd as large as possible) without loss Increase cwnd until loss (congestion) Loss: decrease cwnd, then begin

More information

c) With the selective repeat protocol, it is possible for the sender to receive an ACK for a packet that falls outside of its current window.

c) With the selective repeat protocol, it is possible for the sender to receive an ACK for a packet that falls outside of its current window. Part 1 Question 1 [0.5 Marks] Suppose an application generates chunks of 40 bytes of data every 20 msec, and each chunk gets encapsulated by a TCP segment and then an IP datagram. What percentage of each

More information

Documents. Configuration. Important Dependent Parameters (Approximate) Version 2.3 (Wed, Dec 1, 2010, 1225 hours)

Documents. Configuration. Important Dependent Parameters (Approximate) Version 2.3 (Wed, Dec 1, 2010, 1225 hours) 1 of 7 12/2/2010 11:31 AM Version 2.3 (Wed, Dec 1, 2010, 1225 hours) Notation And Abbreviations preliminaries TCP Experiment 2 TCP Experiment 1 Remarks How To Design A TCP Experiment KB (KiloBytes = 1,000

More information

Topics. TCP sliding window protocol TCP PUSH flag TCP slow start Bulk data throughput

Topics. TCP sliding window protocol TCP PUSH flag TCP slow start Bulk data throughput Topics TCP sliding window protocol TCP PUSH flag TCP slow start Bulk data throughput 2 Introduction In this chapter we will discuss TCP s form of flow control called a sliding window protocol It allows

More information

Bandwidth Allocation & TCP

Bandwidth Allocation & TCP Bandwidth Allocation & TCP The Transport Layer Focus Application Presentation How do we share bandwidth? Session Topics Transport Network Congestion control & fairness Data Link TCP Additive Increase/Multiplicative

More information

Advanced Computer Networks

Advanced Computer Networks Advanced Computer Networks Congestion control in TCP Prof. Andrzej Duda duda@imag.fr http://duda.imag.fr 1 Contents Principles TCP congestion control states Slow Start Congestion Avoidance Fast Recovery

More information

No, the bogus packet will fail the integrity check (which uses a shared MAC key).!

No, the bogus packet will fail the integrity check (which uses a shared MAC key).! 1. High level questions a. Suppose Alice and Bob are communicating over an SSL session. Suppose an attacker, who does not have any of the shared keys, inserts a bogus TCP segment into a packet stream with

More information

Mitigating Egregious ACK Delays in Cellular Data Networks by Eliminating TCP ACK Clocking

Mitigating Egregious ACK Delays in Cellular Data Networks by Eliminating TCP ACK Clocking Mitigating Egregious ACK Delays in Cellular Data Networks by Eliminating TCP ACK Clocking Wai Kay Leong, Yin Xu, Ben Leong, Zixiao Wang National University of Singapore Asymmetry in Cellular Networks Congestion

More information

ECE 461 Internetworking. Problem Sheet 6

ECE 461 Internetworking. Problem Sheet 6 ECE 461 Internetworking Problem Sheet 6 Problem 1. Consider the state of a sliding window at the sending side of a TCP connections as shown in Figure 1. (Each number corresponds to one byte).. (a) Explain

More information

Transport Over IP. CSCI 690 Michael Hutt New York Institute of Technology

Transport Over IP. CSCI 690 Michael Hutt New York Institute of Technology Transport Over IP CSCI 690 Michael Hutt New York Institute of Technology Transport Over IP What is a transport protocol? Choosing to use a transport protocol Ports and Addresses Datagrams UDP What is a

More information

The Impact of Delay Variations on TCP Performance

The Impact of Delay Variations on TCP Performance INSTITUT FÜR KOMMUNIKATIONSNETZE UND RECHNERSYSTEME Prof. Dr.-Ing. Dr. h. c. mult. P. J. Kühn The Impact of Delay Variations on TCP Performance Michael Scharf scharf@ikr.uni-stuttgart.de ITG FG 5.2.1 Workshop,

More information

Outline. CS5984 Mobile Computing

Outline. CS5984 Mobile Computing CS5984 Mobile Computing Dr. Ayman Abdel-Hamid Computer Science Department Virginia Tech Outline Review Transmission Control Protocol (TCP) Based on Behrouz Forouzan, Data Communications and Networking,

More information

Networked Systems and Services, Fall 2017 Reliability with TCP

Networked Systems and Services, Fall 2017 Reliability with TCP Networked Systems and Services, Fall 2017 Reliability with TCP Jussi Kangasharju Markku Kojo Lea Kutvonen 4. Transmission Control Protocol (TCP) RFC 793 + more than hundred other RFCs TCP Loss Recovery

More information

CPSC 3600 HW #4 Fall 2017 Last update: 11/9/2017 Please work together with your project group (3 members)

CPSC 3600 HW #4 Fall 2017 Last update: 11/9/2017 Please work together with your project group (3 members) CPSC 3600 HW #4 Fall 2017 Last update: 11/9/2017 Please work together with your project group (3 members) Name: Q 1 Kurose chapter 3, review question R14 Q 2 Kurose chapter 3, review question R15 Q 3 Kurose

More information

ENRICHMENT OF SACK TCP PERFORMANCE BY DELAYING FAST RECOVERY Mr. R. D. Mehta 1, Dr. C. H. Vithalani 2, Dr. N. N. Jani 3

ENRICHMENT OF SACK TCP PERFORMANCE BY DELAYING FAST RECOVERY Mr. R. D. Mehta 1, Dr. C. H. Vithalani 2, Dr. N. N. Jani 3 Research Article ENRICHMENT OF SACK TCP PERFORMANCE BY DELAYING FAST RECOVERY Mr. R. D. Mehta 1, Dr. C. H. Vithalani 2, Dr. N. N. Jani 3 Address for Correspondence 1 Asst. Professor, Department of Electronics

More information

Congestion. Can t sustain input rate > output rate Issues: - Avoid congestion - Control congestion - Prioritize who gets limited resources

Congestion. Can t sustain input rate > output rate Issues: - Avoid congestion - Control congestion - Prioritize who gets limited resources Congestion Source 1 Source 2 10-Mbps Ethernet 100-Mbps FDDI Router 1.5-Mbps T1 link Destination Can t sustain input rate > output rate Issues: - Avoid congestion - Control congestion - Prioritize who gets

More information

Internet Networking recitation #10 TCP New Reno Vs. Reno

Internet Networking recitation #10 TCP New Reno Vs. Reno recitation #0 TCP New Reno Vs. Reno Spring Semester 200, Dept. of Computer Science, Technion 2 Introduction Packet Loss Management TCP Reno (RFC 258) can manage a loss of at most one packet from a single

More information

Chapter 3 Transport Layer

Chapter 3 Transport Layer Chapter 3 Transport Layer 1 Chapter 3 outline 3.1 Transport-layer services 3.2 Multiplexing and demultiplexing 3.3 Connectionless transport: UDP 3.4 Principles of reliable data transfer 3.5 Connection-oriented

More information

CSE 573S Protocols for Computer Networks (Spring 2005 Final Project)

CSE 573S Protocols for Computer Networks (Spring 2005 Final Project) CSE 573S Protocols for Computer Networks (Spring 2005 Final Project) To Investigate the degree of congestion control synchronization of window-based connections bottlenecked at the same link Kumar, Vikram

More information

CPSC 3600 HW #4 Solutions Fall 2017 Last update: 12/10/2017 Please work together with your project group (3 members)

CPSC 3600 HW #4 Solutions Fall 2017 Last update: 12/10/2017 Please work together with your project group (3 members) CPSC 3600 HW #4 Solutions Fall 2017 Last update: 12/10/2017 Please work together with your project group (3 members) Name: Q 1 Kurose chapter 3, review question R14 (20 points) Solution: a) false b) false

More information

CSE/EE 461. TCP congestion control. Last Lecture. This Lecture. Focus How should senders pace themselves to avoid stressing the network?

CSE/EE 461. TCP congestion control. Last Lecture. This Lecture. Focus How should senders pace themselves to avoid stressing the network? CSE/EE 461 TCP congestion control Last Lecture Focus How should senders pace themselves to avoid stressing the network? Topics congestion collapse congestion control Application Presentation Session Transport

More information

Congestion Control in TCP

Congestion Control in TCP Congestion Control in TCP Outline Overview of RENO TCP Reacting to Congestion SS/AIMD example CS 640 1 TCP Congestion Control The idea of TCP congestion control is for each source to determine how much

More information

Internetworking Protocols and Software (COMP416)

Internetworking Protocols and Software (COMP416) Internetworking Protocols and Software (COMP416) Assignment Three (due on 2 Dec. 2013) Rocky K. C. Chang 1) [10 MARKS] (TCP congestion control I) In this question, we revisit the congestion control problem

More information

CC-SCTP: Chunk Checksum of SCTP for Enhancement of Throughput in Wireless Network Environments

CC-SCTP: Chunk Checksum of SCTP for Enhancement of Throughput in Wireless Network Environments CC-SCTP: Chunk Checksum of SCTP for Enhancement of Throughput in Wireless Network Environments Stream Control Transmission Protocol (SCTP) uses the 32-bit checksum in the common header, by which a corrupted

More information

Transport Layer PREPARED BY AHMED ABDEL-RAOUF

Transport Layer PREPARED BY AHMED ABDEL-RAOUF Transport Layer PREPARED BY AHMED ABDEL-RAOUF TCP Flow Control TCP Flow Control 32 bits source port # dest port # head len sequence number acknowledgement number not used U A P R S F checksum Receive window

More information

Congestion Control In The Internet Part 2: How it is implemented in TCP. JY Le Boudec 2014

Congestion Control In The Internet Part 2: How it is implemented in TCP. JY Le Boudec 2014 1 Congestion Control In The Internet Part 2: How it is implemented in TCP JY Le Boudec 2014 Contents 1. Congestion control in TCP 2. The fairness of TCP 3. The loss throughput formula 4. Explicit Congestion

More information

Computer Networking Introduction

Computer Networking Introduction Computer Networking Introduction Halgurd S. Maghdid Software Engineering Department Koya University-Koya, Kurdistan-Iraq Lecture No.11 Chapter 3 outline 3.1 transport-layer services 3.2 multiplexing and

More information

Good Ideas So Far Computer Networking. Outline. Sequence Numbers (reminder) TCP flow control. Congestion sources and collapse

Good Ideas So Far Computer Networking. Outline. Sequence Numbers (reminder) TCP flow control. Congestion sources and collapse Good Ideas So Far 15-441 Computer Networking Lecture 17 TCP & Congestion Control Flow control Stop & wait Parallel stop & wait Sliding window Loss recovery Timeouts Acknowledgement-driven recovery (selective

More information

Overview. TCP congestion control Computer Networking. TCP modern loss recovery. TCP modeling. TCP Congestion Control AIMD

Overview. TCP congestion control Computer Networking. TCP modern loss recovery. TCP modeling. TCP Congestion Control AIMD Overview 15-441 Computer Networking Lecture 9 More TCP & Congestion Control TCP congestion control TCP modern loss recovery TCP modeling Lecture 9: 09-25-2002 2 TCP Congestion Control Changes to TCP motivated

More information

WB-RTO: A Window-Based Retransmission Timeout. Ioannis Psaras, Vassilis Tsaoussidis Demokritos University of Thrace, Xanthi, Greece

WB-RTO: A Window-Based Retransmission Timeout. Ioannis Psaras, Vassilis Tsaoussidis Demokritos University of Thrace, Xanthi, Greece WB-RTO: A Window-Based Retransmission Timeout Ioannis Psaras, Vassilis Tsaoussidis Demokritos University of Thrace, Xanthi, Greece Motivation and Contribution We observe that retransmission scheduling

More information

Computer Networks and Data Systems

Computer Networks and Data Systems Computer Networks and Data Systems Transport Layer TDC463 Winter 2011/12 John Kristoff - DePaul University 1 Why a transport layer? IP gives us end-to-end connectivity doesn't it? Why, or why not, more

More information

Congestion Control In The Internet Part 2: How it is implemented in TCP. JY Le Boudec 2014

Congestion Control In The Internet Part 2: How it is implemented in TCP. JY Le Boudec 2014 1 Congestion Control In The Internet Part 2: How it is implemented in TCP JY Le Boudec 2014 Contents 1. Congestion control in TCP 2. The fairness of TCP 3. The loss throughput formula 4. Explicit Congestion

More information

Investigating occurrence of duplicate updates in BGP announcements

Investigating occurrence of duplicate updates in BGP announcements Investigating occurrence of duplicate updates in BGP announcements Jong Han Park 1, Dan Jen 1, Mohit Lad 2, Shane Amante 3, Danny McPherson 4, and Lixia Zhang 1 1 University of California, Los Angeles

More information

Wireless TCP Performance Issues

Wireless TCP Performance Issues Wireless TCP Performance Issues Issues, transport layer protocols Set up and maintain end-to-end connections Reliable end-to-end delivery of data Flow control Congestion control Udp? Assume TCP for the

More information

Networked Systems and Services, Fall 2018 Chapter 3

Networked Systems and Services, Fall 2018 Chapter 3 Networked Systems and Services, Fall 2018 Chapter 3 Jussi Kangasharju Markku Kojo Lea Kutvonen 4. Transport Layer Reliability with TCP Transmission Control Protocol (TCP) RFC 793 + more than hundred other

More information

Improving the Robustness of TCP to Non-Congestion Events

Improving the Robustness of TCP to Non-Congestion Events Improving the Robustness of TCP to Non-Congestion Events Presented by : Sally Floyd floyd@acm.org For the Authors: Sumitha Bhandarkar A. L. Narasimha Reddy {sumitha,reddy}@ee.tamu.edu Problem Statement

More information

Addressing the Challenges of Web Data Transport

Addressing the Challenges of Web Data Transport Addressing the Challenges of Web Data Transport Venkata N. Padmanabhan Microsoft Research UW Whistler Retreat December 1998 Outline Challenges Solutions TCP Session Fast Start Ongoing and Future Work The

More information

EXPERIENCES EVALUATING DCTCP. Lawrence Brakmo, Boris Burkov, Greg Leclercq and Murat Mugan Facebook

EXPERIENCES EVALUATING DCTCP. Lawrence Brakmo, Boris Burkov, Greg Leclercq and Murat Mugan Facebook EXPERIENCES EVALUATING DCTCP Lawrence Brakmo, Boris Burkov, Greg Leclercq and Murat Mugan Facebook INTRODUCTION Standard TCP congestion control, which only reacts to packet losses has many problems Can

More information

TCP so far Computer Networking Outline. How Was TCP Able to Evolve

TCP so far Computer Networking Outline. How Was TCP Able to Evolve TCP so far 15-441 15-441 Computer Networking 15-641 Lecture 14: TCP Performance & Future Peter Steenkiste Fall 2016 www.cs.cmu.edu/~prs/15-441-f16 Reliable byte stream protocol Connection establishments

More information

TCP Congestion Control

TCP Congestion Control TCP Congestion Control Lecture material taken from Computer Networks A Systems Approach, Third Ed.,Peterson and Davie, Morgan Kaufmann, 2003. Computer Networks: TCP Congestion Control 1 TCP Congestion

More information

DualRTT: Enhancing TCP Performance During Delay Spikes

DualRTT: Enhancing TCP Performance During Delay Spikes DualRTT: Enhancing TCP Performance During Delay Spikes Ph.D. School of Computer Science University of Oklahoma. Email: atiq@ieee.org Web: www.cs.ou.edu/~atiq Presentation at Tohoku University, Sendai,

More information

CMSC 417. Computer Networks Prof. Ashok K Agrawala Ashok Agrawala. October 30, 2018

CMSC 417. Computer Networks Prof. Ashok K Agrawala Ashok Agrawala. October 30, 2018 CMSC 417 Computer Networks Prof. Ashok K Agrawala 2018 Ashok Agrawala October 30, 2018 Message, Segment, Packet, and Frame host host HTTP HTTP message HTTP TCP TCP segment TCP router router IP IP packet

More information

Congestion Control In The Internet Part 2: How it is implemented in TCP. JY Le Boudec 2015

Congestion Control In The Internet Part 2: How it is implemented in TCP. JY Le Boudec 2015 1 Congestion Control In The Internet Part 2: How it is implemented in TCP JY Le Boudec 2015 Contents 1. Congestion control in TCP 2. The fairness of TCP 3. The loss throughput formula 4. Explicit Congestion

More information

Report on Transport Protocols over Mismatched-rate Layer-1 Circuits with 802.3x Flow Control

Report on Transport Protocols over Mismatched-rate Layer-1 Circuits with 802.3x Flow Control Report on Transport Protocols over Mismatched-rate Layer-1 Circuits with 82.3x Flow Control Helali Bhuiyan, Mark McGinley, Tao Li, Malathi Veeraraghavan University of Virginia Email: {helali, mem5qf, taoli,

More information

TCP Congestion Control

TCP Congestion Control 6.033, Spring 2014 TCP Congestion Control Dina Katabi & Sam Madden nms.csail.mit.edu/~dina Sharing the Internet How do you manage resources in a huge system like the Internet, where users with different

More information

Dynamic Deferred Acknowledgment Mechanism for Improving the Performance of TCP in Multi-Hop Wireless Networks

Dynamic Deferred Acknowledgment Mechanism for Improving the Performance of TCP in Multi-Hop Wireless Networks Dynamic Deferred Acknowledgment Mechanism for Improving the Performance of TCP in Multi-Hop Wireless Networks Dodda Sunitha Dr.A.Nagaraju Dr. G.Narsimha Assistant Professor of IT Dept. Central University

More information

TCP Performance. EE 122: Intro to Communication Networks. Fall 2006 (MW 4-5:30 in Donner 155) Vern Paxson TAs: Dilip Antony Joseph and Sukun Kim

TCP Performance. EE 122: Intro to Communication Networks. Fall 2006 (MW 4-5:30 in Donner 155) Vern Paxson TAs: Dilip Antony Joseph and Sukun Kim TCP Performance EE 122: Intro to Communication Networks Fall 2006 (MW 4-5:30 in Donner 155) Vern Paxson TAs: Dilip Antony Joseph and Sukun Kim http://inst.eecs.berkeley.edu/~ee122/ Materials with thanks

More information

CSE 473 Introduction to Computer Networks. Final Exam. Your name here: 12/17/2012

CSE 473 Introduction to Computer Networks. Final Exam. Your name here: 12/17/2012 CSE 473 Introduction to Computer Networks Jon Turner Final Exam Your name here: 12/17/2012 1. (8 points). The figure below shows a network path connecting a server to a client. 200 km 2000 km 2 km X Y

More information

CMPE 257: Wireless and Mobile Networking

CMPE 257: Wireless and Mobile Networking CMPE 257: Wireless and Mobile Networking Katia Obraczka Computer Engineering UCSC Baskin Engineering Lecture 10 CMPE 257 Spring'15 1 Student Presentations Schedule May 21: Sam and Anuj May 26: Larissa

More information

TCP over wireless links

TCP over wireless links CSc 450/550 Computer Communications & Networks TCP over wireless links Jianping Pan (stand-in for Dr. Wu) 1/31/06 CSc 450/550 1 TCP over wireless links TCP a quick review on how TCP works Wireless links

More information

University of Toronto Faculty of Applied Science and Engineering. Final Exam, December ECE 461: Internetworking Examiner: J.

University of Toronto Faculty of Applied Science and Engineering. Final Exam, December ECE 461: Internetworking Examiner: J. University of Toronto Faculty of Applied Science and Engineering Final Exam, December 2010 ECE 461: Internetworking Examiner: J. Liebeherr Exam Type: B Calculator: Type 2 There are a total of 10 problems.

More information

Impact of transmission errors on TCP performance. Outline. Random Errors

Impact of transmission errors on TCP performance. Outline. Random Errors Impact of transmission errors on TCP performance 1 Outline Impact of transmission errors on TCP performance Approaches to improve TCP performance Classification Discussion of selected approaches 2 Random

More information

A Throughput Deadlock-Free TCP for High-speed Internet

A Throughput Deadlock-Free TCP for High-speed Internet A Throughput Deadlock-Free TCP for High-speed Internet Rocky K.C. Chang2 Ho Y. Chan Department of Computing The Hong Kong Polytechnic University Hung Hom, Kowloon, Hong Kong Email: csrchang@comp.polyu.edu.hk

More information

CS4700/CS5700 Fundamentals of Computer Networks

CS4700/CS5700 Fundamentals of Computer Networks CS4700/CS5700 Fundamentals of Computer Networks Lecture 15: Congestion Control Slides used with permissions from Edward W. Knightly, T. S. Eugene Ng, Ion Stoica, Hui Zhang Alan Mislove amislove at ccs.neu.edu

More information

Department of EECS - University of California at Berkeley EECS122 - Introduction to Communication Networks - Spring 2005 Final: 5/20/2005

Department of EECS - University of California at Berkeley EECS122 - Introduction to Communication Networks - Spring 2005 Final: 5/20/2005 Name: SID: Department of EECS - University of California at Berkeley EECS122 - Introduction to Communication Networks - Spring 2005 Final: 5/20/2005 There are 10 questions in total. Please write your SID

More information

IIP Wireless. Presentation Outline

IIP Wireless. Presentation Outline IIP Wireless Improving Internet Protocols for Wireless Links Markku Kojo Department of Computer Science www.cs cs.helsinki.fi/research/.fi/research/iwtcp/ 1 Presentation Outline Project Project Summary

More information

Transport Layer. -UDP (User Datagram Protocol) -TCP (Transport Control Protocol)

Transport Layer. -UDP (User Datagram Protocol) -TCP (Transport Control Protocol) Transport Layer -UDP (User Datagram Protocol) -TCP (Transport Control Protocol) 1 Transport Services The transport layer has the duty to set up logical connections between two applications running on remote

More information

Telecommunication Services Engineering Lab. Roch H. Glitho

Telecommunication Services Engineering Lab. Roch H. Glitho 1 Congestion handling in wired TCP: Detailed treatment 1. - Fundamental assumptions and principles - Key parameters - Slow start - Congestion avoidance - Fast re-transmit and fast recovery 2 Fundamental

More information

Chapter 3 outline. 3.5 Connection-oriented transport: TCP. 3.6 Principles of congestion control 3.7 TCP congestion control

Chapter 3 outline. 3.5 Connection-oriented transport: TCP. 3.6 Principles of congestion control 3.7 TCP congestion control Chapter 3 outline 3.1 Transport-layer services 3.2 Multiplexing and demultiplexing 3.3 Connectionless transport: UDP 3.4 Principles of reliable data transfer 3.5 Connection-oriented transport: TCP segment

More information

CUBIC. Qian HE (Steve) CS 577 Prof. Bob Kinicki

CUBIC. Qian HE (Steve) CS 577 Prof. Bob Kinicki CUBIC Qian HE (Steve) CS 577 Prof. Bob Kinicki Agenda Brief Introduction of CUBIC Prehistory of CUBIC Standard TCP BIC CUBIC Conclusion 1 Brief Introduction CUBIC is a less aggressive and more systematic

More information

EECS 122, Lecture 19. Reliable Delivery. An Example. Improving over Stop & Wait. Picture of Go-back-n/Sliding Window. Send Window Maintenance

EECS 122, Lecture 19. Reliable Delivery. An Example. Improving over Stop & Wait. Picture of Go-back-n/Sliding Window. Send Window Maintenance EECS 122, Lecture 19 Today s Topics: More on Reliable Delivery Round-Trip Timing Flow Control Intro to Congestion Control Kevin Fall, kfall@cs cs.berkeley.eduedu Reliable Delivery Stop and Wait simple

More information

Chapter III: Transport Layer

Chapter III: Transport Layer Chapter III: Transport Layer UG3 Computer Communications & Networks (COMN) Mahesh Marina mahesh@ed.ac.uk Slides thanks to Myungjin Lee and copyright of Kurose and Ross Principles of congestion control

More information

CS519: Computer Networks. Lecture 5, Part 4: Mar 29, 2004 Transport: TCP congestion control

CS519: Computer Networks. Lecture 5, Part 4: Mar 29, 2004 Transport: TCP congestion control : Computer Networks Lecture 5, Part 4: Mar 29, 2004 Transport: TCP congestion control TCP performance We ve seen how TCP the protocol works Sequencing, receive window, connection setup and teardown And

More information

Modeling the Goodput of TCP NewReno in Cellular Environments

Modeling the Goodput of TCP NewReno in Cellular Environments Modeling the Goodput of TCP NewReno in Cellular Environments Sushant Sharma, Donald. Gillies, u-chun Feng Corporate R&D, Qualcomm San Diego, CA Synergy Lab, Virginia Tech Blacksburg, VA Abstract In this

More information

The Transport Layer Congestion control in TCP

The Transport Layer Congestion control in TCP CPSC 360 Network Programming The Transport Layer Congestion control in TCP Michele Weigle Department of Computer Science Clemson University mweigle@cs.clemson.edu http://www.cs.clemson.edu/~mweigle/courses/cpsc360

More information

Review problems (for no credit): Transport and Network Layer

Review problems (for no credit): Transport and Network Layer Review problems (for no credit): Transport and Network Layer V. Arun CS 653, Fall 2018 09/06/18 Transport layer 1. Protocol multiplexing: (a) If a web server has 100 open connections, how many sockets

More information

Hybrid Control and Switched Systems. Lecture #17 Hybrid Systems Modeling of Communication Networks

Hybrid Control and Switched Systems. Lecture #17 Hybrid Systems Modeling of Communication Networks Hybrid Control and Switched Systems Lecture #17 Hybrid Systems Modeling of Communication Networks João P. Hespanha University of California at Santa Barbara Motivation Why model network traffic? to validate

More information

Different Layers Lecture 20

Different Layers Lecture 20 Different Layers Lecture 20 10/15/2003 Jian Ren 1 The Network Layer 10/15/2003 Jian Ren 2 Network Layer Functions Transport packet from sending to receiving hosts Network layer protocols in every host,

More information

Applied Networks & Security

Applied Networks & Security Applied Networks & Security TCP/IP Protocol Suite http://condor.depaul.edu/~jkristof/it263/ John Kristoff jtk@depaul.edu IT 263 Spring 2006/2007 John Kristoff - DePaul University 1 ARP overview datalink

More information

Mid Term Exam Results

Mid Term Exam Results Mid Term Exam Results v Grade Count Percentage v 20-29 1 2.38% v 40-49 2 4.76% v 50-59 5 11.90% v 60-69 18 42.86% v 70-80 16 38.10% Please hand the paper back to me after this class since we have to update

More information

TCP/IP Performance ITL

TCP/IP Performance ITL TCP/IP Performance ITL Protocol Overview E-Mail HTTP (WWW) Remote Login File Transfer TCP UDP IP ICMP ARP RARP (Auxiliary Services) Ethernet, X.25, HDLC etc. ATM 4/30/2002 Hans Kruse & Shawn Ostermann,

More information

CS132/EECS148 - Instructor: Karim El Defrawy Midterm Spring 2013 Time: 1hour May 2nd, 2013

CS132/EECS148 - Instructor: Karim El Defrawy Midterm Spring 2013 Time: 1hour May 2nd, 2013 CS132/EECS148 - Instructor: Karim El Defrawy Midterm Spring 2013 : 1hour May 2nd, 2013 Total Points: 25 Attempt all problems. Problem #1: (5 points, ½ point each) Choose only one answer. You will not receive

More information

Question Points Score total 100

Question Points Score total 100 CS457: Computer Networking Date: 3/21/2008 Name: Instructions: 1. Be sure that you have 8 questions 2. Be sure your answers are legible. 3. Write your Student ID at the top of every page 4. This is a closed

More information

SSFNET TCP Simulation Analysis by tcpanaly

SSFNET TCP Simulation Analysis by tcpanaly SSFNET TCP Simulation Analysis by tcpanaly Hongbo Liu hongbol@winlabrutgersedu Apr 16, 2000 Abstract SSFNET is a collection of SSF-based models for simulating Internet protocols and networks It is designed

More information

ECE 333: Introduction to Communication Networks Fall 2001

ECE 333: Introduction to Communication Networks Fall 2001 ECE 333: Introduction to Communication Networks Fall 2001 Lecture 28: Transport Layer III Congestion control (TCP) 1 In the last lecture we introduced the topics of flow control and congestion control.

More information

Exercises TCP/IP Networking With Solutions

Exercises TCP/IP Networking With Solutions Exercises TCP/IP Networking With Solutions Jean-Yves Le Boudec Fall 2009 3 Module 3: Congestion Control Exercise 3.2 1. Assume that a TCP sender, called S, does not implement fast retransmit, but does

More information

CS3600 SYSTEMS AND NETWORKS

CS3600 SYSTEMS AND NETWORKS CS3600 SYSTEMS AND NETWORKS NORTHEASTERN UNIVERSITY Lecture 24: Congestion Control Prof. Alan Mislove (amislove@ccs.neu.edu) Slides used with permissions from Edward W. Knightly, T. S. Eugene Ng, Ion Stoica,

More information

Data Communication Networks Final

Data Communication Networks Final Data Communication Networks Final Saad Mneimneh Visiting Professor Hunter College of CUNY NAME: This final test is take home... There are 8 Problems (but each problem has multiple parts, possibly on separate

More information

IJSRD - International Journal for Scientific Research & Development Vol. 2, Issue 03, 2014 ISSN (online):

IJSRD - International Journal for Scientific Research & Development Vol. 2, Issue 03, 2014 ISSN (online): IJSRD - International Journal for Scientific Research & Development Vol. 2, Issue 03, 2014 ISSN (online): 2321-0613 Performance Evaluation of TCP in the Presence of in Heterogeneous Networks by using Network

More information

Quick-Start for TCP and IP

Quick-Start for TCP and IP Quick-Start for TCP and IP A. Jain, S. Floyd, M. Allman, and P. Sarolahti ICSI, April 2006 This and earlier presentations:: www.icir.org/floyd/talks Congestion control and anti-congestion control: Much

More information

CS 138: Communication I. CS 138 V 1 Copyright 2012 Thomas W. Doeppner. All rights reserved.

CS 138: Communication I. CS 138 V 1 Copyright 2012 Thomas W. Doeppner. All rights reserved. CS 138: Communication I CS 138 V 1 Copyright 2012 Thomas W. Doeppner. All rights reserved. Topics Network Metrics Layering Reliability Congestion Control Routing CS 138 V 2 Copyright 2012 Thomas W. Doeppner.

More information

TCP Enhancement Using Active Network Based Proxy Transport Service

TCP Enhancement Using Active Network Based Proxy Transport Service TCP Enhancement Using Active Network Based Proxy Transport Service Siddharth Patil and Mohan Kumar Department of Computer Science and Engineering, The University of Texas at Arlington, Arlington TX 76019,

More information