IEEE i and wireless security

Size: px
Start display at page:

Download "IEEE i and wireless security"

Transcription

1 Blog IEEE i and wireless security David Halasz 8/25/ :00 PM EDT 0 comments post a comment Tweet Share 1 2 IEEE's wireless security amendment adds stronger encryption, authentication, and key management strategies that go a long way toward guaranteeing data and system security. IEEE's wireless security amendment adds stronger encryption, authentication, and key management strategies that go a long way toward guaranteeing data and system security. With the falling cost and power consumption of wireless LAN chipsets and software, wireless LANs are proliferating everywhere, from smartphones to the enterprise to the factory floor. However, with a wireless link come inevitable and necessary concerns about security. Without security, people can view your wireless traffic. Do you want your neighbor to know what Internet sites you're visiting? Do you keep bank statements on your home network? It's a good idea to protect this information. Because the market will demand products that provide this security, it's also a good idea to understand IEEE's new i security standards for wireless LANs. In this article, I'll describe the main components of i. Fixing WEP Although the IEEE standard upon which Wi-Fi wireless LAN networks are based addressed security somewhat with the Wired Equivalent Privacy (WEP) protocol in its first instantiation, WEP proved relatively easy to crack. Fortunately, the IEEE group became aware of the issues with WEP early on and on June 24 of this year the IEEE Standards Association approved an amendment to the original IEEE specification that addresses these issues. The culmination of three and a half years of work by the IEEE i Task Group, the amendment adds stronger encryption, authentication, and key management strategies that go a long way toward guaranteeing data and system security. The IEEE i effort actually started with a task group intended to address both quality of service and security, namely IEEE e. However, it quickly became apparent that security needed special attention 1 of 8

2 and so that group was split into IEEE e, which continues to work on quality of service, and IEEE i, which focused on security. The resulting IEEE i amendment has many components, the most obvious of which are the two new data-confidentiality protocols, TKIP and CCMP. IEEE i also uses IEEE 802.1X's key-distribution system to control access to the network. Because IEEE handles unicast and broadcast traffic differently, each traffic type has different security concerns. With several data-confidentiality protocols and the key distribution, IEEE i includes a negotiation process for selecting the correct confidentiality protocol and key system for each traffic type. Other features introduced include key caching and preauthentication. WEP has many problems. One of the first papers to reveal WEP's issues came from within the IEEE i Task Group. In late 2000, Jesse Walker submitted his paper, "Unsafe at any key size; An analysis of the WEP encapsulation" to show that WEP had serious problems and that the Task Group needed to devise an alternative. 1 Another paper demonstrated WEP's biggest shortcomings. "Weaknesses in the Key Scheduling Algorithm of RC4," Scott Fluhrer, Itsik Mantin, and Adi Shamir, made clear that the original WEP key can be obtained from a passive attack. 2 The IEEE i Task Group debated if it should attempt to improve the situation with legacy products. At first, the way to improve security with legacy hardware wasn't evident, and it appeared that acknowledging the problem and starting over with a completely different cipher would have been the easiest solution. However, many of the same authors who documented the weaknesses of WEP didn't give up and contributed ideas for an alternative that could be run on legacy products. What they came up with was TKIP. TKIP The Temporal Key Integrity Protocol (TKIP) is a data-confidentiality protocol that was designed to improve the security of products that implemented WEP in other words, legacy products. Among WEP's numerous flaws are its lack of a message integrity code and its insecure data-confidentiality protocol. To get around these limitations, TKIP uses a message integrity code called Michael. Basically, Michael enables devices to authenticate that the packets are coming from the claimed source. This authentication is especially important in a wireless technology where traffic can be easily injected. TKIP uses a mixing function to defeat weak-key attacks, which enabled attackers to decrypt traffic. Since the decryption could be done passively, it meant that an attacker could watch WEP traffic from a distance, be undetected, and know the original traffic. TKIP fixes this situation by using a mixing function. The mixing function creates a per-frame key to avoid the weaknesses pointed out by Fluhrer, Mantin, and Shamir. 2 CCMP Although TKIP improves security especially for legacy hardware, a stronger alternative was needed for newer hardware. Many Task Group members wanted the alternative to be acceptable for Federal Information Processing Standards (FIPS) certification, even though it wasn't absolutely necessary. In early drafts, Task Group I included Advanced Encryption Standard-Offset Codebook (AES-OCB). Questions over intellectual property, however, made some members uncomfortable. So, the Task Group switched to the Counter- Mode/CBC-MAC Protocol (CCMP). CCMP is a data-confidentiality protocol that handles packet authentication as well as encryption. For confidentiality, CCMP uses AES in counter mode. For authentication and integrity, CCMP uses Cipher Block Chaining Message Authentication Code (CBC-MAC). In IEEE i, CCMP uses a 128-bit key. The block size is 128 bits. The CBC-MAC size is 8 octets, and the nonce size is 48 bits. There are two bytes of IEEE overhead. The CBC-MAC, the nonce, and the IEEE overhead make the CCMP packet 16 octets larger than an unencrypted IEEE packet. Although slightly slower, the larger packet is not a bad exchange for increased security. CCMP protects some fields that aren't encrypted. The additional parts of the IEEE frame that get protected are known as additional authentication data (AAD). AAD includes the packets source and destination and protects against attackers replaying packets to different destinations. IEEE 802.1X IEEE 802.1X provides a framework to authenticate and authorize devices connecting to a network. It prohibits access to the network until such devices pass authentication. IEEE 802.1X also provides a framework to transmit key information between authenticator and supplicant. 2 of 8

3 IEEE 802.1X has three main pieces as shown in Figure 1: Figure 1: IEEE 802.1X use in IEEE i system Supplicant Authenticator Authentication server For IEEE i, the access point takes the role of the authenticator and the client card the role of supplicant. (In systems using Independent Basic Service Set [IBSS], the client card takes the role of supplicant and authenticator.) The supplicant authenticates with the authentication server through the authenticator. In IEEE 802.1X, the authenticator enforces authentication. The authenticator doesn't need to do the authentication. Instead the authenticator exchanges the authentication traffic between the supplicant and the authentication server. Between the supplicant and the authenticator, the protocol is IEEE 802.1X. The protocol between the authenticator and authentication server isn't defined in IEEE 802.1X nor IEEE i. However, Radius is typically used between authenticator and authentication server. The uncontrolled port is used to pass authentication traffic between the supplicant and the authentication server. Once the authentication server concludes authentication with the supplicant, the authentication server informs the authenticator of the successful authentication and passes established keying material to the authenticator. At this point, the supplicant and the authenticator share established key material through an EAPOL-key exchange. (EAPOL, the Extensible Authentication Protocol over LANs, comes from clause 4 of IEEE 802.1X-2001.) And if all exchanges have been successful, the authenticator allows traffic to flow through the controlled port, giving the client to access to the network. Negotiation Because IEEE i has more than one data-confidentiality protocol, IEEE i provides a way for the IEEE i client card and access point to negotiate which protocol to use during specific traffic circumstances and to discover any unknown security parameters. For instance, broadcast-key data-confidentiality protocol isn't negotiated. However, clients need to know that the protocol is in use. For instance, a client that's configured to run with CCMP may or may not be configured to associate with an access point that's using TKIP for its broadcast traffic. The access point advertises its parameters in beacons and will also reply to a probe request with a probe response containing the access point's security parameters. Some of the parameters that the access point advertises are: The group ciphersuite is the data-confidentiality protocol used to send broadcasts The pairwise ciphersuite list is a list of all data-confidentiality protocols allowed to be used for unicast traffic The authentication and key management suite advertises if preshared key or IEEE 802.1X is being used Once the client knows these parameters, it chooses parameters and sends the choices in the associate request to the access point. The choices must match from the list of available options provided by the access point. Otherwise, the access point will deny the association by sending a association response 3 of 8

4 failure. Up to this point, the negotiation isn't protected. But, the negotiation does get authenticated later during the EAPOL-key exchange. Key hierarchy The next step is key exchange. The IEEE i EAPOL-key exchange uses a number of keys and has a key hierarchy to divide up initial key material into useful keys. The two key hierarchies are: Pairwise key hierarchy Group key hierarchy Both hierarchies are shown in Figures 2 and 3. These keys get used in the EAPOL-key exchanges. IEEE 802.1X defines an RC4 EAPOL-key frame. However, IEEE i defines its own EAPOL-key exchanges. In the IEEE i specification, these exchanges are referred to as the 4-way handshake and the group key handshake. Figure 2: Pairwise key hierarchy or 4-way handshake Figure 3: Group key hierarchy or group key handshake Pairwise key hierarchy The starting point of the pairwise key hierarchy is the pairwise master key (PMK). If IEEE 802.1X is being used then the PMK comes from the authentication server. If preshared key is being used then the IEEE i gives a way for a password to be mapped into a PMK. A pseudorandom function gets run over the PMK and other parameters to create the pairwise transient key (PTK). Some of the other parameters are: The supplicant's MAC address The authenticator's MAC address A nonce from the supplicant A nonce from the authenticator The PTK gets divided into three keys. The first key is the EAPOL-key confirmation key (KCK). The KCK is used by the EAPOL-key exchanges to provided data origin authenticity. The second key is the EAPOL-key encryption key (KEK). The KEK is used by the EAPOL-key exchanges to provide for confidentiality. The third key is the temporal key, which is used by the data-confidentiality protocols. Group key hierarchy The starting point of the group key hierarchy is the group master key (GMK). The GMK is a random number. A pseudorandom function gets run over the GMK and some other parameters to create the group temporal key (GTK). Some of the parameters are the authenticator's MAC address and a nonce from the authenticator for GTK creation (GNonce). EAPOL-key exchanges Two main EAPOL-key exchanges are defined in IEEE i. The first is referred to as the 4-way 4 of 8

5 handshake and the second is the group key handshake. 4-way handshake The 4-way handshake does several things: Confirms the PMK between the supplicant and authenticator Establishes the temporal keys to be used by the data-confidentiality protocol Authenticates the security parameters that were negotiated Performs the first group key handshake Provides keying material to implement the group key handshake Not surprisingly, the reason it's called the 4-way handshake is because four packets are exchanged between the supplicant and the authenticator. Here are the four packets involved: 4-way handshake message 1 In the first message, the authenticator sends the supplicant a nonce. This is referred to as the ANonce. 4-way handshake message 2 The supplicant creates its nonce. This is referred to as the SNonce. The supplicant can now calculate the PTK. In the second message, the supplicant sends the SNonce to the authenticator. The supplicant also sends the security parameters that it used during association. The entire message gets an authentication check using the KCK from the pairwise key hierarchy. The authenticator can then verify that the information, including the security parameters sent at association, are valid. 4-way handshake message 3 In the third message, the authenticator sends the supplicant the security parameters that it's sending out in its beacons and probe responses. The authenticator also sends the GTK encrypted using the KEK. Again, the entire message gets an authentication check, which allows the supplicant to verify that the information, such as the authenticators security parameters, is valid. 4-way handshake message 4 The fourth message indicates that the temporal keys are now in place to be used by the data-confidentiality protocols. Group key handshake The group key handshake updates the GTK. A 4-way handshake precedes the group key handshake. Also note that the 4-way handshake includes a group key handshake in the 4-way handshake message 3 and 4. Group key handshake message 1 The authenticator sends the supplicant the GTK encrypted using the KEK. The entire message gets an authentication check. The second message indicates that the temporal keys are now in place to be used by the data confidentiality protocol. Key caching Wireless clients often roam back and forth between access points. This has a negative effect on the system performance. Key caching reduces the load on the authentication server and reduces the time required to get connected to the network. The basic concept behind key caching is for a client and access point to retain a security association when a client roams away from an access point. When the client roams back to the access point, the security association can then be restarted. 5 of 8

6 Figure 4: Key caching To achieve key caching, IEEE i names the PMK security association as shown in Figure 4. When a client returns to an access point, the client sends the key name in the association request that it sends to the access point. The client can send more than one key name in the association request. If the access point sends a success in the association response, then the client and access point proceed directly to the 4-way handshake. The first message of the 4-way handshake will contain the name of the PMK security association. The 4-way handshake confirms that the client and access point have the same PMK security association. Preauthentication Up to this point, key caching only reduced the time to connect to the network when the client had previously been associated to the access point. A way was needed to establish a PMK security association when a client had not yet been associated to the access point. Preauthentication enables a client to establish a PMK security association to an access point with which the client has yet not been associated. 6 of 8

7 Figure 5: Preauthentication The first time a client associates to the network, it must do a full authentication. However, if the client knows where it will be roaming, the client can preauthenticate to a new access point, as shown in Figure 5. Preauthentication mimics IEEE 802.1X. The client performs an authentication through the new access point, which acts as the authenticator. The preauthentication packets traverse through the existing access point to the new access point. Once the authentication is successful, the pre-authentication completes with a PMK security association established between the client and the new access point. Preauthentication then completes and doesn't perform the 4-way handshake. When the client roams to the new access point, it performs the same steps in key caching. The client sends the PMK security association name to the new access point in the association request. If the access point sends an association response with success, the client and access point proceed directly to the 4-way handshake. Preauthentication provides a way to establish a PMK security association before a client associates. The advantage is that the client reduces the time that it's disconnected to the network. However, preauthentication has limitations. For instance, clients performing preauthentication will add a load to the authentication server. Also since preauthentication is done at the IEEE 802 layer, it doesn't work across IP subnets. These issues should be targets for future improvements. WPA2 The Wi-Fi Alliance name for IEEE i certification testing is Wi-Fi Protected Access (WPA) 2 or WPA2. WPA2 resembles IEEE i but differs slightly to allow for interoperability concerns with WPA. WPA is the Wi-Fi Alliance's earlier certification, which was based on a draft of the IEEE i standard. If migration isn't a concern then WPA2 runs as defined by IEEE i. For instance, an access point and client card running only CCMP in WPA2 will be running IEEE i. However, an access point that allows CCMP and TKIP clients will be running a mixture of IEEE i and WPA. This enables the earlier WPA clients to associate to the new WPA2 access points. To users this is transparent. But developers will need to note the difference when designing to include earlier WPA systems. Wi-Fi Alliance tests for interoperability. WPA2 testing, however, doesn't test all configurations of IEEE i. The actual tests depend on product classification. Home products aren't expected to have the same 7 of 8

8 features as enterprise products. Designing a system You'll need to answer a number of questions before designing a system. The following are some questions and guidelines to help you start the process. IBSS or ESS? Independent Basic Service Set (IBSS) is a mode of operation that's suited to small and transient networks. If you're setting up an IBSS as a small and transient network then preshared key authentication should be sufficient. Extended Service Set (ESS) networks are better suited to IEEE 802.1X. Don't let the authentication server scare you. Authentication servers come in different sizes and support different authentication types. Preshared key or IEEE 802.1X? Preshared key can be done in IBSS or ESS. However, the network size and the network lifetime can guide your choice between preshared key or IEEE 802.1X. Small and transient networks point to preshared key. While large or permanent networks point to IEEE 802.1X. If IEEE 802.1X, which EAP? Selecting an authentication method can be complicated because you have find the right authentication protocol for your system's user database. Also you have to know what each protocol requires. For instance, EAP-TLS (Extensible Authentication Protocol-Transfer Layer Security) requires certificates. Some groups are creating tunneling protocols so choosing an EAP may eventually become easier. Another issue is whether your system will plug into an existing network. If you're designing a new system you have a freer hand. However, plugging into an existing network means it pays to investigate the options. Which data-confidentiality protocol? Which data-confidentiality protocols will be supported? WEP, TKIP, CCMP, or a combination? If you're designing a new system you'll want to balance designing in new hardware with the most secure data-confidentiality protocol against having to support existing products. Since a large number of products exist, it's important to identify the hardware you'll need to support. A good thing All in all, the IEEE i amendment is a step forward in wireless security. The amendment adds stronger encryption, authentication, and key management strategies that will make our wireless data and systems more secure. David Halasz is a manager of software development at Cisco Systems. He worked for Aironet since 1995 and joined Cisco in 2000 when Cisco acquired Aironet. He earned his computer engineering degree at Case Western Reserve University in Cleveland, Ohio. David served as the chair of the IEEE i Task Group from its inception through the amendment's ratification in June of Endnotes 1. Walker, J. "Unsafe at any key size: an analysis of the WEP encapsulation," Tech. Rep. 00/362, IEEE Committee, March 2000, DocumentHolder/0-362.zip, /Documents/ 2. Fluhrer, S., I. Martin, and A. Shamir. "Weaknesses in the key scheduling algorithm of RC4." Eighth Annual Workshop on Selected Areas in Cryptography, August THIS PRINT COMMENT Copyright 2016 UBM Electronics, A UBM company, All rights reserved. Privacy Policy Terms of Service 8 of 8

Chapter 24 Wireless Network Security

Chapter 24 Wireless Network Security Chapter 24 Wireless Network Security Wireless Security Key factors contributing to higher security risk of wireless networks compared to wired networks include: o Channel Wireless networking typically

More information

Chapter 17. Wireless Network Security

Chapter 17. Wireless Network Security Chapter 17 Wireless Network Security IEEE 802.11 IEEE 802 committee for LAN standards IEEE 802.11 formed in 1990 s, to develop a protocol & transmission specifications for wireless LANs (WLANs) Demand

More information

Appendix E Wireless Networking Basics

Appendix E Wireless Networking Basics Appendix E Wireless Networking Basics This chapter provides an overview of Wireless networking. Wireless Networking Overview The FWG114P v2 Wireless Firewall/Print Server conforms to the Institute of Electrical

More information

Wireless Network Security

Wireless Network Security Wireless Network Security Raj Jain Washington University in Saint Louis Saint Louis, MO 63130 Jain@cse.wustl.edu Audio/Video recordings of this lecture are available at: http://www.cse.wustl.edu/~jain/cse571-11/

More information

05 - WLAN Encryption and Data Integrity Protocols

05 - WLAN Encryption and Data Integrity Protocols 05 - WLAN Encryption and Data Integrity Protocols Introduction 802.11i adds new encryption and data integrity methods. includes encryption algorithms to protect the data, cryptographic integrity checks

More information

WPA Passive Dictionary Attack Overview

WPA Passive Dictionary Attack Overview WPA Passive Dictionary Attack Overview TakehiroTakahashi This short paper presents an attack against the Pre-Shared Key version of the WPA encryption platform and argues the need for replacement. What

More information

Configuring Cipher Suites and WEP

Configuring Cipher Suites and WEP 10 CHAPTER This chapter describes how to configure the cipher suites required to use WPA authenticated key management, Wired Equivalent Privacy (WEP), Temporal Key Integrity Protocol (TKIP), and broadcast

More information

WPA-GPG: Wireless authentication using GPG Key

WPA-GPG: Wireless authentication using GPG Key Università degli Studi di Bologna DEIS WPA-GPG: Wireless authentication using GPG Key Gabriele Monti December 9, 2009 DEIS Technical Report no. DEIS-LIA-007-09 LIA Series no. 97 WPA-GPG: Wireless authentication

More information

Configuring a WLAN for Static WEP

Configuring a WLAN for Static WEP Restrictions for Configuring Static WEP, page 1 Information About WLAN for Static WEP, page 1 Configuring WPA1+WPA2, page 3 Restrictions for Configuring Static WEP The OEAP 600 series does not support

More information

Lab Configure Enterprise Security on AP

Lab Configure Enterprise Security on AP Lab 8.5.4.1 Configure Enterprise Security on AP Estimated Time: 30 minutes Number of Team Members: Students will work in teams of two. Objective In this lab, students will demonstrate an understanding

More information

Wireless Network Security

Wireless Network Security Wireless Network Security Wireless LAN Security Slide from 2 nd book 1 802.11 Wireless LAN Security Stations in LAN are connected physically while in WLAN any station in the radio range is connected, so

More information

Table of Contents 1 WLAN Security Configuration Commands 1-1

Table of Contents 1 WLAN Security Configuration Commands 1-1 Table of Contents 1 WLAN Security Configuration Commands 1-1 authentication-method 1-1 cipher-suite 1-2 gtk-rekey client-offline enable 1-2 gtk-rekey enable 1-3 gtk-rekey method 1-4 ptk-lifetime 1-5 security-ie

More information

Link & end-to-end protocols SSL/TLS WPA 2/25/07. Outline. Network Security. Networks. Link and End-to-End Protocols. Link vs. End-to-end protection

Link & end-to-end protocols SSL/TLS WPA 2/25/07. Outline. Network Security. Networks. Link and End-to-End Protocols. Link vs. End-to-end protection T H E U N I V E R S I T Y O F B R I T I S H C O L U M B I A Outline Network Security EECE 412 Link & end-to-end protocols SSL/TLS WPA Copyright 2004 Konstantin Beznosov 2 Networks Link and End-to-End Protocols

More information

Configuring a VAP on the WAP351, WAP131, and WAP371

Configuring a VAP on the WAP351, WAP131, and WAP371 Article ID: 5072 Configuring a VAP on the WAP351, WAP131, and WAP371 Objective Virtual Access Points (VAPs) segment the wireless LAN into multiple broadcast domains that are the wireless equivalent of

More information

Managing and Securing Computer Networks. Guy Leduc. Chapter 7: Securing LANs. Chapter goals: security in practice: Security in the data link layer

Managing and Securing Computer Networks. Guy Leduc. Chapter 7: Securing LANs. Chapter goals: security in practice: Security in the data link layer Managing and Securing Computer Networks Guy Leduc Chapter 7: Securing LANs Computer Networking: A Top Down Approach, 7 th edition. Jim Kurose, Keith Ross Addison-Wesley, April 2016. (section 8.8) Also

More information

WLAN Roaming and Fast-Secure Roaming on CUWN

WLAN Roaming and Fast-Secure Roaming on CUWN 802.11 WLAN Roaming and Fast-Secure Roaming on CUWN Contents Introduction Prerequisites Requirements Components Used Background Information Roaming with Higher-Level Security WPA/WPA2-PSK WPA/WPA2-EAP

More information

Configuring WEP and WEP Features

Configuring WEP and WEP Features CHAPTER 9 This chapter describes how to configure Wired Equivalent Privacy (WEP), Message Integrity Check (MIC), and Temporal Key Integrity Protocol (TKIP). This chapter contains these sections: Understanding

More information

Improved KRACK Attacks Against WPA2 Implementations. Mathy OPCDE, Dubai, 7 April 2018

Improved KRACK Attacks Against WPA2 Implementations. Mathy OPCDE, Dubai, 7 April 2018 Improved KRACK Attacks Against WPA2 Implementations Mathy Vanhoef @vanhoefm OPCDE, Dubai, 7 April 2018 Overview Key reinstalls in 4-way handshake New KRACKs Practical impact Lessons learned 2 Overview

More information

Configuring Authentication Types

Configuring Authentication Types CHAPTER 11 This chapter describes how to configure authentication types on the access point. This chapter contains these sections: Understanding Authentication Types, page 11-2, page 11-10 Matching Access

More information

Wireless Network Security Spring 2015

Wireless Network Security Spring 2015 Wireless Network Security Spring 2015 Patrick Tague Class #7 More WiFi Security 2015 Patrick Tague 1 Class #7 Continuation of WiFi security 2015 Patrick Tague 2 Device Private WiFi Networks AP Local AAA

More information

Wireless Network Security Spring 2016

Wireless Network Security Spring 2016 Wireless Network Security Spring 2016 Patrick Tague Class #7 WiFi Security 1 Announcements Please do HW#2 in using the stable OMNET++ 4.6, not the beta version. Porting has proven difficult... Form project

More information

A Configuration Protocol for Embedded Devices on Secure Wireless Networks

A Configuration Protocol for Embedded Devices on Secure Wireless Networks A Configuration Protocol for Embedded Devices on Secure Wireless Networks Larry Sanders lsanders@ittc.ku.edu 6 May 2003 Introduction Wi-Fi Alliance Formally Wireless Ethernet Compatibility Alliance (WECA)

More information

Procedure: You can find the problem sheet on the Desktop of the lab PCs.

Procedure: You can find the problem sheet on the Desktop of the lab PCs. University of Jordan Faculty of Engineering & Technology Computer Engineering Department Computer Advance Networks Laboratory 907529 Lab.3 WLAN Security Objectives 1. Configure administrator accounts.

More information

Physical and Link Layer Attacks

Physical and Link Layer Attacks Physical and Link Layer Attacks CMSC 414 November 1, 2017 Attenuation Physical links are subject to attenuation Copper cables have internal resistance, which degrades signal over large distances Fiber

More information

Wireless Security i. Lars Strand lars (at) unik no June 2004

Wireless Security i. Lars Strand lars (at) unik no June 2004 Wireless Security - 802.11i Lars Strand lars (at) unik no June 2004 802.11 Working Group 11 of IEEE 802 'Task Groups' within the WG enhance portions of the standard: 802.11 1997: The IEEE standard for

More information

Wireless Security. Comp Sci 3600 Security. Attacks WEP WPA/WPA2. Authentication Encryption Vulnerabilities

Wireless Security. Comp Sci 3600 Security. Attacks WEP WPA/WPA2. Authentication Encryption Vulnerabilities Wireless Security Comp Sci 3600 Security Outline 1 2 3 Wired versus wireless Endpoint Access point Figure 24.1 Wireless Networking Components Locations and types of attack Outline 1 2 3 Wired Equivalent

More information

CS-435 spring semester Network Technology & Programming Laboratory. Stefanos Papadakis & Manolis Spanakis

CS-435 spring semester Network Technology & Programming Laboratory. Stefanos Papadakis & Manolis Spanakis CS-435 spring semester 2016 Network Technology & Programming Laboratory University of Crete Computer Science Department Stefanos Papadakis & Manolis Spanakis CS-435 Lecture preview 802.11 Security IEEE

More information

Network Encryption 3 4/20/17

Network Encryption 3 4/20/17 The Network Layer Network Encryption 3 CSC362, Information Security most of the security mechanisms we have surveyed were developed for application- specific needs electronic mail: PGP, S/MIME client/server

More information

LESSON 12: WI FI NETWORKS SECURITY

LESSON 12: WI FI NETWORKS SECURITY LESSON 12: WI FI NETWORKS SECURITY Raúl Siles raul@taddong.com Founder and Security Analyst at Taddong Introduction to Wi Fi Network Security Wireless networks or Wi Fi networks IEEE 802.11 Standards Information

More information

Csci388. Wireless and Mobile Security Access Control: 802.1X, EAP, and RADIUS. Importance of Access Control. WEP Weakness. Wi-Fi and IEEE 802.

Csci388. Wireless and Mobile Security Access Control: 802.1X, EAP, and RADIUS. Importance of Access Control. WEP Weakness. Wi-Fi and IEEE 802. WEP Weakness Csci388 Wireless and Mobile Security Access Control:, EAP, and Xiuzhen Cheng cheng@gwu.edu 1. IV is too short and not protected from reuse 2. The per packet key is constructed from the IV,

More information

Key Reinstallation Attacks: Forcing Nonce Reuse in WPA2. Mathy CCS 2017, 1 October 2017

Key Reinstallation Attacks: Forcing Nonce Reuse in WPA2. Mathy CCS 2017, 1 October 2017 Key Reinstallation Attacks: Forcing Nonce Reuse in WPA2 Mathy Vanhoef @vanhoefm CCS 2017, 1 October 2017 Overview Key reinstalls in 4-way handshake Misconceptions Practical impact Lessons learned 2 Overview

More information

Security in IEEE Networks

Security in IEEE Networks Security in IEEE 802.11 Networks Mário Nunes, Rui Silva, António Grilo March 2013 Sumário 1 Introduction to the Security Services 2 Basic security mechanisms in IEEE 802.11 2.1 Hidden SSID (Service Set

More information

Wireless LAN Security. Gabriel Clothier

Wireless LAN Security. Gabriel Clothier Wireless LAN Security Gabriel Clothier Timeline 1997: 802.11 standard released 1999: 802.11b released, WEP proposed [1] 2003: WiFi alliance certifies for WPA 2004: 802.11i released 2005: 802.11w task group

More information

The 8 th International Scientific Conference DEFENSE RESOURCES MANAGEMENT IN THE 21st CENTURY Braşov, November 14 th 2013

The 8 th International Scientific Conference DEFENSE RESOURCES MANAGEMENT IN THE 21st CENTURY Braşov, November 14 th 2013 The 8 th International Scientific Conference DEFENSE RESOURCES MANAGEMENT IN THE 21st CENTURY Braşov, November 14 th 2013 Florin OGÎGĂU-NEAMŢIU National Defense University of Romania "Carol I"/ The Regional

More information

FIPS Security Policy for Cisco Aironet Lightweight AP1131, AP1142, AP1242, AP1252, AP1262, CAP3502e, and CAP3502i Wireless LAN Access Points

FIPS Security Policy for Cisco Aironet Lightweight AP1131, AP1142, AP1242, AP1252, AP1262, CAP3502e, and CAP3502i Wireless LAN Access Points FIPS 140-2 Security Policy for Cisco Aironet Lightweight AP1131, AP1142, AP1242, AP1252, AP1262, CAP3502e, and CAP3502i Wireless LAN Access Points November 4, 2010 Version 2.2 Contents This security policy

More information

Configuring Layer2 Security

Configuring Layer2 Security Prerequisites for Layer 2 Security, page 1 Configuring Static WEP Keys (CLI), page 2 Configuring Dynamic 802.1X Keys and Authorization (CLI), page 2 Configuring 802.11r BSS Fast Transition, page 3 Configuring

More information

FAQ on Cisco Aironet Wireless Security

FAQ on Cisco Aironet Wireless Security FAQ on Cisco Aironet Wireless Security Document ID: 68583 Contents Introduction General FAQ Troubleshooting and Design FAQ Related Information Introduction This document provides information on the most

More information

Denial-of-Service Attacks Against the 4-way Wi-Fi Handshake

Denial-of-Service Attacks Against the 4-way Wi-Fi Handshake Denial-of-Service Attacks Against the 4-way Wi-Fi Handshake ABSTRACT Mathy Vanhoef and Frank Piessens imec-distrinet, KU Leuven firstname.lastname@cs.kuleuven.be Having a secure implementation of the 4-way

More information

Configuring the Client Adapter through the Windows XP Operating System

Configuring the Client Adapter through the Windows XP Operating System APPENDIX E Configuring the Client Adapter through the Windows XP Operating System This appendix explains how to configure and use the client adapter with Windows XP. The following topics are covered in

More information

KRACKing WPA2 in Practice Using Key Reinstallation Attacks. Mathy BlueHat IL, 24 January 2018

KRACKing WPA2 in Practice Using Key Reinstallation Attacks. Mathy BlueHat IL, 24 January 2018 KRACKing WPA2 in Practice Using Key Reinstallation Attacks Mathy Vanhoef @vanhoefm BlueHat IL, 24 January 2018 Overview Key reinstalls in 4-way handshake Misconceptions Practical impact Lessons learned

More information

Secure Initial Access Authentication in WLAN

Secure Initial Access Authentication in WLAN International Journal of Information & Computation Technology. ISSN 0974-2239 Volume 4, Number 13 (2014), pp. 1299-1303 International Research Publications House http://www. irphouse.com Secure Initial

More information

WiFuzz: Detecting and Exploiting Logical Flaws in the Wi-Fi Cryptographic Handshake

WiFuzz: Detecting and Exploiting Logical Flaws in the Wi-Fi Cryptographic Handshake WiFuzz: Detecting and Exploiting Logical Flaws in the Wi-Fi Cryptographic Handshake Mathy Vanhoef - @vanhoefm imec-distrinet, KU Leuven Black Hat, 27 July 2017 Introduction More and more Wi-Fi network

More information

ECHONET Lite SPECIFICATION. ECHONET Lite System Design Guidelines 2011 (2012) ECHONET CONSORTIUM ALL RIGHTS RESERVED

ECHONET Lite SPECIFICATION. ECHONET Lite System Design Guidelines 2011 (2012) ECHONET CONSORTIUM ALL RIGHTS RESERVED Part V ECHONET Lite System Design Guidelines i 2011 (2012) ALL RIGHTS RESERVED The specifications published by the ECHONET Consortium are established without regard to industrial property rights (e.g.,

More information

KRACKing WPA2 by Forcing Nonce Reuse. Mathy Nullcon, 2 March 2018

KRACKing WPA2 by Forcing Nonce Reuse. Mathy Nullcon, 2 March 2018 KRACKing WPA2 by Forcing Nonce Reuse Mathy Vanhoef @vanhoefm Nullcon, 2 March 2018 Introduction PhD Defense, July 2016: You recommend WPA2 with AES, but are you sure that s secure? Seems so! No attacks

More information

Add a Wireless Network to an Existing Wired Network using a Wireless Access Point (WAP)

Add a Wireless Network to an Existing Wired Network using a Wireless Access Point (WAP) Add a Wireless Network to an Existing Wired Network using a Wireless Access Point (WAP) Objective A Wireless Access Point (WAP) is a networking device that allows wireless-capable devices to connect to

More information

Network Security: WLAN Security. Tuomas Aura T Network security Aalto University, Nov-Dec 2012

Network Security: WLAN Security. Tuomas Aura T Network security Aalto University, Nov-Dec 2012 Network Security: WLAN Security Tuomas Aura T-110.5241 Network security Aalto University, Nov-Dec 2012 Outline Wireless LAN technology Threats against WLANs Weak security mechanisms and historical WEP

More information

Configuring the Client Adapter through Windows CE.NET

Configuring the Client Adapter through Windows CE.NET APPENDIX E Configuring the Client Adapter through Windows CE.NET This appendix explains how to configure and use the client adapter with Windows CE.NET. The following topics are covered in this appendix:

More information

Discovering Logical Vulnerabilities in the Wi-Fi Handshake Using Model-Based Testing

Discovering Logical Vulnerabilities in the Wi-Fi Handshake Using Model-Based Testing Discovering Logical Vulnerabilities in the Wi-Fi Handshake Using Model-Based Testing Mathy Vanhoef, Domien Schepers, Frank Piessens imec-distrinet, KU Leuven Asia CCS 2017 Introduction More and more Wi-Fi

More information

Configuring Wireless Security Settings on the RV130W

Configuring Wireless Security Settings on the RV130W Article ID: 5021 Configuring Wireless Security Settings on the RV130W Objective Wireless networking operates by sending information over radio waves, which can be more vulnerable to intruders than a traditional

More information

WIRELESS LAN SECURITY AND IEEE I

WIRELESS LAN SECURITY AND IEEE I MIGRATION TOWARDS 4G WIRELESS C OMMUNICATIONS WIRELESS LAN SECURITY AND IEEE 802.11I JYH-CHENG CHEN, MING-CHIA JIANG, AND YI-WEN LIU NATIONAL TSING HUA UNIVERSITY Foreign AP Authentication server A A A

More information

Network Security: WLAN Security. Tuomas Aura T Network security Aalto University, Nov-Dec 2014

Network Security: WLAN Security. Tuomas Aura T Network security Aalto University, Nov-Dec 2014 Network Security: WLAN Security Tuomas Aura T-110.5241 Network security Aalto University, Nov-Dec 2014 Outline Wireless LAN technology Threats against WLANs (Weak security mechanisms and historical WEP)

More information

KRACKing WPA2 by Forcing Nonce Reuse. Mathy Chaos Communication Congress (CCC), 27 December 2017

KRACKing WPA2 by Forcing Nonce Reuse. Mathy Chaos Communication Congress (CCC), 27 December 2017 KRACKing WPA2 by Forcing Nonce Reuse Mathy Vanhoef @vanhoefm Chaos Communication Congress (CCC), 27 December 2017 Introduction PhD Defense, July 2016: You recommend WPA2 with AES, but are you sure that

More information

Nomadic Communications Labs

Nomadic Communications Labs Nomadic Communications Labs Alessandro Villani avillani@science.unitn.it Security And Wireless Network Wireless Security: Overview Open network Open network+ MAC-authentication Open network+ web based

More information

Secure Wireless LAN Design and Deployment

Secure Wireless LAN Design and Deployment Secure Wireless LAN Design and Deployment Mark Krischer CTO, Enterprise Networks Asia Pacific, Japan and Greater China Abstract The proliferation of mobile devices and the rise of BYOD has raised the profile

More information

Troubleshooting WLANs (Part 2)

Troubleshooting WLANs (Part 2) SharkFest 17 Europe Troubleshooting WLANs (Part 2) Troubleshooting WLANs using 802.11 Management & Control Frames 8. November 2017 Breaking News: Including KRACK!!! Rolf Leutert Leutert NetServices Switzerland

More information

Numerics INDEX. 2.4-GHz WMIC, contrasted with 4.9-GHz WMIC g 3-6, x authentication 4-13

Numerics INDEX. 2.4-GHz WMIC, contrasted with 4.9-GHz WMIC g 3-6, x authentication 4-13 INDEX Numerics 2.4-GHz WMIC, contrasted with 4.9-GHz WMIC 1-8 802.11g 3-6, 3-9 802.1x authentication 4-13 A AAA server group 4-25 aaa authentication login command 4-24 aaa authorization command 4-27 aaa

More information

Securing a Wireless LAN

Securing a Wireless LAN Securing a Wireless LAN This module describes how to apply strong wireless security mechanisms on a Cisco 800, 1800, 2800, or 3800 series integrated services router, hereafter referred to as an access

More information

Lecture 33. Firewalls. Firewall Locations in the Network. Castle and Moat Analogy. Firewall Types. Firewall: Illustration. Security April 15, 2005

Lecture 33. Firewalls. Firewall Locations in the Network. Castle and Moat Analogy. Firewall Types. Firewall: Illustration. Security April 15, 2005 Firewalls Lecture 33 Security April 15, 2005 Idea: separate local network from the Internet Trusted hosts and networks Intranet Firewall DMZ Router Demilitarized Zone: publicly accessible servers and networks

More information

Wireless Attacks and Countermeasures

Wireless Attacks and Countermeasures Wireless Attacks and Countermeasures Wireless Network Technology Wireless network refers to any type of computer network which is wireless, and is commonly associated with a network whose interconnections

More information

Vendor: HP. Exam Code: HP2-Z32. Exam Name: Implementing HP MSM Wireless Networks. Version: Demo

Vendor: HP. Exam Code: HP2-Z32. Exam Name: Implementing HP MSM Wireless Networks. Version: Demo Vendor: HP Exam Code: HP2-Z32 Exam Name: Implementing HP MSM Wireless Networks Version: Demo QUESTION 1 A network administrator deploys several HP MSM APs and an HP MSM Controller. The APs discover the

More information

Authentication and Security: IEEE 802.1x and protocols EAP based

Authentication and Security: IEEE 802.1x and protocols EAP based Authentication and Security: IEEE 802.1x and protocols EAP based Pietro Nicoletti Piero[at]studioreti.it 802-1-X-EAP-Eng - 1 P. Nicoletti: see note pag. 2 Copyright note These slides are protected by copyright

More information

Exam Questions CWSP-205

Exam Questions CWSP-205 Exam Questions CWSP-205 Certified Wireless Security Professional https://www.2passeasy.com/dumps/cwsp-205/ 1.. What is one advantage of using EAP-TTLS instead of EAP-TLS as an authentication mechanism

More information

Nomadic Communications Labs. Alessandro Villani

Nomadic Communications Labs. Alessandro Villani Nomadic Communications Labs Alessandro Villani avillani@science.unitn.it Security And Wireless Network Wireless Security: Overview Open network Open network+ MAC-authentication Open network+ web based

More information

EXAM - PW Certified Wireless Security Professional (CWSP) Buy Full Product.

EXAM - PW Certified Wireless Security Professional (CWSP) Buy Full Product. CWNP EXAM - PW0-204 Certified Wireless Security Professional (CWSP) Buy Full Product http://www.examskey.com/pw0-204.html Examskey CWNP PW0-204 exam demo product is here for you to test the quality of

More information

Exam HP2-Z32 Implementing HP MSM Wireless Networks Version: 7.1 [ Total Questions: 115 ]

Exam HP2-Z32 Implementing HP MSM Wireless Networks Version: 7.1 [ Total Questions: 115 ] s@lm@n HP Exam HP2-Z32 Implementing HP MSM Wireless Networks Version: 7.1 [ Total Questions: 115 ] HP HP2-Z32 : Practice Test Question No : 1 What is a proper use for an ingress VLAN in an HP MSM VSC?

More information

Chapter - 6 WIRELESS NETWORK SECURITY

Chapter - 6 WIRELESS NETWORK SECURITY Chapter - 6 WIRELESS NETWORK SECURITY Bhargavi H Goswami Assistant Professor Sunshine Group of Institutes Rajkot, Gujarat, India. Mob: 9426669020 Email: bhargavigoswami@gmail.com Topic List 1. IEEE 802.11

More information

D. The bank s web server is using an X.509 certificate that is not signed by a root CA, causing the user ID and password to be sent unencrypted.

D. The bank s web server is using an X.509 certificate that is not signed by a root CA, causing the user ID and password to be sent unencrypted. Volume: 119 Questions Question No: 1 John Smith uses a coffee shop's Internet hot-spot (no authentication or encryption) to transfer funds between his checking and savings accounts at his bank's website.

More information

PROTECTED EXTENSIBLE AUTHENTICATION PROTOCOL

PROTECTED EXTENSIBLE AUTHENTICATION PROTOCOL Q&A PROTECTED EXTENSIBLE AUTHENTICATION PROTOCOL This document answers questions about Protected Extensible Authentication Protocol. OVERVIEW Q. What is Protected Extensible Authentication Protocol? A.

More information

The following chart provides the breakdown of exam as to the weight of each section of the exam.

The following chart provides the breakdown of exam as to the weight of each section of the exam. Introduction The CWSP-205 exam, covering the 2015 objectives, will certify that the successful candidate understands the security weaknesses inherent in WLANs, the solutions available to address those

More information

What you will learn. Summary Question and Answer

What you will learn. Summary Question and Answer What you will learn General overview of 802.11 Authentication Methods WEP Overview Key Hierarchy Encryption/Decryption WPA Overview Key Hierarchy Encryption/Decryption WPA2 Overview Encryption/Decryption

More information

Open System - No/Null authentication, anyone is able to join. Performed as a two way handshake.

Open System - No/Null authentication, anyone is able to join. Performed as a two way handshake. Five components of WLAN Security 1. Data Privacy 1. Privacy is important because transmission occurs over the air in freely licensed bands. The Data can be sniffed by anyone within range. 2. Eavesdropping

More information

Configuring the Client Adapter through the Windows XP Operating System

Configuring the Client Adapter through the Windows XP Operating System APPENDIX E through the Windows XP Operating System This appendix explains how to configure and use the client adapter with Windows XP. The following topics are covered in this appendix: Overview, page

More information

Troubleshooting WLANs

Troubleshooting WLANs Troubleshooting WLANs Tips and tricks with practical examples!! by Gregor Vucajnk, Knowledge Services at Aerohive Networks email: gvucajnk(at)aerohive.com, twitter: @GregorVucajnk Get a free Aerohive AP/management

More information

Security and Authentication for Wireless Networks

Security and Authentication for Wireless Networks University of New Orleans ScholarWorks@UNO University of New Orleans Theses and Dissertations Dissertations and Theses 5-21-2004 Security and Authentication for 802.11 Wireless Networks Michel Getraide

More information

The security of existing wireless networks

The security of existing wireless networks Security and Cooperation in Wireless Networks Cellular networks o o GSM UMTS WiFi LANs Bluetooth Security in Wireless Networks Wireless networks are more vulnerable to security issues: Broadcast communications

More information

Standard For IIUM Wireless Networking

Standard For IIUM Wireless Networking INTERNATIONAL ISLAMIC UNIVERSITY MALAYSIA (IIUM) Document No : IIUM/ITD/ICTPOL/4.3 Effective Date : 13/11/2008 1.0 OBJECTIVE Standard For IIUM Wireless Networking Chapter : Network Status : APPROVED Version

More information

What is Eavedropping?

What is Eavedropping? WLAN Security What is Eavedropping? War Driving War Driving refers to someone driving around with a laptop and an 802.11 client card looking for an 802.11 system to exploit. War Walking Someone walks

More information

Wireless Security Algorithms

Wireless Security Algorithms (NOTE: If you are using a virtual lab to run your attacks you will need an external Wi Fi attachment. The other option is to have a direct install on your computer. Virtual labs cannot access your wireless

More information

Wireless Networking WiFi Standards 802.11a 5GHz 54MB 802.11b 2.4 GHz 11MB 802.11g 2.4GHz 52MB 802.11n 2.4/5GHz 108MB 802.11b The 802.11b standard has a maximum raw data rate of 11 Mbit/s, and uses

More information

Cisco Systems 5760 Wireless LAN Controller

Cisco Systems 5760 Wireless LAN Controller Cisco Systems 5760 Wireless LAN Controller FIPS 140-2 Non Proprietary Security Policy Level 1 Validation Version 1.2 April 10, 2015 1 Table of Contents 1 INTRODUCTION... 3 1.1 PURPOSE... 3 1.2 MODEL...

More information

Wireless technology Principles of Security

Wireless technology Principles of Security Wireless technology Principles of Security 1 Wireless technologies 2 Overview This module provides an introduction to the rapidly evolving technology of wireless LANs (WLANs). WLANs redefine the way the

More information

Key Reinstallation Attacks: Forcing Nonce Reuse in WPA2. Mathy Vanhoef, PhD Wi-Fi Alliance meeting Bucharest, 24 October 2017

Key Reinstallation Attacks: Forcing Nonce Reuse in WPA2. Mathy Vanhoef, PhD Wi-Fi Alliance meeting Bucharest, 24 October 2017 Key Reinstallation Attacks: Forcing Nonce Reuse in WPA2 Mathy Vanhoef, PhD Wi-Fi Alliance meeting Bucharest, 24 October 2017 Overview 1. Key reinstallation in 4-way handshake 2. Misconceptions and remarks

More information

802.1x. ACSAC 2002 Las Vegas

802.1x. ACSAC 2002 Las Vegas 802.1x ACSAC 2002 Las Vegas Jeff.Hayes@alcatel.com 802.1 Projects The IEEE 802.1 Working Group is chartered to concern itself with and develop standards and recommended practices in the following areas:

More information

NWD2705. User s Guide. Quick Start Guide. Dual-Band Wireless N450 USB Adapter. Version 1.00 Edition 1, 09/2012

NWD2705. User s Guide. Quick Start Guide. Dual-Band Wireless N450 USB Adapter. Version 1.00 Edition 1, 09/2012 NWD2705 Dual-Band Wireless N450 USB Adapter Version 1.00 Edition 1, 09/2012 Quick Start Guide User s Guide www.zyxel.com Copyright 2012 ZyXEL Communications Corporation IMPORTANT! READ CAREFULLY BEFORE

More information

Basic Wireless Settings on the CVR100W VPN Router

Basic Wireless Settings on the CVR100W VPN Router Basic Wireless Settings on the CVR100W VPN Router Objective A Wireless Local Area Network (WLAN) utilizes radio communication to connect wireless devices to a LAN. An example is a Wi-Fi hotspot at a cafe.

More information

How Secure is Wireless?

How Secure is Wireless? How Secure is Wireless? South Carolina Chapter of HIMSS Annual Conference April 24-25, 2003 Richard Gadsden Director of Computer and Network Security Medical University of South Carolina gadsden@musc.edu

More information

FIPS Security Policy for Cisco Aironet Lightweight AP1131, AP1142, AP1242, AP1252, and AP1522 Wireless LAN Access Points

FIPS Security Policy for Cisco Aironet Lightweight AP1131, AP1142, AP1242, AP1252, and AP1522 Wireless LAN Access Points FIPS 140-2 Security Policy for Cisco Aironet Lightweight AP1131, AP1142, AP1242, AP1252, and AP1522 Wireless LAN Access Points August 25, 2009 Version 1.7 Contents This security policy contains these sections:

More information

Link Security A Tutorial

Link Security A Tutorial Link Security A Tutorial Fortress Technologies, Inc. Slide 1 Five basic security services Data confidentiality Data integrity Access control and access rights Authentication/Roaming Non-repudiation These

More information

Configuring the Client Adapter

Configuring the Client Adapter CHAPTER 5 This chapter explains how to configure profile parameters. The following topics are covered in this chapter: Overview, page 5-2 Setting General Parameters, page 5-3 Setting Advanced Parameters,

More information

Wireless Security K. Raghunandan and Geoff Smith. Technology September 21, 2013

Wireless Security K. Raghunandan and Geoff Smith. Technology September 21, 2013 Wireless Security K. Raghunandan and Geoff Smith Stevens Institute t of Technology September 21, 2013 Topics Cyber Security hacking community Familiarity with IP networks What is the security yprocess

More information

COPYRIGHTED MATERIAL. Contents

COPYRIGHTED MATERIAL. Contents Contents Foreword Introduction xxv xxvii Assessment Test xxxviii Chapter 1 WLAN Security Overview 1 Standards Organizations 3 International Organization for Standardization (ISO) 3 Institute of Electrical

More information

Outline : Wireless Networks Lecture 10: Management. Management and Control Services : Infrastructure Reminder.

Outline : Wireless Networks Lecture 10: Management. Management and Control Services : Infrastructure Reminder. Outline 18-759: Wireless Networks Lecture 10: 802.11 Management Peter Steenkiste Departments of Computer Science and Electrical and Computer Engineering Spring Semester 2016 http://www.cs.cmu.edu/~prs/wirelesss16/

More information

2013 Summer Camp: Wireless LAN Security Exercises JMU Cyber Defense Boot Camp

2013 Summer Camp: Wireless LAN Security Exercises JMU Cyber Defense Boot Camp 2013 Summer Camp: Wireless LAN Security Exercises 2013 JMU Cyber Defense Boot Camp Questions Have you used a wireless local area network before? At home? At work? Have you configured a wireless AP before?

More information

Expected Outcomes Able to design the network security for the entire network Able to develop and suggest the security plan and policy

Expected Outcomes Able to design the network security for the entire network Able to develop and suggest the security plan and policy CHAPTER 9 DEVELOPING NETWORK SECURITY STRATEGIES Expected Outcomes Able to design the network security for the entire network Able to develop and suggest the security plan and policy Network Security Design

More information

Configuring WLANsWireless Device Access

Configuring WLANsWireless Device Access CHAPTER 6 This chapter describes how to configure up to 16 WLANs for your Cisco UWN Solution. It contains these sections: WLAN Overview, page 6-2 Configuring WLANs, page 6-2 6-1 WLAN Overview Chapter 6

More information

Numerics I N D E X. 3 DES (triple Data Encryption Standard), 18 4-way handshake, RM, Security.com, 399

Numerics I N D E X. 3 DES (triple Data Encryption Standard), 18 4-way handshake, RM, Security.com, 399 I N D E X Numerics A 3 DES (triple Data Encryption Standard), 18 4-way handshake, 222 802 RM, 61 802.11-Security.com, 399 AAA MAC-based authentication, 116 servers, 6 shared-key authentication, 118 access

More information

Cisco Desktop Collaboration Experience DX650 Security Overview

Cisco Desktop Collaboration Experience DX650 Security Overview White Paper Cisco Desktop Collaboration Experience DX650 Security Overview Cisco Desktop Collaboration Experience DX650 Security Overview The Cisco Desktop Collaboration Experience DX650 (Cisco DX650)

More information

Security Setup CHAPTER

Security Setup CHAPTER CHAPTER 8 This chapter describes how to set up your bridge s security features. This chapter contains the following sections: Security Overview, page 8-2 Setting Up WEP, page 8-7 Enabling Additional WEP

More information

Meru Networks. Security Gateway SG1000 Cryptographic Module Security Policy Document Version 1.2. Revision Date: June 24, 2009

Meru Networks. Security Gateway SG1000 Cryptographic Module Security Policy Document Version 1.2. Revision Date: June 24, 2009 Security Gateway SG1000 Cryptographic Module Security Policy Document Version 1.2 Meru Networks Revision Date: June 24, 2009 Copyright Meru Networks 2008. May be reproduced only in its original entirety

More information

1 FIVE STAGES OF I.

1 FIVE STAGES OF I. 1 1 FIVE STAGES OF 802.11I. Stage 1. AP and Security Capability Discovery This stage consists of messages numbered (1) to (3). The AP either periodically broadcasts its security capabilities, indicated

More information