RPT: Re-architecting Loss Protection for Content-Aware Networks

Size: px
Start display at page:

Download "RPT: Re-architecting Loss Protection for Content-Aware Networks"

Transcription

1 RPT: Re-architecting Loss Protection for Content-Aware Networks Dongsu Han, Ashok Anand ǂ, Aditya Akella ǂ, and Srinivasan Seshan Carnegie Mellon University ǂ University of Wisconsin-Madison

2 Motivation: Delay-sensitive communication Soft-realtime intra-data center communication [DCTCP, D 3 ] Response time ~250ms Real-time streams: FaceTime, Skype, on-line games. Maximum one way latency ~150ms Time critical interdata center communication [Maelstrom] Minimizing data loss in time-critical communication is important, but challenging because of the time constraint. 2

3 Loss protection today: Redundancy-based recovery Forward Error Correction Delay Bandwidth for robustness Redundant packets (n-k) Original packets (k) FEC couples delay with redundancy Small batch size makes FEC more susceptible to bursty loss Difficult to tune parameters (n and k) [TIP2001,INFOCOM2010] Amount of redundancy 20%~50% in Skype video[multimedia 09] 3

4 Content-aware networks changes the trade-off of redundancy Content-aware networks = caching + contentaware processing to remove duplicates Caching effectively minimizes the bandwidth cost of redundancy RE cache RE cache Examples Redundancy elimination (RE) [SIGCOMM 08] Bandwidth overhead of 100% redundancy: 3% Content-Centric Networking (CCN) [CoNEXT 09] 4

5 Product: WAN optimizers (10+ vendors) Cisco, Riverbed, Juniper, Blue Coat Systems E.g., Cisco deployed RE on 200+ remote offices. Corporate networks Deployment of content-aware networks Riverbed: 50+ corporate customers, datacenter deployments Isolation from Cross traffic Main office WAN optimizer VPN ( Virtual wire ) WAN optimizer Branch 5

6 redundant Redundant Packet Transmission (RPT) RPT Introduce redundancy in a way that the network understands RE Network Redundancy Elimination Router FEC Questions/Challenges How do we make sure we retain the robustness benefits? How much redundancy is needed? How does it compare with FEC? Is this safe to use? 6

7 Redundant Packet Transmission (RPT) RPT Introduce redundancy in a way that the network understands RE Network FEC Redundancy Elimination Router Questions/Challenges How do we make sure we retain the robustness benefits? How much redundancy is needed? How does it compare with FEC? Is this safe to use? 7

8 RPT on Redundancy Elimination (RE) Networks RE cache holds packets received during the past ~10 secs Loss model: Congestive packet loss that happens inside a router. Decompressed packet Compressed (deduplicated) packet Packets RE Decode RE Encode Low overhead A A A RE cache Queue RE cache Robustness Incoming interfaces Redundancy Elimination Router Outgoing interfaces 8

9 Redundant Packet Transmission Introduce redundancy in a way that the network understands Redundant Transmission RE Networks 9

10 Redundant Packet Transmission Introduce redundancy in a way that the network understands Benefits: RE Networks Retain the robustness benefits of redundancy Minimize the bandwidth cost Application can signal the importance of data. (Fine-grained control) 10

11 A Case Study of RPT Redundant Packet Transmission (RPT) - Send multiple copy of the same packet. - Send every packet r times. - Applied to live video in RE networks. Redundant Packets Transmission Hop-by-hop RE networks Partially content-aware networks SmartRE networks Networks with link-layer loss Content Centric Networks (CCN) Time-critical communication 11

12 Fraction of Overhead Analytical Comparison with FEC 0.50 FEC(10,5) 2% random loss. p = 0.02 FEC(n=10,k=8) Batch size (n=10) Delay 0.40 FEC(10,6) 0.30 FEC(10,7) RPT(4) RPT(3) RPT(2) 1E-7 1E-6 1E-5 1E-4 1E-3 1E-2 1E-1 1E+0 1E+1 End-to-end data loss rate (%) FEC(10,8) FEC(10,9) Naive Naive 2% data loss 0 overhead Coded redundancy RPT(3) Original pkts (k=8) Delay Redundancy (r=3) 12

13 Fraction of Overhead Analytical Comparison with FEC % random loss. p = 0.02 FEC(10,5) Naive FEC(20,k) FEC(10,6) FEC(10,k) FEC(100,k) RPT(r) FEC(20,14) FEC(10,7) FEC(20,16) FEC(10,8) FEC(100,90) FEC(10,9) RPT(4) RPT(3) RPT(2) 1E-7 1E-6 1E-5 1E-4 1E-3 1E-2 1E-1 1E+0 1E+1 End-to-end Data loss rate (%) FEC(n=20,k=16) Delay Batch size (n=20) Original pkts (k=16) 13

14 Fraction of Overhead Analytical Comparison with FEC % random loss. p = 0.02 FEC(10,5) Naive FEC(20,k) FEC(10,6) FEC(10,k) FEC(100,k) RPT(r) FEC(20,14) FEC(10,7) FEC(20,16) FEC(10,8) FEC(100,90) FEC(10,9) RPT(4) RPT(3) RPT(2) 1E-7 1E-6 1E-5 1E-4 1E-3 1E-2 1E-1 1E+0 1E+1 End-to-end Data loss rate (%) Scheme FEC(10,7) FEC(20,16) FEC(100,92) RPT(r) Max Delay@ 1Mbps 168 ms 300 ms 1300 ms Tunable Skype video call 128~300kbps Skype (HD) 1.2~1.5Mbps 14

15 Experimental Evaluation Thorough evaluation on 3 different aspects of RPT End user performance Ease of use (parameter selection) Impact on other traffic Methodology Real experiment Trace based experiment Simulation CIF: 352x288 15

16 Video Source Realistic Cross traffic Sink Evaluation Framework RE router implementation (Click, NS2) Video quality evaluation using evalvid Sender Network Receiver FEC FEC encoder (n,k) Measure BW overhead RPT(r,d) RE encoder (RE) RE decoder RE RPT Measure loss rate, video quality (PSNR) 16

17 Average PSNR (db) E2E Performance: Video Quality Encoded video at sender (Before loss) RPT FEC 17

18 Average PSNR (db) E2E Performance: Video Quality Encoded video at sender Received video Packet loss rate ~2% RPT FEC 18

19 E2E Performance: Video Quality RPT(3) Overhead ~6% FEC(10,9) Overhead ~10% Naïve UDP 1.8dB ~ 3dB difference in quality 19

20 Fraction of Overhead 0.4 FEC(10,6) E2E Performance: overhead and robustness Packet loss rate ~2% Naive FEC(10,7) FEC(10,8) FEC(10,k) RS(r) RPT(r) 0.1 FEC(10,9) RPT(4) RPT(3) RPT(2) 0 1E-04 1E-03 1E-02 1E-01 1E+00 1E+01 End-to-end Data Loss Rate (%) Naive 20

21 Impact on other traffic RPT flows get prioritized. Packet loss rate : 9%. Other Flows Loss Sender (Before loss) Receiver (Non-RPT) (After loss) 9% loss RPT Flows Receiver (RPT) (After loss) Original Redundancy Bandwidth use (Mbps) Throughput reduction: 2% Loss 21

22 Is flow prioritization a problem? Not a problem: Important flows should be prioritized. Problem: Unfair bandwidth allocation TCP throughput : 18Mbps TCP throughput: 12Mbps How do provide fairness and robustness at the same time? Core problem: RPT flows are not reacting to congestion. Apply TCP-friendly rate control to RPT. Challenge: correctly accounting for possible changes in loss pattern 22

23 Other results in the paper Demonstration of RPT in a real-world setting E.g., Emulated corporate VPN scenario Trace-based experimental results Detailed parameter sensitivity study Network safety (impact on the network) Design and evaluation of TCP-friendly RPT Strategies on other content-aware networks 23

24 UEP Generalized RPT Many sophisticated schemes are enabled by FEC. Priority encoding transmission (PET), unequal error protection (UEP), multiple description coding (MDC) Prioritization within a flow for graceful degradation of quality Redundancy elimination networks [SIGCOMM 08] P-frame I-frame PET/MDC Very important: Sent x3 (byte-level redundancy) Important: Sent x2 24

25 Conclusion Key Idea of RPT: Don t hide, expose redundancy! Key Features High robustness, low overhead user performance Ease of use: parameter selection, per-packet redundancy/delay control Flow prioritization Applicability Applies to delay-sensitive communications in contentaware networks in general. 25

26 26

RPT: Re-architecting Loss Protection for Content-Aware Networks

RPT: Re-architecting Loss Protection for Content-Aware Networks RPT: Re-architecting Loss Protection for Content-Aware Networks Dongsu Han Ashok Anand Aditya Akella Srinivasan Seshan June 2011 CMU-CS-11-117 School of Computer Science Carnegie Mellon University Pittsburgh,

More information

Next Generation Network Architectures. Srinivasan Seshan!

Next Generation Network Architectures. Srinivasan Seshan! Next Generation Network Architectures Srinivasan Seshan! Living Analy+cs Rich data collec,on à real-,me data analy,cs à automated applica,on feedback à rich data collec,on Key networking/distributed systems

More information

Choosing the Right Acceleration Solution

Choosing the Right Acceleration Solution Choosing the Right Acceleration Solution In the previous piece in this series, What is Network Acceleration, we outlined the various techniques used to improve network performance. Now, we will discuss

More information

CS519: Computer Networks. Lecture 5, Part 5: Mar 31, 2004 Queuing and QoS

CS519: Computer Networks. Lecture 5, Part 5: Mar 31, 2004 Queuing and QoS : Computer Networks Lecture 5, Part 5: Mar 31, 2004 Queuing and QoS Ways to deal with congestion Host-centric versus router-centric Reservation-based versus feedback-based Window-based versus rate-based

More information

Mobile Transport Layer

Mobile Transport Layer Mobile Transport Layer 1 Transport Layer HTTP (used by web services) typically uses TCP Reliable transport between TCP client and server required - Stream oriented, not transaction oriented - Network friendly:

More information

QoS Services with Dynamic Packet State

QoS Services with Dynamic Packet State QoS Services with Dynamic Packet State Ion Stoica Carnegie Mellon University (joint work with Hui Zhang and Scott Shenker) Today s Internet Service: best-effort datagram delivery Architecture: stateless

More information

IETF88 Vancouver. Congestion control for video and priority drops. Background for draft-lai-tsvwg-normalizer-02.txt LTR

IETF88 Vancouver. Congestion control for video and priority drops. Background for draft-lai-tsvwg-normalizer-02.txt LTR IETF88 Vancouver Congestion control for video and priority drops Background for draft-lai-tsvwg-normalizer-02.txt Toerless Eckert, eckert@cisco.com LTR P dp I 1 draft-lai-tsvwg-normalizer-02.txt discusses

More information

TESTING SD-WAN WITH REAL-WORLD CONDITIONS

TESTING SD-WAN WITH REAL-WORLD CONDITIONS TESTING SD-WAN WITH REAL-WORLD CONDITIONS BACKGROUND Distributed enterprises are saving money on network costs while increasing network reliability by taking advantage of new SD- WAN products. An SD-WAN

More information

Addressing the Challenges of Web Data Transport

Addressing the Challenges of Web Data Transport Addressing the Challenges of Web Data Transport Venkata N. Padmanabhan Microsoft Research UW Whistler Retreat December 1998 Outline Challenges Solutions TCP Session Fast Start Ongoing and Future Work The

More information

Attaining the Promise and Avoiding the Pitfalls of TCP in the Datacenter. Glenn Judd Morgan Stanley

Attaining the Promise and Avoiding the Pitfalls of TCP in the Datacenter. Glenn Judd Morgan Stanley Attaining the Promise and Avoiding the Pitfalls of TCP in the Datacenter Glenn Judd Morgan Stanley 1 Introduction Datacenter computing pervasive Beyond the Internet services domain BigData, Grid Computing,

More information

ADVANCED TOPICS FOR CONGESTION CONTROL

ADVANCED TOPICS FOR CONGESTION CONTROL ADVANCED TOPICS FOR CONGESTION CONTROL Congestion Control The Internet only functions because TCP s congestion control does an effective job of matching traffic demand to available capacity. TCP s Window

More information

Resource Guide Implementing QoS for WX/WXC Application Acceleration Platforms

Resource Guide Implementing QoS for WX/WXC Application Acceleration Platforms Resource Guide Implementing QoS for WX/WXC Application Acceleration Platforms Juniper Networks, Inc. 1194 North Mathilda Avenue Sunnyvale, CA 94089 USA 408 745 2000 or 888 JUNIPER www.juniper.net Table

More information

CS268: Beyond TCP Congestion Control

CS268: Beyond TCP Congestion Control TCP Problems CS68: Beyond TCP Congestion Control Ion Stoica February 9, 004 When TCP congestion control was originally designed in 1988: - Key applications: FTP, E-mail - Maximum link bandwidth: 10Mb/s

More information

The Effects of Asymmetry on TCP Performance

The Effects of Asymmetry on TCP Performance The Effects of Asymmetry on TCP Performance Hari Balakrishnan Venkata N. Padmanabhan Randy H. Katz University of California at Berkeley Daedalus/BARWAN Retreat June 1997 Outline Overview Bandwidth asymmetry

More information

XORs in the Air: Practical Wireless Network Coding

XORs in the Air: Practical Wireless Network Coding XORs in the Air: Practical Wireless Network Coding S. Katti, H. Rahul, W. Hu, D. Katabi, M. Medard, J. Crowcroft MIT & University of Cambridge Can we use 3 transmissions to send traffic? 1 2 4 3 Can we

More information

Partial Reliable TCP

Partial Reliable TCP Partial Reliable TCP Yao-Nan Lien and Ming-Han Wu Computer Science Department,National Chengchi University, Taipei, Taiwan, R.O.C. lien@cs.nccu.edu.tw ABSTRACT-Some new information services over IPbased

More information

IP Network Emulation

IP Network Emulation Developing and Testing IP Products Under www.packetstorm.com 2017 PacketStorm Communications, Inc. PacketStorm is a trademark of PacketStorm Communications. Other brand and product names mentioned in this

More information

The Controlled Delay (CoDel) AQM Approach to fighting bufferbloat

The Controlled Delay (CoDel) AQM Approach to fighting bufferbloat The Controlled Delay (CoDel) AQM Approach to fighting bufferbloat BITAG TWG Boulder, CO February 27, 2013 Kathleen Nichols Van Jacobson Background The persistently full buffer problem, now called bufferbloat,

More information

Multi-class Applications for Parallel Usage of a Guaranteed Rate and a Scavenger Service

Multi-class Applications for Parallel Usage of a Guaranteed Rate and a Scavenger Service Department of Computer Science 1/18 Multi-class Applications for Parallel Usage of a Guaranteed Rate and a Scavenger Service Markus Fidler fidler@informatik.rwth-aachen.de Volker Sander sander@fz.juelich.de

More information

Congestion. Can t sustain input rate > output rate Issues: - Avoid congestion - Control congestion - Prioritize who gets limited resources

Congestion. Can t sustain input rate > output rate Issues: - Avoid congestion - Control congestion - Prioritize who gets limited resources Congestion Source 1 Source 2 10-Mbps Ethernet 100-Mbps FDDI Router 1.5-Mbps T1 link Destination Can t sustain input rate > output rate Issues: - Avoid congestion - Control congestion - Prioritize who gets

More information

Chapter 13 TRANSPORT. Mobile Computing Winter 2005 / Overview. TCP Overview. TCP slow-start. Motivation Simple analysis Various TCP mechanisms

Chapter 13 TRANSPORT. Mobile Computing Winter 2005 / Overview. TCP Overview. TCP slow-start. Motivation Simple analysis Various TCP mechanisms Overview Chapter 13 TRANSPORT Motivation Simple analysis Various TCP mechanisms Distributed Computing Group Mobile Computing Winter 2005 / 2006 Distributed Computing Group MOBILE COMPUTING R. Wattenhofer

More information

Communication Networks

Communication Networks Communication Networks Spring 2018 Laurent Vanbever nsg.ee.ethz.ch ETH Zürich (D-ITET) April 30 2018 Materials inspired from Scott Shenker & Jennifer Rexford Last week on Communication Networks We started

More information

Performance Consequences of Partial RED Deployment

Performance Consequences of Partial RED Deployment Performance Consequences of Partial RED Deployment Brian Bowers and Nathan C. Burnett CS740 - Advanced Networks University of Wisconsin - Madison ABSTRACT The Internet is slowly adopting routers utilizing

More information

Outline 9.2. TCP for 2.5G/3G wireless

Outline 9.2. TCP for 2.5G/3G wireless Transport layer 9.1 Outline Motivation, TCP-mechanisms Classical approaches (Indirect TCP, Snooping TCP, Mobile TCP) PEPs in general Additional optimizations (Fast retransmit/recovery, Transmission freezing,

More information

Why Performance Matters When Building Your New SD-WAN

Why Performance Matters When Building Your New SD-WAN Why Performance Matters When Building Your New SD-WAN Not all SD-WANs are created equal. Brought to you by Silver Peak The New Generation of High Performance SD-WANs As enterprise IT considers ways to

More information

CS 268: Wireless Transport Protocols. Kevin Lai Feb 13, 2002

CS 268: Wireless Transport Protocols. Kevin Lai Feb 13, 2002 CS 268: Wireless Transport Protocols Kevin Lai Feb 13, 2002 Motivation! Wireless connectivity proliferating - Satellite, line-of-sight microwave, line-of-sight laser, cellular data (CDMA, GPRS, 3G), wireless

More information

Advanced Computer Networks. Datacenter TCP

Advanced Computer Networks. Datacenter TCP Advanced Computer Networks 263 3501 00 Datacenter TCP Spring Semester 2017 1 Oriana Riva, Department of Computer Science ETH Zürich Today Problems with TCP in the Data Center TCP Incast TPC timeouts Improvements

More information

Advanced Computer Networks. Flow Control

Advanced Computer Networks. Flow Control Advanced Computer Networks 263 3501 00 Flow Control Patrick Stuedi Spring Semester 2017 1 Oriana Riva, Department of Computer Science ETH Zürich Last week TCP in Datacenters Avoid incast problem - Reduce

More information

Congestion Control In the Network

Congestion Control In the Network Congestion Control In the Network Brighten Godfrey cs598pbg September 9 2010 Slides courtesy Ion Stoica with adaptation by Brighten Today Fair queueing XCP Announcements Problem: no isolation between flows

More information

Internet Quality of Service: an Overview

Internet Quality of Service: an Overview Internet Quality of Service: an Overview W. Zhao and et al, Columbia University presented by 리준걸 2006.10.25 INC Lab, Seoul Nat l University Outline Introduce QoS framework IntServ DiffServ Detailed mechanism

More information

Sections Describing Standard Software Features

Sections Describing Standard Software Features 30 CHAPTER This chapter describes how to configure quality of service (QoS) by using automatic-qos (auto-qos) commands or by using standard QoS commands. With QoS, you can give preferential treatment to

More information

Consumer driven Adaptive Rate Control for Real-time Video Streaming in CCN/NDN

Consumer driven Adaptive Rate Control for Real-time Video Streaming in CCN/NDN Consumer driven Adaptive Rate Control for Real-time Video Streaming in CCN/NDN Takahiro YONEDA, Ryota OHNISHI, Eiichi MURAMOTO(Presenter),, Panasonic Corporation Jeff Burke, UCLA Contact: muramoto.eiichi@jp.panasonic.com

More information

Better Never than Late: Meeting Deadlines in Datacenter Networks

Better Never than Late: Meeting Deadlines in Datacenter Networks Better Never than Late: Meeting Deadlines in Datacenter Networks Christo Wilson, Hitesh Ballani, Thomas Karagiannis, Ant Rowstron Microsoft Research, Cambridge User-facing online services Two common underlying

More information

CS 344/444 Computer Network Fundamentals Final Exam Solutions Spring 2007

CS 344/444 Computer Network Fundamentals Final Exam Solutions Spring 2007 CS 344/444 Computer Network Fundamentals Final Exam Solutions Spring 2007 Question 344 Points 444 Points Score 1 10 10 2 10 10 3 20 20 4 20 10 5 20 20 6 20 10 7-20 Total: 100 100 Instructions: 1. Question

More information

Connectivity to Cloud-First Applications

Connectivity to Cloud-First Applications Aruba and Riverbed Partner to Accelerate and Optimize Mobile-First Connectivity to Cloud-First Applications Today s workforce is more distributed, more mobile, and more demanding. Constant availability

More information

Wireless Challenges : Computer Networking. Overview. Routing to Mobile Nodes. Lecture 25: Wireless Networking

Wireless Challenges : Computer Networking. Overview. Routing to Mobile Nodes. Lecture 25: Wireless Networking Wireless Challenges 15-441: Computer Networking Lecture 25: Wireless Networking Force us to rethink many assumptions Need to share airwaves rather than wire Don t know what hosts are involved Host may

More information

CSE 4215/5431: Mobile Communications Winter Suprakash Datta

CSE 4215/5431: Mobile Communications Winter Suprakash Datta CSE 4215/5431: Mobile Communications Winter 2013 Suprakash Datta datta@cse.yorku.ca Office: CSEB 3043 Phone: 416-736-2100 ext 77875 Course page: http://www.cse.yorku.ca/course/4215 Some slides are adapted

More information

Cisco Meraki MX products come in 6 models. The chart below outlines MX hardware properties for each model:

Cisco Meraki MX products come in 6 models. The chart below outlines MX hardware properties for each model: MX Sizing Guide AUGUST 2016 This technical document provides guidelines for choosing the right Cisco Meraki security appliance based on real-world deployments, industry standard benchmarks and in-depth

More information

Impact of transmission errors on TCP performance. Outline. Random Errors

Impact of transmission errors on TCP performance. Outline. Random Errors Impact of transmission errors on TCP performance 1 Outline Impact of transmission errors on TCP performance Approaches to improve TCP performance Classification Discussion of selected approaches 2 Random

More information

A Proposal to add Explicit Congestion Notification (ECN) to IPv6 and to TCP

A Proposal to add Explicit Congestion Notification (ECN) to IPv6 and to TCP A Proposal to add Explicit Congestion Notification (ECN) to IPv6 and to TCP K. K. Ramakrishnan, Sally Floyd References: Ramakrishnan, K.K., and Floyd, S., A Proposal to add Explicit Congestion Notification

More information

WhitePaper: XipLink Real-Time Optimizations

WhitePaper: XipLink Real-Time Optimizations WhitePaper: XipLink Real-Time Optimizations XipLink Real Time Optimizations Header Compression, Packet Coalescing and Packet Prioritization Overview XipLink Real Time ( XRT ) is an optimization capability

More information

MX Sizing Guide. 4Gon Tel: +44 (0) Fax: +44 (0)

MX Sizing Guide. 4Gon   Tel: +44 (0) Fax: +44 (0) MX Sizing Guide FEBRUARY 2015 This technical document provides guidelines for choosing the right Cisco Meraki security appliance based on real-world deployments, industry standard benchmarks and in-depth

More information

Choosing a Transport Protocol for Real-time Data across complex networks

Choosing a Transport Protocol for Real-time Data across complex networks Choosing a Transport Protocol for Real-time Data across complex networks Choosing a Transport Protocol for Real-time Data 1 Choosing a Transport Protocol for Real-time Data 1 Introduction Choosing the

More information

Sections Describing Standard Software Features

Sections Describing Standard Software Features 27 CHAPTER This chapter describes how to configure quality of service (QoS) by using automatic-qos (auto-qos) commands or by using standard QoS commands. With QoS, you can give preferential treatment to

More information

Introduction. Routing & Addressing: Multihoming 10/25/04. The two SIGCOMM papers. A Comparison of Overlay Routing and Multihoming Route Control

Introduction. Routing & Addressing: Multihoming 10/25/04. The two SIGCOMM papers. A Comparison of Overlay Routing and Multihoming Route Control Introduction Routing & Addressing: Multihoming 10/25/04 Hong Tat Tong Two attempts to control/ensure best performance over the Internet Multihoming from the endpoints Overlay with some help from middle-boxes

More information

CE693: Adv. Computer Networking

CE693: Adv. Computer Networking CE693: Adv. Computer Networking L-10 Wireless Broadcast Fall 1390 Acknowledgments: Lecture slides are from the graduate level Computer Networks course thought by Srinivasan Seshan at CMU. When slides are

More information

CS644 Advanced Networks

CS644 Advanced Networks What we know so far CS644 Advanced Networks Lecture 6 Beyond TCP Congestion Control Andreas Terzis TCP Congestion control based on AIMD window adjustment [Jac88] Saved Internet from congestion collapse

More information

Episode 5. Scheduling and Traffic Management

Episode 5. Scheduling and Traffic Management Episode 5. Scheduling and Traffic Management Part 3 Baochun Li Department of Electrical and Computer Engineering University of Toronto Outline What is scheduling? Why do we need it? Requirements of a scheduling

More information

Router s Queue Management

Router s Queue Management Router s Queue Management Manages sharing of (i) buffer space (ii) bandwidth Q1: Which packet to drop when queue is full? Q2: Which packet to send next? FIFO + Drop Tail Keep a single queue Answer to Q1:

More information

Outline Computer Networking. TCP slow start. TCP modeling. TCP details AIMD. Congestion Avoidance. Lecture 18 TCP Performance Peter Steenkiste

Outline Computer Networking. TCP slow start. TCP modeling. TCP details AIMD. Congestion Avoidance. Lecture 18 TCP Performance Peter Steenkiste Outline 15-441 Computer Networking Lecture 18 TCP Performance Peter Steenkiste Fall 2010 www.cs.cmu.edu/~prs/15-441-f10 TCP congestion avoidance TCP slow start TCP modeling TCP details 2 AIMD Distributed,

More information

Transport Protocols for Data Center Communication. Evisa Tsolakou Supervisor: Prof. Jörg Ott Advisor: Lect. Pasi Sarolahti

Transport Protocols for Data Center Communication. Evisa Tsolakou Supervisor: Prof. Jörg Ott Advisor: Lect. Pasi Sarolahti Transport Protocols for Data Center Communication Evisa Tsolakou Supervisor: Prof. Jörg Ott Advisor: Lect. Pasi Sarolahti Contents Motivation and Objectives Methodology Data Centers and Data Center Networks

More information

TCP Nice: A Mechanism for Background Transfers

TCP Nice: A Mechanism for Background Transfers Improving Internet Availability and Reliability TCP : A Mechanism for Background Transfers Z. Morley Mao Lecture 7 Feb 2, 2004 Arun Venkataramani, Ravi Kokku, Mike Dahlin Laboratory of Advanced Systems

More information

Wireless TCP Performance Issues

Wireless TCP Performance Issues Wireless TCP Performance Issues Issues, transport layer protocols Set up and maintain end-to-end connections Reliable end-to-end delivery of data Flow control Congestion control Udp? Assume TCP for the

More information

15-744: Computer Networking. Data Center Networking II

15-744: Computer Networking. Data Center Networking II 15-744: Computer Networking Data Center Networking II Overview Data Center Topology Scheduling Data Center Packet Scheduling 2 Current solutions for increasing data center network bandwidth FatTree BCube

More information

TCP Congestion Control

TCP Congestion Control 6.033, Spring 2014 TCP Congestion Control Dina Katabi & Sam Madden nms.csail.mit.edu/~dina Sharing the Internet How do you manage resources in a huge system like the Internet, where users with different

More information

The Network Layer and Routers

The Network Layer and Routers The Network Layer and Routers Daniel Zappala CS 460 Computer Networking Brigham Young University 2/18 Network Layer deliver packets from sending host to receiving host must be on every host, router in

More information

CS 457 Multimedia Applications. Fall 2014

CS 457 Multimedia Applications. Fall 2014 CS 457 Multimedia Applications Fall 2014 Topics Digital audio and video Sampling, quantizing, and compressing Multimedia applications Streaming audio and video for playback Live, interactive audio and

More information

Emulation of Dynamic Adaptive Streaming over HTTP with Mininet

Emulation of Dynamic Adaptive Streaming over HTTP with Mininet Emulation of Dynamic Adaptive Streaming over HTTP with Mininet Anatoliy Zabrovskiy Evgeny Kuzmin Petrozavodsk State University Video streaming Video streaming is becoming more and more popular technology

More information

DiffServ Architecture: Impact of scheduling on QoS

DiffServ Architecture: Impact of scheduling on QoS DiffServ Architecture: Impact of scheduling on QoS Abstract: Scheduling is one of the most important components in providing a differentiated service at the routers. Due to the varying traffic characteristics

More information

Fair Bandwidth Sharing Between Unicast and Multicast Flows in Best-Effort Networks

Fair Bandwidth Sharing Between Unicast and Multicast Flows in Best-Effort Networks Fair Bandwidth Sharing Between Unicast and Multicast Flows in Best-Effort Networks Fethi Filali and Walid Dabbous INRIA, 2004 Route des Lucioles, BP-93, 06902 Sophia-Antipolis Cedex, France Abstract In

More information

Traffic Engineering with Forward Fault Correction

Traffic Engineering with Forward Fault Correction Traffic Engineering with Forward Fault Correction Harry Liu Microsoft Research 06/02/2016 Joint work with Ratul Mahajan, Srikanth Kandula, Ming Zhang and David Gelernter 1 Cloud services require large

More information

Synthesizing Adaptive Protocols by Selective Enumeration (SYNAPSE)

Synthesizing Adaptive Protocols by Selective Enumeration (SYNAPSE) Synthesizing Adaptive Protocols by Selective Enumeration (SYNAPSE) Problem Definition Solution Approach Benefits to End User Talk Overview Metrics Summary of Results to Date Lessons Learned & Future Work

More information

Module 6 STILL IMAGE COMPRESSION STANDARDS

Module 6 STILL IMAGE COMPRESSION STANDARDS Module 6 STILL IMAGE COMPRESSION STANDARDS Lesson 19 JPEG-2000 Error Resiliency Instructional Objectives At the end of this lesson, the students should be able to: 1. Name two different types of lossy

More information

TCP Incast problem Existing proposals

TCP Incast problem Existing proposals TCP Incast problem & Existing proposals Outline The TCP Incast problem Existing proposals to TCP Incast deadline-agnostic Deadline-Aware Datacenter TCP deadline-aware Picasso Art is TLA 1. Deadline = 250ms

More information

Christos Papadopoulos

Christos Papadopoulos CS557: Measurements Christos Papadopoulos Adapted by Lorenzo De Carli Outline End-to-End Packet Dynamics - Paxon99b Wireless measurements - Aguayo04a Note: both these studies are old, so the results have

More information

CS 268: Lecture 7 (Beyond TCP Congestion Control)

CS 268: Lecture 7 (Beyond TCP Congestion Control) Outline CS 68: Lecture 7 (Beyond TCP Congestion Control) TCP-Friendly Rate Control (TFRC) explicit Control Protocol Ion Stoica Computer Science Division Department of Electrical Engineering and Computer

More information

PCC: Performance-oriented Congestion Control

PCC: Performance-oriented Congestion Control PCC: Performance-oriented Congestion Control Michael Schapira Hebrew University of Jerusalem and Compira Labs (co-founder and chief scientist) Performance-oriented Congestion Control PCC: Re-architecting

More information

Layer 3: Network Layer. 9. Mar INF-3190: Switching and Routing

Layer 3: Network Layer. 9. Mar INF-3190: Switching and Routing Layer 3: Network Layer 9. Mar. 2005 1 INF-3190: Switching and Routing Network Layer Goal Enable data transfer from end system to end system End systems Several hops, (heterogeneous) subnetworks Compensate

More information

WINNER 2007 WINNER 2008 WINNER 2009 WINNER 2010

WINNER 2007 WINNER 2008 WINNER 2009 WINNER 2010 2010 2009 2008 2007 WINNER 2007 WINNER 2008 WINNER 2009 WINNER 2010 DATA SHEET VIRTUAL ACCELERATOR Six Reasons to say Yes to Expand 1. Comprehensive Whether the WAN is used to connect file servers, email

More information

Reliable Communication for Datacenters

Reliable Communication for Datacenters Cornell University Datacenters Internet Services (90s) Websites, Search, Online Stores Since then: # of low-end volume servers Millions 30 25 20 15 10 5 0 2000 2001 2002 2003 2004 2005 Installed Server

More information

Top-Down Network Design

Top-Down Network Design Top-Down Network Design Chapter Two Analyzing Technical Goals and Tradeoffs Copyright 2010 Cisco Press & Priscilla Oppenheimer 1 Technical Goals Scalability Availability Performance Security Manageability

More information

Equation-Based Congestion Control for Unicast Applications. Outline. Introduction. But don t we need TCP? TFRC Goals

Equation-Based Congestion Control for Unicast Applications. Outline. Introduction. But don t we need TCP? TFRC Goals Equation-Based Congestion Control for Unicast Applications Sally Floyd, Mark Handley AT&T Center for Internet Research (ACIRI) Jitendra Padhye Umass Amherst Jorg Widmer International Computer Science Institute

More information

Mobile Communications Chapter 9: Mobile Transport Layer

Mobile Communications Chapter 9: Mobile Transport Layer Prof. Dr.-Ing Jochen H. Schiller Inst. of Computer Science Freie Universität Berlin Germany Mobile Communications Chapter 9: Mobile Transport Layer Motivation, TCP-mechanisms Classical approaches (Indirect

More information

Adaptive Video Multicasting

Adaptive Video Multicasting Adaptive Video Multicasting Presenters: Roman Glistvain, Bahman Eksiri, and Lan Nguyen 1 Outline Approaches to Adaptive Video Multicasting Single rate multicast Simulcast Active Agents Layered multicasting

More information

Congestion Control in Datacenters. Ahmed Saeed

Congestion Control in Datacenters. Ahmed Saeed Congestion Control in Datacenters Ahmed Saeed What is a Datacenter? Tens of thousands of machines in the same building (or adjacent buildings) Hundreds of switches connecting all machines What is a Datacenter?

More information

Impact of End-to-end QoS Connectivity on the Performance of Remote Wireless Local Networks

Impact of End-to-end QoS Connectivity on the Performance of Remote Wireless Local Networks Impact of End-to-end QoS Connectivity on the Performance of Remote Wireless Local Networks Veselin Rakocevic School of Engineering and Mathematical Sciences City University London EC1V HB, UK V.Rakocevic@city.ac.uk

More information

CSCI-1680 Transport Layer III Congestion Control Strikes Back Rodrigo Fonseca

CSCI-1680 Transport Layer III Congestion Control Strikes Back Rodrigo Fonseca CSCI-1680 Transport Layer III Congestion Control Strikes Back Rodrigo Fonseca Based partly on lecture notes by David Mazières, Phil Levis, John Jannotti, Ion Stoica Last Time Flow Control Congestion Control

More information

Cisco IOS Switching Paths Overview

Cisco IOS Switching Paths Overview This chapter describes switching paths that can be configured on Cisco IOS devices. It contains the following sections: Basic Router Platform Architecture and Processes Basic Switching Paths Features That

More information

Real-Time Protocol (RTP)

Real-Time Protocol (RTP) Real-Time Protocol (RTP) Provides standard packet format for real-time application Typically runs over UDP Specifies header fields below Payload Type: 7 bits, providing 128 possible different types of

More information

End-to-End Mechanisms for QoS Support in Wireless Networks

End-to-End Mechanisms for QoS Support in Wireless Networks End-to-End Mechanisms for QoS Support in Wireless Networks R VS Torsten Braun joint work with Matthias Scheidegger, Marco Studer, Ruy de Oliveira Computer Networks and Distributed Systems Institute of

More information

Cloud e Datacenter Networking

Cloud e Datacenter Networking Cloud e Datacenter Networking Università degli Studi di Napoli Federico II Dipartimento di Ingegneria Elettrica e delle Tecnologie dell Informazione DIETI Laurea Magistrale in Ingegneria Informatica Prof.

More information

Distributed Rate Allocation for Video Streaming over Wireless Networks. Wireless Home Video Networking

Distributed Rate Allocation for Video Streaming over Wireless Networks. Wireless Home Video Networking Ph.D. Oral Defense Distributed Rate Allocation for Video Streaming over Wireless Networks Xiaoqing Zhu Tuesday, June, 8 Information Systems Laboratory Stanford University Wireless Home Video Networking

More information

Ultra high-speed transmission technology for wide area data movement

Ultra high-speed transmission technology for wide area data movement Ultra high-speed transmission technology for wide area data movement Michelle Munson, president & co-founder Aspera Outline Business motivation Moving ever larger file sets over commodity IP networks (public,

More information

Solace Message Routers and Cisco Ethernet Switches: Unified Infrastructure for Financial Services Middleware

Solace Message Routers and Cisco Ethernet Switches: Unified Infrastructure for Financial Services Middleware Solace Message Routers and Cisco Ethernet Switches: Unified Infrastructure for Financial Services Middleware What You Will Learn The goal of zero latency in financial services has caused the creation of

More information

Streaming Video and TCP-Friendly Congestion Control

Streaming Video and TCP-Friendly Congestion Control Streaming Video and TCP-Friendly Congestion Control Sugih Jamin Department of EECS University of Michigan jamin@eecs.umich.edu Joint work with: Zhiheng Wang (UofM), Sujata Banerjee (HP Labs) Video Application

More information

DIBS: Just-in-time congestion mitigation for Data Centers

DIBS: Just-in-time congestion mitigation for Data Centers DIBS: Just-in-time congestion mitigation for Data Centers Kyriakos Zarifis, Rui Miao, Matt Calder, Ethan Katz-Bassett, Minlan Yu, Jitendra Padhye University of Southern California Microsoft Research Summary

More information

A Preferred Service Architecture for Payload Data Flows. Ray Gilstrap, Thom Stone, Ken Freeman

A Preferred Service Architecture for Payload Data Flows. Ray Gilstrap, Thom Stone, Ken Freeman A Preferred Service Architecture for Payload Data Flows Ray Gilstrap, Thom Stone, Ken Freeman NASA Research and Engineering Network NASA Advanced Supercomputing Division NASA Ames Research Center Outline

More information

TRANSMISSION CONTROL PROTOCOL

TRANSMISSION CONTROL PROTOCOL COMP 635: WIRELESS & MOBILE COMMUNICATIONS TRANSMISSION CONTROL PROTOCOL Jasleen Kaur Fall 2017 1 Impact of Wireless on Protocol Layers Application layer Transport layer Network layer Data link layer Physical

More information

A Comparison of Mechanisms for Improving TCP Performance over Wireless Links

A Comparison of Mechanisms for Improving TCP Performance over Wireless Links Appeared in IEEE/ACM Transactions on Networking, Dec.1997. This is a much-extended and revised version of a paper that appeared at ACM SIGCOMM, 1996. A Comparison of Mechanisms for Improving TCP Performance

More information

QoS on Low Bandwidth High Delay Links. Prakash Shende Planning & Engg. Team Data Network Reliance Infocomm

QoS on Low Bandwidth High Delay Links. Prakash Shende Planning & Engg. Team Data Network Reliance Infocomm QoS on Low Bandwidth High Delay Links Prakash Shende Planning & Engg. Team Data Network Reliance Infocomm Agenda QoS Some Basics What are the characteristics of High Delay Low Bandwidth link What factors

More information

6.033 Spring Lecture #12. In-network resource management Queue management schemes Traffic differentiation spring 2018 Katrina LaCurts

6.033 Spring Lecture #12. In-network resource management Queue management schemes Traffic differentiation spring 2018 Katrina LaCurts 6.033 Spring 2018 Lecture #12 In-network resource management Queue management schemes Traffic differentiation 1 Internet of Problems How do we route (and address) scalably, while dealing with issues of

More information

Mohammad Hossein Manshaei 1393

Mohammad Hossein Manshaei 1393 Mohammad Hossein Manshaei manshaei@gmail.com 1393 Voice and Video over IP Slides derived from those available on the Web site of the book Computer Networking, by Kurose and Ross, PEARSON 2 Multimedia networking:

More information

Video-Aware Wireless Networks (VAWN) Final Meeting January 23, 2014

Video-Aware Wireless Networks (VAWN) Final Meeting January 23, 2014 Video-Aware Wireless Networks (VAWN) Final Meeting January 23, 2014 1/26 ! Real-time Video Transmission! Challenges and Opportunities! Lessons Learned for Real-time Video! Mitigating Losses in Scalable

More information

Metering Re-ECN: Performance Evaluation and its Applicability in

Metering Re-ECN: Performance Evaluation and its Applicability in Metering Re-ECN: Performance Evaluation and its Applicability in Cellular Networks Ying Zhang, Ingemar Johansson, Howard Green, Mallik Tatipamula Ericsson Research Resource allocation and usage accountability

More information

Page 1. Review: Internet Protocol Stack. Transport Layer Services EEC173B/ECS152C. Review: TCP. Transport Layer: Connectionless Service

Page 1. Review: Internet Protocol Stack. Transport Layer Services EEC173B/ECS152C. Review: TCP. Transport Layer: Connectionless Service EEC7B/ECS5C Review: Internet Protocol Stack Review: TCP Application Telnet FTP HTTP Transport Network Link Physical bits on wire TCP LAN IP UDP Packet radio Do you remember the various mechanisms we have

More information

OSI Layer OSI Name Units Implementation Description 7 Application Data PCs Network services such as file, print,

OSI Layer OSI Name Units Implementation Description 7 Application Data PCs Network services such as file, print, ANNEX B - Communications Protocol Overheads The OSI Model is a conceptual model that standardizes the functions of a telecommunication or computing system without regard of their underlying internal structure

More information

Quality of Service (QoS) Whitepaper

Quality of Service (QoS) Whitepaper Quality of Service (QoS) Whitepaper PCS-Series Videoconferencing White Paper www.sonybiz.net/vc Introduction Currently, an estimated 5% of data packets sent over the Internet are lost. In a videoconferencing

More information

Page 1. Review: Internet Protocol Stack. Transport Layer Services. Design Issue EEC173B/ECS152C. Review: TCP

Page 1. Review: Internet Protocol Stack. Transport Layer Services. Design Issue EEC173B/ECS152C. Review: TCP EEC7B/ECS5C Review: Internet Protocol Stack Review: TCP Application Telnet FTP HTTP Transport Network Link Physical bits on wire TCP LAN IP UDP Packet radio Transport Layer Services Design Issue Underlying

More information

Megapixel Networking 101. Why Megapixel?

Megapixel Networking 101. Why Megapixel? Megapixel Networking 101 Ted Brahms Director Field Applications, Arecont Vision Why Megapixel? Most new surveillance projects are IP Megapixel cameras are IP Megapixel provides incentive driving the leap

More information

RSVP Support for RTP Header Compression, Phase 1

RSVP Support for RTP Header Compression, Phase 1 RSVP Support for RTP Header Compression, Phase 1 The Resource Reservation Protocol (RSVP) Support for Real-Time Transport Protocol (RTP) Header Compression, Phase 1 feature provides a method for decreasing

More information