Network Coding in Planar Networks

Size: px
Start display at page:

Download "Network Coding in Planar Networks"

Transcription

1 Network Coding in Planar Networks Zongpeng Li Department of Computer Science, University of Calgary Institute of Network Coding, CUHK April 30, PolyU 1

2 joint work with: Tang Xiahou, University of Calgary Chuan Wu, The University of Hong Kong 2

3 Talk Outline 1. Network Coding, Field Size 2. Examples in Planar Networks 3. The Sufficiency of GF(3) in Planar Networks 4. The Sufficiency of Routing in Outerplanar Networks 5. The Case of Co-face Terminals 6. Conclusion and Open Problems 3

4 Multicast with Network Coding in Directed Networks [ACLY 2000] A multicast rate h is feasible in a directed network if and only if it is feasible as a unicast rate to each receiver separately. S S S a replication point a a T 1 T 2 T 1 T 2 T 1 T 2 S S a S b encoding point a b T 1 T 2 T 1 T 2 a a+b b T a+b a+b 1 T 2 4

5 Some Basic Questions on Network Coding When is network coding necessary? How much benefit can network coding bring, over routing? How and where to encode, in general networks? The overhead of network coding? How large a field is required for coding?... 5

6 Basic Questions on Network Coding When is network coding necessary? How much benefit can network coding bring, over routing? How and where to encode, in general networks? The overhead of network coding? How large a field is required for coding? The answer often closely depend on the network configuration. network topology link capacity vector source/receiver location 6

7 Basic Questions on Network Coding When is network coding necessary? How much benefit can network coding bring, over routing? How and where to encode, in general networks? The overhead of network coding? How large a field is required for coding? The answer often closely depend on the network configuration. network topology link capacity vector source/receiver location 7

8 Small vs. Large Fields A large field makes code assignment easy: each receiver obtains linearly independent info flows. A small field leads to efficient encoding and decoding operations. A very small field may also lead to efficient code assignment algorithms. 8

9 Field Size Requirement Let s focus on a single multicast session: one source, multiple receivers. We need GF(2) for C 3,2 x T 2 x x y T 1 x+y S x+y y y x+y T 3 9

10 We need GF(3) for C 4,2 Field Size Requirement S x y x+y 2x+y T1 T 2 T 3 T 4 T 5 T 6 10

11 We need GF(2 2 ) for C 5,2. Field Size Requirement For C n,2, we need GF(q) where q n 1. S v 1 v 2 v 3 v 4 v 5 x, y, x+y, 2x+y, 3x+y, over GF(2 2 ) x, y, x+y, 2x+y, x+2y, over GF(3)?? 11

12 Current Picture Arbitrary networks: no field of constant size is always sufficient. Best known result: a field GF(q) with q k is sufficient. (k: # of multicast receivers) (actually...) In practice: randomized network coding over GF(2 8 ) or GF(2 16 ). 12

13 Main Message of This Talk Compared to an arbitrary network, a planar network is often a much better reflection of a network from practice. Linear instead of quadratic number of links Planar mesh topology instead of totally random connections. Small finite fields suffice for network coding in planar networks, and most practical networks. New deterministic code assignment algorithms Requiring much smaller fields Low (linear) or Moderate (quadratic) time complexity 13

14 Planar Graphs A planar graph is a graph that can be drawn in a 2-D plane without crossing edges. Such a no-crossing drawing is called a planar embedding. Planar graphs have many nice properties, and allow very efficient algorithms to be designed, for classic problems such as max flow, shortest path. 14

15 The VTLWaveNet in Europe A real-world wide-area/backbone network, deployed along the surface of the globe, exhibits a natural planar embedding. UK Egham Lowestoft Crawley Brussels Antwerp Belgium Amiens Biaches Paris Nancy Netherlands Germany Interxion Strasbourg Routers VTLWaveNet Network Bordeaux Toulouse France Lyon Basel Italy Bern Swizerland Milan 15

16 Tier-1 Optical Fiber Network in China A canonical planar mesh network topology. 16

17 CERNET-2 TheIP-v6networkinChina,courtesyof: 17

18 Realword Networks Far From Planar A dense wireless sensor network. One of the most non-planar types of compute network. (example from [Alzoubi et al. 2003]) 18

19 Planar Backbone of Dense Networks Executing network protocols (broadcast, multicast etc) over a very dense network is extremely inefficient. A large series of work: extract a planar backbone, then run network protocols over the planar backbone. 19

20 Example Planar Networks Requires coding at many nodes Yet coding over GF(2) suffices. S S v 1 1 v 2 1 v 3 1 v 1 1 v 2 1 v 3 1 v 4 1 u 2 1 u 3 1 u 2 1 u 3 1 u 4 1 v 2 2 v 3 2 v 2 2 v 3 2 v 4 2 u 2 3 v 3 3 u 2 3 v 3 3 u 2 4 v 3 4 u 4 3 T 1 T 2 T 1 T 2 v 4 4 (example from [LSB 2006]) 20

21 Another Example Planar Network A minimal multicast network that requires network coding for multicasting two flows. Yet no particular node must perform encoding. Coding over GF(2) suffices. T1 A T2 T3 S B T4 T5 21

22 The Sufficiency of GF(3) in Planar Networks Theorem. For multicasting h = 2 flows in a planar network, coding over GF(3) is sufficient. Inspired by [FSS 2004] and [EGS 2006]. Conjecture: holds for any h 2. 22

23 Sufficiency of GF(3) subtree decomposition Decompose a multicast flow into non-overlapping subtrees Each subtree has 1 root, 1 leaves Each root has in-degree 2 x s y x+2y x y x+2y x+y x+y (A planar bipartite network that mimics C 4,2, and hence requires GF(3).) 23

24 Sufficiency of GF(3) node expansion Decompose the plane into faces, each containing one subtree If a node has two opposite faces feeding into it, perform expansion Prepare for four-coloring a planar network 24

25 Sufficiency of GF(3) 4-coloring a planar graph Every planar graph is 5-colorable ([Kempe 1879]), and such coloring can be done in O(n) time ([CNS 1981]). Every planar graph is 4-colorable ([Appel & Haken 1976]), and such coloring can be done in O(n 2 ) time ([RSST 1996]). 25

26 Sufficiency of GF(3) four-coloring a planar graph Code assignment over GF(3). The four colors: x, y, x+y, x+2y. (Another planar multicast network requiring GF(3).) 26

27 GF(3) vs. GF(2 2 ) GF(2 2 ) may be preferred over GF(3) in practice, for: + between two packets/flows is simply bit-wise xor Code assignment complexity is O(n) instead of O(n 2 ) 2-bit symbol representation without wasted symbols 27

28 Randomized Network Coding in Planar Networks Randomized network coding has the same O(n) complexity as 5-coloring. Appears incapable of exploiting planarity. Success probability of randomized code assignment for multicast in random planar networks: field size success rate

29 Necessity of GF(3) - Example # 3 x y S x+y x x y x+y T1 T2 T3 T4 T5 x+2y x+2y x+2y x x+2y T6 x+y 29

30 Outerplanar Multicast Networks Outerplanar: all nodes adjacent to a common face Contracting the bottleneck link in the butterfly network leads to an outerplanar network Network coding not necessary anymore S S T 1 T 2 T 1 T 2 30

31 Outerplanar Multicast Networks Theorem. Network coding is equivalent to routing in an outerplanar network, for h = 2. Conjecture: holds for any h 2. 31

32 Outerplanar networks face merging Subtree decomposition, as usual. Face merging. v F α F β F F β α 32

33 Outerplanar networks two types of regions Region 1: boundary faces. Region 2: the inner region. region 2 33

34 Outerplanar networks coloring region 1 Coloring faces in region 1, using two colors only. F L F R 34

35 Outerplanar networks coloring region 2 Coloring chords in region 2, one at a time, without using a third color. Expanded Node 35

36 The Case of Co-face Terminals The case between planar and outerplanar: all multicast terminals lie on a common face. S v 1 1 S v 2 1 v 3 1 v 4 1 u 2 1 u 3 1 u 4 1 v 2 2 v 3 2 v 4 2 u 2 3 v 3 3 u 2 4 v 3 4 u 4 3 T 1 T 2 T 1 T 2 v 4 4 Conjecture: Coding over GF(2) is sufficient in this case. 36

37 Conclusion We proved that, for multicasting h = 2 flows: GF(3) is sufficient for general planar networks. Routing is sufficient for outerplanar networks. 37

38 Future Work We conjecture that, for multicasting any h 2 flows: GF(3) is sufficient for general planar networks. GF(2) is sufficient for terminal co-face networks. Routing is sufficient for outerplanar networks. Field size requirement for multiple unicast sessions in a planar network. 38

39 A Graph Minor Perspective to Network Coding We conjecture that: If a directed multicast network G requires network coding for achieving maximum throughput, then G contains a K 4 minor. If an udirected multicast network G requires network coding for achieving maximum throughput, then G contains a C 3,2 minor. If a multicast network G requires GF(2 2 ) for achieving maximum throughput, then G contains a K 5 minor. There exists a function f(q), such that if a multicast network G requires GF(q), then G contains a K f(q) minor, and f(2) = f(3) = 4, f(4) = 5. 39

Network Coding in Planar Networks

Network Coding in Planar Networks 1 Network Coding in Planar Networks Tang Xiahou, Zongpeng Li, Chuan Wu Department of Computer cience, University of Calgary, Canada Institute of Network Coding, Chinese University of Hong Kong Department

More information

Min-Cost Multicast Networks in Euclidean Space

Min-Cost Multicast Networks in Euclidean Space Min-Cost Multicast Networks in Euclidean Space Xunrui Yin, Yan Wang, Xin Wang, Xiangyang Xue School of Computer Science Fudan University {09110240030,11110240029,xinw,xyxue}@fudan.edu.cn Zongpeng Li Dept.

More information

HW Graph Theory Name (andrewid) - X. 1: Draw K 7 on a torus with no edge crossings.

HW Graph Theory Name (andrewid) - X. 1: Draw K 7 on a torus with no edge crossings. 1: Draw K 7 on a torus with no edge crossings. A quick calculation reveals that an embedding of K 7 on the torus is a -cell embedding. At that point, it is hard to go wrong if you start drawing C 3 faces,

More information

Performance improvements to peer-to-peer file transfers using network coding

Performance improvements to peer-to-peer file transfers using network coding Performance improvements to peer-to-peer file transfers using network coding Aaron Kelley April 29, 2009 Mentor: Dr. David Sturgill Outline Introduction Network Coding Background Contributions Precomputation

More information

On Benefits of Network Coding in Bidirected Networks and Hyper-networks

On Benefits of Network Coding in Bidirected Networks and Hyper-networks On Benefits of Network Coding in Bidirected Networks and Hyper-networks Zongpeng Li University of Calgary / INC, CUHK December 1 2011, at UNSW Joint work with: Xunrui Yin, Xin Wang, Jin Zhao, Xiangyang

More information

The Multiple Unicast Network Coding Conjecture. and a geometric framework for studying it

The Multiple Unicast Network Coding Conjecture. and a geometric framework for studying it The Multiple Unicast Network Coding Conjecture and a geometric framework for studying it Tang Xiahou, Chuan Wu, Jiaqing Huang, Zongpeng Li June 30 2012 1 Multiple Unicast: Network Coding = Routing? Undirected

More information

Min-Cost Multicast Networks in Euclidean Space

Min-Cost Multicast Networks in Euclidean Space Xunrui Yin, Yan Wang, Xin Wang, Xiangyang Xue 1 Zongpeng Li 23 1 Fudan University Shanghai, China 2 University of Calgary Alberta, Canada 3 Institute of Network Coding, Chinese University of Hong Kong,

More information

Space Information Flow

Space Information Flow Space Information Flow Zongpeng Li Dept. of Computer Science, University of Calgary and Institute of Network Coding, CUHK zongpeng@ucalgary.ca Chuan Wu Department of Computer Science The University of

More information

Ma/CS 6b Class 11: Kuratowski and Coloring

Ma/CS 6b Class 11: Kuratowski and Coloring Ma/CS 6b Class 11: Kuratowski and Coloring By Adam Sheffer Kuratowski's Theorem Theorem. A graph is planar if and only if it does not have K 5 and K 3,3 as topological minors. We know that if a graph contains

More information

The following is a summary, hand-waving certain things which actually should be proven.

The following is a summary, hand-waving certain things which actually should be proven. 1 Basics of Planar Graphs The following is a summary, hand-waving certain things which actually should be proven. 1.1 Plane Graphs A plane graph is a graph embedded in the plane such that no pair of lines

More information

Problem Set 3. MATH 776, Fall 2009, Mohr. November 30, 2009

Problem Set 3. MATH 776, Fall 2009, Mohr. November 30, 2009 Problem Set 3 MATH 776, Fall 009, Mohr November 30, 009 1 Problem Proposition 1.1. Adding a new edge to a maximal planar graph of order at least 6 always produces both a T K 5 and a T K 3,3 subgraph. Proof.

More information

List Coloring Graphs

List Coloring Graphs List Coloring Graphs January 29, 2004 CHROMATIC NUMBER Defn 1 A k coloring of a graph G is a function c : V (G) {1, 2,... k}. A proper k coloring of a graph G is a coloring of G with k colors so that no

More information

Kuratowski Notes , Fall 2005, Prof. Peter Shor Revised Fall 2007

Kuratowski Notes , Fall 2005, Prof. Peter Shor Revised Fall 2007 Kuratowski Notes 8.30, Fall 005, Prof. Peter Shor Revised Fall 007 Unfortunately, the OCW notes on Kuratowski s theorem seem to have several things substantially wrong with the proof, and the notes from

More information

Remarks on Kuratowski s Planarity Theorem. A planar graph is a graph that can be drawn in a plane without edges crossing one another.

Remarks on Kuratowski s Planarity Theorem. A planar graph is a graph that can be drawn in a plane without edges crossing one another. Remarks on Kuratowski s Planarity Theorem A planar graph is a graph that can be drawn in a plane without edges crossing one another. This theorem says that a graph is planar if and only if it does not

More information

Planarity: dual graphs

Planarity: dual graphs : dual graphs Math 104, Graph Theory March 28, 2013 : dual graphs Duality Definition Given a plane graph G, the dual graph G is the plane graph whose vtcs are the faces of G. The correspondence between

More information

Improving locality of an object store in a Fog Computing environment

Improving locality of an object store in a Fog Computing environment Improving locality of an object store in a Fog Computing environment Bastien Confais, Benoît Parrein, Adrien Lebre LS2N, Nantes, France Grid 5000-FIT school 4th April 2018 1/29 Outline 1 Fog computing

More information

Treewidth and graph minors

Treewidth and graph minors Treewidth and graph minors Lectures 9 and 10, December 29, 2011, January 5, 2012 We shall touch upon the theory of Graph Minors by Robertson and Seymour. This theory gives a very general condition under

More information

Jordan Curves. A curve is a subset of IR 2 of the form

Jordan Curves. A curve is a subset of IR 2 of the form Jordan Curves A curve is a subset of IR 2 of the form α = {γ(x) : x [0, 1]}, where γ : [0, 1] IR 2 is a continuous mapping from the closed interval [0, 1] to the plane. γ(0) and γ(1) are called the endpoints

More information

Math 777 Graph Theory, Spring, 2006 Lecture Note 1 Planar graphs Week 1 Weak 2

Math 777 Graph Theory, Spring, 2006 Lecture Note 1 Planar graphs Week 1 Weak 2 Math 777 Graph Theory, Spring, 006 Lecture Note 1 Planar graphs Week 1 Weak 1 Planar graphs Lectured by Lincoln Lu Definition 1 A drawing of a graph G is a function f defined on V (G) E(G) that assigns

More information

Discrete Wiskunde II. Lecture 6: Planar Graphs

Discrete Wiskunde II. Lecture 6: Planar Graphs , 2009 Lecture 6: Planar Graphs University of Twente m.uetz@utwente.nl wwwhome.math.utwente.nl/~uetzm/dw/ Planar Graphs Given an undirected graph (or multigraph) G = (V, E). A planar embedding of G is

More information

Cluster algebras and infinite associahedra

Cluster algebras and infinite associahedra Cluster algebras and infinite associahedra Nathan Reading NC State University CombinaTexas 2008 Coxeter groups Associahedra and cluster algebras Sortable elements/cambrian fans Infinite type Much of the

More information

Fixed-Parameter Algorithms, IA166

Fixed-Parameter Algorithms, IA166 Fixed-Parameter Algorithms, IA166 Sebastian Ordyniak Faculty of Informatics Masaryk University Brno Spring Semester 2013 Introduction Outline 1 Introduction Algorithms on Locally Bounded Treewidth Layer

More information

Classification of Extremal Curves with 6 Double Points and of Tree-like Curves with 6 Double Points and I! 5

Classification of Extremal Curves with 6 Double Points and of Tree-like Curves with 6 Double Points and I! 5 Classification of Extremal Curves with 6 Double Points and of Tree-like Curves with 6 Double Points and I! 5 Tim Ritter Bethel College Mishawaka, IN timritter@juno.com Advisor: Juha Pohjanpelto Oregon

More information

Introduction to Graph Theory

Introduction to Graph Theory Introduction to Graph Theory George Voutsadakis 1 1 Mathematics and Computer Science Lake Superior State University LSSU Math 351 George Voutsadakis (LSSU) Introduction to Graph Theory August 2018 1 /

More information

November 14, Planar Graphs. William T. Trotter.

November 14, Planar Graphs. William T. Trotter. November 14, 2017 8 Planar Graphs William T. Trotter trotter@math.gatech.edu Planar Graphs Definition A graph G is planar if it can be drawn in the plane with no edge crossings. Exercise The two graphs

More information

The Encoding Complexity of Network Coding

The Encoding Complexity of Network Coding The Encoding Complexity of Network Coding Michael Langberg Alexander Sprintson Jehoshua Bruck California Institute of Technology Email: mikel,spalex,bruck @caltech.edu Abstract In the multicast network

More information

CE693: Adv. Computer Networking

CE693: Adv. Computer Networking CE693: Adv. Computer Networking L-10 Wireless Broadcast Fall 1390 Acknowledgments: Lecture slides are from the graduate level Computer Networks course thought by Srinivasan Seshan at CMU. When slides are

More information

arxiv: v1 [cs.lo] 28 Sep 2015

arxiv: v1 [cs.lo] 28 Sep 2015 Definability Equals Recognizability for k-outerplanar Graphs Lars Jaffke Hans L. Bodlaender arxiv:1509.08315v1 [cs.lo] 28 Sep 2015 Abstract One of the most famous algorithmic meta-theorems states that

More information

Introduction Multirate Multicast Multirate multicast: non-uniform receiving rates. 100 M bps 10 M bps 100 M bps 500 K bps

Introduction Multirate Multicast Multirate multicast: non-uniform receiving rates. 100 M bps 10 M bps 100 M bps 500 K bps Stochastic Optimal Multirate Multicast in Socially Selfish Wireless Networks Hongxing Li 1, Chuan Wu 1, Zongpeng Li 2, Wei Huang 1, and Francis C.M. Lau 1 1 The University of Hong Kong, Hong Kong 2 University

More information

Chapter 1 - Introduction

Chapter 1 - Introduction Chapter 1-lntroduction Chapter 1 - Introduction The aim of this chapter is to provide a background to topics which are relevant to the subject of this thesis. The motivation for writing a thesis regarding

More information

The Cut Locus and the Jordan Curve Theorem

The Cut Locus and the Jordan Curve Theorem The Cut Locus and the Jordan Curve Theorem Rich Schwartz November 19, 2015 1 Introduction A Jordan curve is a subset of R 2 which is homeomorphic to the circle, S 1. The famous Jordan Curve Theorem says

More information

GIAN Course on Distributed Network Algorithms. Network Topologies and Local Routing

GIAN Course on Distributed Network Algorithms. Network Topologies and Local Routing GIAN Course on Distributed Network Algorithms Network Topologies and Local Routing Stefan Schmid @ T-Labs, 2011 GIAN Course on Distributed Network Algorithms Network Topologies and Local Routing If you

More information

Interleaving Schemes on Circulant Graphs with Two Offsets

Interleaving Schemes on Circulant Graphs with Two Offsets Interleaving Schemes on Circulant raphs with Two Offsets Aleksandrs Slivkins Department of Computer Science Cornell University Ithaca, NY 14853 slivkins@cs.cornell.edu Jehoshua Bruck Department of Electrical

More information

The geometry of state surfaces and the colored Jones polynomials

The geometry of state surfaces and the colored Jones polynomials The geometry of state surfaces and the colored Jones polynomials joint with D. Futer and J. Purcell December 8, 2012 David Futer, Effie Kalfagianni, and Jessica S. Purcell () December 8, 2012 1 / 15 Given:

More information

K 4,4 e Has No Finite Planar Cover

K 4,4 e Has No Finite Planar Cover K 4,4 e Has No Finite Planar Cover Petr Hliněný Dept. of Applied Mathematics, Charles University, Malostr. nám. 25, 118 00 Praha 1, Czech republic (E-mail: hlineny@kam.ms.mff.cuni.cz) February 9, 2005

More information

Minimum connected dominating sets and maximal independent sets in unit disk graphs

Minimum connected dominating sets and maximal independent sets in unit disk graphs Theoretical Computer Science 352 (2006) 1 7 www.elsevier.com/locate/tcs Minimum connected dominating sets and maximal independent sets in unit disk graphs Weili Wu a,,1, Hongwei Du b, Xiaohua Jia b, Yingshu

More information

BATS: Achieving the Capacity of Networks with Packet Loss

BATS: Achieving the Capacity of Networks with Packet Loss BATS: Achieving the Capacity of Networks with Packet Loss Raymond W. Yeung Institute of Network Coding The Chinese University of Hong Kong Joint work with Shenghao Yang (IIIS, Tsinghua U) R.W. Yeung (INC@CUHK)

More information

Research on Transmission Based on Collaboration Coding in WSNs

Research on Transmission Based on Collaboration Coding in WSNs Research on Transmission Based on Collaboration Coding in WSNs LV Xiao-xing, ZHANG Bai-hai School of Automation Beijing Institute of Technology Beijing 8, China lvxx@mail.btvu.org Journal of Digital Information

More information

Intersection-Link Representations of Graphs

Intersection-Link Representations of Graphs Journal of Graph Algorithms and Applications http://jgaa.info/ vol. 21, no. 4, pp. 731 755 (2017) DOI: 10.7155/jgaa.00437 Intersection-Link Representations of Graphs Patrizio Angelini 1 Giordano Da Lozzo

More information

A Practical 4-coloring Method of Planar Graphs

A Practical 4-coloring Method of Planar Graphs A Practical 4-coloring Method of Planar Graphs Mingshen Wu 1 and Weihu Hong 2 1 Department of Math, Stat, and Computer Science, University of Wisconsin-Stout, Menomonie, WI 54751 2 Department of Mathematics,

More information

Computer Graphics. Bing-Yu Chen National Taiwan University

Computer Graphics. Bing-Yu Chen National Taiwan University Computer Graphics Bing-Yu Chen National Taiwan University Visible-Surface Determination Back-Face Culling The Depth-Sort Algorithm Binary Space-Partitioning Trees The z-buffer Algorithm Scan-Line Algorithm

More information

Graph Crossing Number and Isomorphism SPUR Final Paper, Summer 2012

Graph Crossing Number and Isomorphism SPUR Final Paper, Summer 2012 Graph Crossing Number and Isomorphism SPUR Final Paper, Summer 2012 Mark Velednitsky Mentor Adam Bouland Problem suggested by Adam Bouland, Jacob Fox MIT Abstract The polynomial-time tractability of graph

More information

Exercise set 2 Solutions

Exercise set 2 Solutions Exercise set 2 Solutions Let H and H be the two components of T e and let F E(T ) consist of the edges of T with one endpoint in V (H), the other in V (H ) Since T is connected, F Furthermore, since T

More information

Multi-Rate Interference Sensitive and Conflict Aware Multicast in Wireless Ad hoc Networks

Multi-Rate Interference Sensitive and Conflict Aware Multicast in Wireless Ad hoc Networks Multi-Rate Interference Sensitive and Conflict Aware Multicast in Wireless Ad hoc Networks Asma Ben Hassouna, Hend Koubaa, Farouk Kamoun CRISTAL Laboratory National School of Computer Science ENSI La Manouba,

More information

Fountain Codes Based on Zigzag Decodable Coding

Fountain Codes Based on Zigzag Decodable Coding Fountain Codes Based on Zigzag Decodable Coding Takayuki Nozaki Kanagawa University, JAPAN Email: nozaki@kanagawa-u.ac.jp Abstract Fountain codes based on non-binary low-density parity-check (LDPC) codes

More information

Tutte s Theorem: How to draw a graph

Tutte s Theorem: How to draw a graph Spectral Graph Theory Lecture 15 Tutte s Theorem: How to draw a graph Daniel A. Spielman October 22, 2018 15.1 Overview We prove Tutte s theorem [Tut63], which shows how to use spring embeddings to obtain

More information

CS6702 GRAPH THEORY AND APPLICATIONS QUESTION BANK

CS6702 GRAPH THEORY AND APPLICATIONS QUESTION BANK CS6702 GRAPH THEORY AND APPLICATIONS 2 MARKS QUESTIONS AND ANSWERS 1 UNIT I INTRODUCTION CS6702 GRAPH THEORY AND APPLICATIONS QUESTION BANK 1. Define Graph. 2. Define Simple graph. 3. Write few problems

More information

PLANAR GRAPH BIPARTIZATION IN LINEAR TIME

PLANAR GRAPH BIPARTIZATION IN LINEAR TIME PLANAR GRAPH BIPARTIZATION IN LINEAR TIME SAMUEL FIORINI, NADIA HARDY, BRUCE REED, AND ADRIAN VETTA Abstract. For each constant k, we present a linear time algorithm that, given a planar graph G, either

More information

Chapter 16 Networking

Chapter 16 Networking Chapter 16 Networking Outline 16.1 Introduction 16.2 Network Topology 16.3 Network Types 16.4 TCP/IP Protocol Stack 16.5 Application Layer 16.5.1 Hypertext Transfer Protocol (HTTP) 16.5.2 File Transfer

More information

GRAPHS Lecture 19 CS2110 Spring 2013

GRAPHS Lecture 19 CS2110 Spring 2013 GRAPHS Lecture 19 CS2110 Spring 2013 Announcements 2 Prelim 2: Two and a half weeks from now Tuesday, April16, 7:30-9pm, Statler Exam conflicts? We need to hear about them and can arrange a makeup It would

More information

Optimal Distributed Broadcasting with Per-neighbor Queues in Acyclic Overlay Networks with Arbitrary Underlay Capacity Constraints

Optimal Distributed Broadcasting with Per-neighbor Queues in Acyclic Overlay Networks with Arbitrary Underlay Capacity Constraints Optimal Distributed Broadcasting with Per-neighbor Queues in Acyclic Overlay Networks with Arbitrary Underlay Capacity Constraints Shaoquan Zhang, Minghua Chen The Chinese University of Hong Kong {zsq008,

More information

Embedding Bounded Bandwidth Graphs into l 1

Embedding Bounded Bandwidth Graphs into l 1 Embedding Bounded Bandwidth Graphs into l 1 Douglas E. Carroll 1, Ashish Goel 2, and Adam Meyerson 1 1 UCLA 2 Stanford University Abstract. We introduce the first embedding of graphs of low bandwidth into

More information

Discrete Mathematics I So Practice Sheet Solutions 1

Discrete Mathematics I So Practice Sheet Solutions 1 Discrete Mathematics I So 2016 Tibor Szabó Shagnik Das Practice Sheet Solutions 1 Provided below are possible solutions to the questions from the practice sheet issued towards the end of the course. Exercise

More information

Algorithms for minimum m-connected k-tuple dominating set problem

Algorithms for minimum m-connected k-tuple dominating set problem Theoretical Computer Science 381 (2007) 241 247 www.elsevier.com/locate/tcs Algorithms for minimum m-connected k-tuple dominating set problem Weiping Shang a,c,, Pengjun Wan b, Frances Yao c, Xiaodong

More information

Jordan Curves. A curve is a subset of IR 2 of the form

Jordan Curves. A curve is a subset of IR 2 of the form Jordan Curves A curve is a subset of IR 2 of the form α = {γ(x) : x [0,1]}, where γ : [0,1] IR 2 is a continuous mapping from the closed interval [0,1] to the plane. γ(0) and γ(1) are called the endpoints

More information

CSE 417 Dynamic Programming (pt 4) Sub-problems on Trees

CSE 417 Dynamic Programming (pt 4) Sub-problems on Trees CSE 417 Dynamic Programming (pt 4) Sub-problems on Trees Reminders > HW4 is due today > HW5 will be posted shortly Dynamic Programming Review > Apply the steps... 1. Describe solution in terms of solution

More information

Abstract We proved in this paper that 14 triangles are necessary to triangulate a square with every angle no more than 72, answering an unsolved probl

Abstract We proved in this paper that 14 triangles are necessary to triangulate a square with every angle no more than 72, answering an unsolved probl Acute Triangulation of Rectangles Yibin Zhang Hangzhou Foreign Languages School Xiaoyang Sun Hangzhou Foreign Languages School Zhiyuan Fan Hangzhou Xuejun High School 1 Advisor Dongbo Lu Hangzhou Foreign

More information

An Empirical Study of Performance Benefits of Network Coding in Multihop Wireless Networks

An Empirical Study of Performance Benefits of Network Coding in Multihop Wireless Networks An Empirical Study of Performance Benefits of Network Coding in Multihop Wireless Networks Dimitrios Koutsonikolas, Y. Charlie Hu, Chih-Chun Wang School of Electrical and Computer Engineering, Purdue University,

More information

Math 443/543 Graph Theory Notes 11: Graph minors and Kuratowski s Theorem

Math 443/543 Graph Theory Notes 11: Graph minors and Kuratowski s Theorem Math 443/543 Graph Theory Notes 11: Graph minors and Kuratowski s Theorem David Glickenstein November 26, 2008 1 Graph minors Let s revisit some de nitions. Let G = (V; E) be a graph. De nition 1 Removing

More information

Planarity. 1 Introduction. 2 Topological Results

Planarity. 1 Introduction. 2 Topological Results Planarity 1 Introduction A notion of drawing a graph in the plane has led to some of the most deep results in graph theory. Vaguely speaking by a drawing or embedding of a graph G in the plane we mean

More information

Graphs - I CS 2110, Spring 2016

Graphs - I CS 2110, Spring 2016 Graphs - I CS 2110, Spring 2016 Announcements Reading: Chapter 28: Graphs Chapter 29: Graph Implementations These aren t the graphs we re interested in These aren t the graphs we re interested in This

More information

Miquel dynamics for circle patterns

Miquel dynamics for circle patterns Miquel dynamics for circle patterns Sanjay Ramassamy ENS Lyon Partly joint work with Alexey Glutsyuk (ENS Lyon & HSE) Seminar of the Center for Advanced Studies Skoltech March 12 2018 Circle patterns form

More information

On minimum m-connected k-dominating set problem in unit disc graphs

On minimum m-connected k-dominating set problem in unit disc graphs J Comb Optim (2008) 16: 99 106 DOI 10.1007/s10878-007-9124-y On minimum m-connected k-dominating set problem in unit disc graphs Weiping Shang Frances Yao Pengjun Wan Xiaodong Hu Published online: 5 December

More information

Network Security Fundamentals. Network Security Fundamentals. Roadmap. Security Training Course. Module 2 Network Fundamentals

Network Security Fundamentals. Network Security Fundamentals. Roadmap. Security Training Course. Module 2 Network Fundamentals Network Security Fundamentals Security Training Course Dr. Charles J. Antonelli The University of Michigan 2013 Network Security Fundamentals Module 2 Network Fundamentals Roadmap Network Fundamentals

More information

Collaboration with: Dieter Pfoser, Computer Technology Institute, Athens, Greece Peter Wagner, German Aerospace Center, Berlin, Germany

Collaboration with: Dieter Pfoser, Computer Technology Institute, Athens, Greece Peter Wagner, German Aerospace Center, Berlin, Germany Towards traffic-aware aware a routing using GPS vehicle trajectories Carola Wenk University of Texas at San Antonio carola@cs.utsa.edu Collaboration with: Dieter Pfoser, Computer Technology Institute,

More information

From the SelectedWorks of Harish Chandra Rajpoot H.C. Rajpoot. Harish Chandra Rajpoot Rajpoot, HCR. Summer April 6, 2015

From the SelectedWorks of Harish Chandra Rajpoot H.C. Rajpoot. Harish Chandra Rajpoot Rajpoot, HCR. Summer April 6, 2015 From the SelectedWorks of Harish Chandra Rajpoot H.C. Rajpoot Summer April 6, 2015 Mathematical Analysis of Uniform Polyhedron Trapezohedron having 2n congruent right kite faces, 4n edges & 2n+2 vertices

More information

MAS341 Graph Theory 2015 exam solutions

MAS341 Graph Theory 2015 exam solutions MAS4 Graph Theory 0 exam solutions Question (i)(a) Draw a graph with a vertex for each row and column of the framework; connect a row vertex to a column vertex if there is a brace where the row and column

More information

CS 2336 Discrete Mathematics

CS 2336 Discrete Mathematics CS 2336 Discrete Mathematics Lecture 15 Graphs: Planar Graphs 1 Outline What is a Planar Graph? Euler Planar Formula Platonic Solids Five Color Theorem Kuratowski s Theorem 2 What is a Planar Graph? Definition

More information

COMPUTATIONAL GEOMETRY

COMPUTATIONAL GEOMETRY Thursday, September 20, 2007 (Ming C. Lin) Review on Computational Geometry & Collision Detection for Convex Polytopes COMPUTATIONAL GEOMETRY (Refer to O'Rourke's and Dutch textbook ) 1. Extreme Points

More information

Monotone Paths in Geometric Triangulations

Monotone Paths in Geometric Triangulations Monotone Paths in Geometric Triangulations Adrian Dumitrescu Ritankar Mandal Csaba D. Tóth November 19, 2017 Abstract (I) We prove that the (maximum) number of monotone paths in a geometric triangulation

More information

Lecture outline. Graph coloring Examples Applications Algorithms

Lecture outline. Graph coloring Examples Applications Algorithms Lecture outline Graph coloring Examples Applications Algorithms Graph coloring Adjacent nodes must have different colors. How many colors do we need? Graph coloring Neighbors must have different colors

More information

SEFE without Mapping via Large Induced Outerplane Graphs in Plane Graphs

SEFE without Mapping via Large Induced Outerplane Graphs in Plane Graphs SEFE without Mapping via Large Induced Outerplane Graphs in Plane Graphs Patrizio Angelini 1, William Evans 2, Fabrizio Frati 1, Joachim Gudmundsson 3 1 Dipartimento di Ingegneria, Roma Tre University,

More information

Connecting to the Network

Connecting to the Network Connecting to the Network Networking for Home and Small Businesses Chapter 3 1 Objectives Explain the concept of networking and the benefits of networks. Explain the concept of communication protocols.

More information

Spaces with algebraic structure

Spaces with algebraic structure University of California, Riverside January 6, 2009 What is a space with algebraic structure? A topological space has algebraic structure if, in addition to being a topological space, it is also an algebraic

More information

The Konigsberg Bridge Problem

The Konigsberg Bridge Problem The Konigsberg Bridge Problem This is a classic mathematical problem. There were seven bridges across the river Pregel at Königsberg. Is it possible to take a walk in which each bridge is crossed exactly

More information

Welcome to the course Algorithm Design

Welcome to the course Algorithm Design Welcome to the course Algorithm Design Summer Term 2011 Friedhelm Meyer auf der Heide Lecture 13, 15.7.2011 Friedhelm Meyer auf der Heide 1 Topics - Divide & conquer - Dynamic programming - Greedy Algorithms

More information

Acute Triangulations of Polygons

Acute Triangulations of Polygons Europ. J. Combinatorics (2002) 23, 45 55 doi:10.1006/eujc.2001.0531 Available online at http://www.idealibrary.com on Acute Triangulations of Polygons H. MAEHARA We prove that every n-gon can be triangulated

More information

Algorithms for Minimum m-connected k-dominating Set Problem

Algorithms for Minimum m-connected k-dominating Set Problem Algorithms for Minimum m-connected k-dominating Set Problem Weiping Shang 1,2, Frances Yao 2,PengjunWan 3, and Xiaodong Hu 1 1 Institute of Applied Mathematics, Chinese Academy of Sciences, Beijing, China

More information

GRAPHS Lecture 17 CS2110 Spring 2014

GRAPHS Lecture 17 CS2110 Spring 2014 GRAPHS Lecture 17 CS2110 Spring 2014 These are not Graphs 2...not the kind we mean, anyway These are Graphs 3 K 5 K 3,3 = Applications of Graphs 4 Communication networks The internet is a huge graph Routing

More information

arxiv: v1 [math.co] 4 Apr 2011

arxiv: v1 [math.co] 4 Apr 2011 arxiv:1104.0510v1 [math.co] 4 Apr 2011 Minimal non-extensible precolorings and implicit-relations José Antonio Martín H. Abstract. In this paper I study a variant of the general vertex coloring problem

More information

The Simplex Algorithm

The Simplex Algorithm The Simplex Algorithm Uri Feige November 2011 1 The simplex algorithm The simplex algorithm was designed by Danzig in 1947. This write-up presents the main ideas involved. It is a slight update (mostly

More information

Discrete Mathematics

Discrete Mathematics Discrete Mathematics 312 (2012) 2735 2740 Contents lists available at SciVerse ScienceDirect Discrete Mathematics journal homepage: www.elsevier.com/locate/disc Facial parity edge colouring of plane pseudographs

More information

Information Exchange in Wireless Networks with Network Coding and Physical-layer Broadcast

Information Exchange in Wireless Networks with Network Coding and Physical-layer Broadcast 2005 Conference on Information Sciences and Systems, The Johns Hopkins University, March 16 18, 2005 Information Exchange in Wireless Networks with Network Coding and Physical-layer Broadcast Yunnan Wu

More information

Steiner Point Removal in Graph Metrics

Steiner Point Removal in Graph Metrics Steiner Point Removal in Graph Metrics Amitabh Basu, Anupam Gupta February 18, 2008 Abstract Given a family of graphs F, and graph G F with weights on the edges, the vertices of G are partitioned into

More information

Computing NodeTrix Representations of Clustered Graphs

Computing NodeTrix Representations of Clustered Graphs Journal of Graph Algorithms and Applications http://jgaa.info/ vol. 22, no. 2, pp. 139 176 (2018) DOI: 10.7155/jgaa.00461 Computing NodeTrix Representations of Clustered Graphs Giordano Da Lozzo Giuseppe

More information

Reliable IPTV Transport Network. Dongmei Wang AT&T labs-research Florham Park, NJ

Reliable IPTV Transport Network. Dongmei Wang AT&T labs-research Florham Park, NJ Reliable IPTV Transport Network Dongmei Wang AT&T labs-research Florham Park, NJ Page 2 Outline Background on IPTV Motivations for IPTV Technical challenges How to design a reliable IPTV backbone network

More information

Retiming Arithmetic Datapaths using Timed Taylor Expansion Diagrams

Retiming Arithmetic Datapaths using Timed Taylor Expansion Diagrams Retiming Arithmetic Datapaths using Timed Taylor Expansion Diagrams Daniel Gomez-Prado Dusung Kim Maciej Ciesielski Emmanuel Boutillon 2 University of Massachusetts Amherst, USA. {dgomezpr,ciesiel,dukim}@ecs.umass.edu

More information

We noticed that the trouble is due to face routing. Can we ignore the real coordinates and use virtual coordinates for routing?

We noticed that the trouble is due to face routing. Can we ignore the real coordinates and use virtual coordinates for routing? Geographical routing in practice We noticed that the trouble is due to face routing. Is greedy routing robust to localization noise? Can we ignore the real coordinates and use virtual coordinates for routing?

More information

An E cient Content Delivery Infrastructure Leveraging the Public Transportation Network

An E cient Content Delivery Infrastructure Leveraging the Public Transportation Network An E cient Content Delivery Infrastructure Leveraging the Public Transportation Network Qiankun Su, Katia Ja rès-runser, Gentian Jakllari and Charly Poulliat IRIT, INP-ENSEEIHT, University of Toulouse

More information

arxiv:submit/ [math.co] 9 May 2011

arxiv:submit/ [math.co] 9 May 2011 arxiv:submit/0243374 [math.co] 9 May 2011 Connectivity and tree structure in finite graphs J. Carmesin R. Diestel F. Hundertmark M. Stein 6 May, 2011 Abstract We prove that, for every integer k 0, every

More information

Every planar graph is 4-colourable and 5-choosable a joint proof

Every planar graph is 4-colourable and 5-choosable a joint proof Peter Dörre Fachhochschule Südwestfalen (University of Applied Sciences) Frauenstuhlweg, D-58644 Iserlohn, Germany doerre@fh-swf.de Mathematics Subject Classification: 05C5 Abstract A new straightforward

More information

Matching and Planarity

Matching and Planarity Matching and Planarity Po-Shen Loh June 010 1 Warm-up 1. (Bondy 1.5.9.) There are n points in the plane such that every pair of points has distance 1. Show that there are at most n (unordered) pairs of

More information

CS 268: Computer Networking. Taking Advantage of Broadcast

CS 268: Computer Networking. Taking Advantage of Broadcast CS 268: Computer Networking L-12 Wireless Broadcast Taking Advantage of Broadcast Opportunistic forwarding Network coding Assigned reading XORs In The Air: Practical Wireless Network Coding ExOR: Opportunistic

More information

L(h,1,1)-Labeling of Outerplanar Graphs

L(h,1,1)-Labeling of Outerplanar Graphs L(h,1,1)-Labeling of Outerplanar Graphs Tiziana Calamoneri 1, Emanuele G. Fusco 1, Richard B. Tan 2,3, and Paola Vocca 4 1 Dipartimento di Informatica Università di Roma La Sapienza, via Salaria, 113-00198

More information

Bijective Links on Planar Maps via Orientations

Bijective Links on Planar Maps via Orientations Bijective Links on Planar Maps via Orientations Éric Fusy Dept. Math, University of British Columbia. p.1/1 Planar maps Planar map = graph drawn in the plane without edge-crossing, taken up to isotopy

More information

Embedding Bounded Bandwidth Graphs into l 1

Embedding Bounded Bandwidth Graphs into l 1 Embedding Bounded Bandwidth Graphs into l 1 Douglas E. Carroll Ashish Goel Adam Meyerson November 2, 2005 Abstract We introduce the first embedding of graphs of low bandwidth into l 1, with distortion

More information

Three applications of Euler s formula. Chapter 10

Three applications of Euler s formula. Chapter 10 Three applications of Euler s formula Chapter 10 A graph is planar if it can be drawn in the plane R without crossing edges (or, equivalently, on the -dimensional sphere S ). We talk of a plane graph if

More information

Ma/CS 6a Class 9: Coloring

Ma/CS 6a Class 9: Coloring Ma/CS 6a Class 9: Coloring By Adam Sheffer Map Coloring Can we color each state with one of three colors, so that no two adjacent states have the same color? 1 Map Coloring and Graphs Map Coloring and

More information

about us bandwidth changes everything

about us bandwidth changes everything about us bandwidth changes everything bandwidth changes everything We are a facilities based bandwidth infrastructure provider, delivering scalable, fibre based network solutions to our customers across

More information

2-Layer Right Angle Crossing Drawings

2-Layer Right Angle Crossing Drawings DOI 10.1007/s00453-012-9706-7 2-Layer Right Angle Crossing Drawings Emilio Di Giacomo Walter Didimo Peter Eades Giuseppe Liotta Received: 26 July 2011 / Accepted: 24 October 2012 Springer Science+Business

More information