CS244a: An Introduction to Computer Networks

Size: px
Start display at page:

Download "CS244a: An Introduction to Computer Networks"

Transcription

1 Do not write in this box MCQ 9: /10 10: /10 11: /20 12: /20 13: /20 14: /20 Total: Name: Student ID #: CS244a Winter 2003 Professor McKeown Campus/SITN-Local/SITN-Remote? CS244a: An Introduction to Computer Networks Final Exam: Thursday March 20, 2003 You are allowed 3 hours to complete this exam. (i) This exam is closed book and closed notes. However, you may refer to a sheet of 8.5"x11" paper (double-sided) of your own design. (ii) Write your solution directly onto this exam. Be sure to write your name and student ID clearly on the front of the exam. (iii) Don t panic! Be sure to start by reading the exam all the way through. Then answer the questions in whatever order you choose. (iv) Show your reasoning clearly. If your reasoning is correct, but your final answer is wrong, you will receive most of the credit. If you just show the answer without reasoning, and your answer is wrong, you may receive no points at all. The Stanford Honor Code In accordance with both the letter and spirit of the Honor Code, I didn't cheat on this exam. Signature: Page 1 of 14

2 Multiple Choice Questions. Instructions: in the following questions, check all listed assertions that appear to be correct. There is at least one correct assertion per question, but there may be more. Each correct assertion checked will earn you one point. For each incorrect assertion you check, you will lose one point. If you don t know an answer, checking no assertion will neither earn you nor lose you any points. 1. Multicast routing. In reverse path broadcast, which of the following are true: (a.) Packets reach every router in the network. (b.) Packets follow the shortest path tree from source to destinations. (c.) Unless a packet arrives to the router on the interface that is on the shortest path to the source, the packet is dropped. (d.) Every router receives exactly one copy of each packet. 2. CSMA/CD. In a CSMA/CD network we require TRANSP > 2PROP because: (a.) TRANSP is the round-trip time from a source to the destination and back again. Therefore, it must be at least twice the one way propagation delay, PROP. (b.) Otherwise, the signal would degrade too much along the wire making it difficult to detect collisions. (c.) The sender needs to unambiguously determine that a packet encountered a collision before it finishes transmitting the packet. (d.) In any network (regardless of whether we use CSMA/CD or not) the transmission time of a packet is a function of both the data rate, and speed of propagation along the wire. 3. Ethernet. In an Ethernet network, which of the following are true: (a.) Ethernet switches (a.k.a bridges) learn addresses by looking at the destination address of packets as they pass by. (b.) Ethernet hubs and repeaters learn addresses by looking at the addresses of packets as they pass by. (c.) A correctly operating Ethernet switch never sends a packet to the wrong outgoing port. (d.) Ethernet switches (a.k.a bridges) learn addresses by looking at the source address of packets as they pass by. (e.) Collisions occur less on a switched Ethernet network because links run faster. 4. Spanning tree protocol for Ethernet switches. A network of Ethernet switches uses the Spanning Tree Protocol so that: (a.) The switch can learn, and build an accurate table of IP addresses. (b.) Packets don t cycle in the network forever. (c.) The port of every switch forwards all the packets it receives. (d.) Packets will follow the shortest path to a destination. Page 2 of 14

3 5. Reliable Flooding. Which of the following are true statements about reliable flooding: (a.) It is used in Distance Vector table exchange protocols enabling neighboring routers to periodically exchange their tables. (b.) It is used in Link State table exchange protocols enabling routers to distribute the state of their links. (c.) Can be achieved only if routers always send packets back through the interface through which they entered the router. (d.) Can be achieved, in part, if packets contain a sequence number and "time to live" field to prevent packets from looping endlessly in the network. (e.) Is an efficient centralized algorithm for calculating routing tables. 6. TCP. Which of the following are true statements about TCP: (a.) The Slow-Start algorithm increases a source s rate of transmission faster than "additive increase". (b.) A source s retransmission timeout value (RTO) is always set equal to the measured RTT. (c.) If RTO is too small, it might lead to unnecessary retranmissions. (d.) A source s retranmission timeout value is set to a value that increases with the variance in measured RTT values. 7. TCP: Which of the following are true statements about TCP: (a.) TCP segments can only be lost when router queues overflow. (b.) If the window size of a TCP connection (measured in seconds) is smaller than the RTT, the link will operate very efficiently. (c.) There is no performance benefit to having a window size (measured in seconds) larger than the RTT. (d.) A receiver reduces the advertized window size in response to congestion at routers along the path. 8.Random Early Detection (RED). Which of the following are true? (a.) RED is tolerant of bursts because it never drops consecutive packets from the same flow. (b.) RED always drops packets, with probability 1, when the router s queue length is greater than the maximum threshold value. (c.) RED attempts to "desynchronize" competing TCP sources by causing them to lose packets at different times. (d.) If two flows, one TCP and one UDP, share a "RED" router, the RED algorithm will ensure that both flows receive an identical share of the outgoing link. Page 3 of 14

4 9. (10 points) Digital Library. We hire you as a consultant to help us design a digital library in which books are scanned, stored digitally and made available to users of the World Wide Web. The library will Books Channel, B=100MHz Disc Storage The Internet Users contain ten million books; we will assume that each book contains 400 white pages containing black text. The text on each page covers 6"x6" and we will represent the text area using 300 dots per inch (dpi) vertically and horizontally. We will represent 1 "dot" with 1 bit and will not use any data compression techniques. We assume that 1,000 users access the library simultaneously and that they request a new page once per minute. The bandwidth of the channel connecting the library to the outside world is 100MHz, and has a capacity that is limited by Gaussian noise. (a.) How many bytes of data storage are required on the disk? (b.) What data rate is required to connect the library to the Internet? (c.) What is the minimum signal to noise ratio that could possibly be tolerated on the channel? Express the signal to noise ratio as both a ratio and in db. Page 4 of 14

5 (d.) We analyze the link, and find that it has a bit error rate (BER) of required to ensure that the packet error rate (PER) is less than you make What packet size is? State any assumptions 10. (10 points) Queues. Every second, a train of 100 bits arrive to a queue at rate 1000 bits/second. The departure rate from the queue is 500 bits/second. (a.) What is the average queue occupancy? (b.) What is the average delay of a bit in the queue? Page 5 of 14

6 (c.) If the trains of 100 bits arrived at random intervals, one train per second on average, would the average queue occupancy be the same, lower or higher than in part (a)? Justify your answer. (d.) If the departing bits from the queue are fed into a second, identical queue with the same departure rate, what is the average occupancy of the second queue? Page 6 of 14

7 11. (20 points) Multicast Routing. Consider the network topology shown below. It is the same topology you saw on the midterm. The topology consists of multiple routers interconnected by links. Each link has a static cost associated with it which represents the cost of sending data over that link. For example, the link from F to D has a cost of 3. Most of the links are symmetric (i.e. the cost is the same in both directions, such as between D and F), whereas one is asymmetric (i.e. the cost is different in each direction between F and E). 14 H 2 G 4 B F 3 D 2 A 8 1 E C 4 (a.) Using an algorithm we saw in class (you choose which one), find the shortest path multicast tree for packets from source router D to every other router in the network. In other words, find the tree in which every packet follows the shortest path from D to its destination. Carefully explain each step of your algorithm. Sketch the resulting multicast tree. Page 7 of 14

8 (b.) We could define the multicast tree another way. We ll call the tree the lowest total cost tree if it minimizes the sum of the costs in the tree, and connects D to every other router. In general (in other words, for networks in general, not just this example), will the lowest total cost tree the same as the type of tree we found in part (a)? Explain your answer. 12. (20 points) TCP Congestion Control. In this question we ll find approximate equations for the throughput of the TCP AIMD mechanism. This question is the same as the one on the midterm; and is a question most students avoided! Keep your wits about you - the questions is not as hard as it looks. (a.) Why does TCP use additive increase rather than multiplicative increase? Page 8 of 14

9 The graph below shows the "sawtooth" evolution of the TCP sender s window size as a function of time. W is the maximum window size (measured in packets). In this question, assume that all packets are P bits long, and that exactly one packet is dropped every time the window size reaches W. window size W time (b.) If we ignore the "slow-start" phase at the beginning of the flow, show that the average rate at which the transmitter sends packets is given by: R = 3 W packets per second. 4 RTT RTT is the round-trip time, which we will assume is constant. (c.) Show that the fraction of packets dropped, L, is given by the following expression: L = W --W Hint: Remember that we re assuming that exactly one packet is dropped every time the window size reaches W. Page 9 of 14

10 (d.) Using your answers to (b) and (c), and assuming that W is very large, show that the average rate at which the transmitter sends is given by: P R P bits per second. L RTT L RTT Page 10 of 14

11 (e.) The goodput of a TCP connection is defined to be the rate at which data is sent once. i.e. the rate does not include data that is retransmitted. Is the goodput rate smaller or larger than R? (f.) Assuming that one window s worth of data is retransmitted every time a packet is dropped, rewrite the equation in (d) to show the goodput of the flow. 13. (20 points) Weighted Fair Queueing. The figure below shows n leaky-bucket flows multiplexed together onto a link at rate C bytes per second. The i-th leaky-bucket contains at most k i tokens; and new tokens arrive at rate r i tokens per second. One token is required for each byte transmitted into the network. Each flow has its own FCFS queue. Flow i is served with weight w i by a WFQ scheduler. r 1 k1 leaky-bucket regulator r n kn w 1 w n WFQ C leaky-bucket regulator (a.) Assuming that the WFQ scheduler serves one byte at a time, prove that no queue will overflow if, and only if, (for all i): r i < C( w i w j ) n j = 1 Page 11 of 14

12 (b.) Assuming that no queue overflows, show that the maximum queueing delay encountered by a byte is given by: dˆ i = k i n C( w i w j ) j = 1 (c.) If we placed another leaky bucket in front of each of the leaky-buckets above, with the same parameters (i.e. r i and k i are the same for both leaky-buckets), would bytes ever have to wait at the second leaky-bucket? Justify your answer. Page 12 of 14

13 (d.) Now imagine that we want to control the peak rate of each flow, p i as well as its average rate. Show how a second leaky-bucket placed in series with the first can do this. Be sure to give the bucket size and token generation rate for the second leaky-bucket. 14. (20 points) Token passing. Consider the token passing ring network shown below. Each time a host grabs the token, it can send one packet. In this network, the token does not pass from each host around the ring in turn; instead, as soon as a host has finished transmitting a packet, it picks another host uniformly and at random from the set of hosts (excluding itself), and sends it the token. The token has a destination address, just like a normal packet. When a host receives the token, it can hold onto it while it transmits a packet, or if it has no packets to send, it forwards it immediately to another host picked at random. Packets and tokens can only be sent clockwise around the ring. Assume that all packets take TRANSP seconds to transmit, that the token is small compared to a packet, that the propagation time of a bit around the ring is PROP, and that the N hosts are equally spaced around the ring.. H N H 1 H 2 (a.) Derive an expression for the efficiency of the network. Assume that a host transmits one packet every time it receives the token Page 13 of 14

14 (b.) Now assume that when a host passes the token, it might "pass" it to itself. If it does so, it doesn t send the token around the ring. It just holds onto it and sends another packet. Rewrite the expression for efficiency in this case. (c.) Consider now the bus network shown below. It is essentially the same as the ring network above, but host N is not connected to host 1. The hosts are equally spaced along the bus, and the propagation delay along the bus is PROP. When transmitted, packets flow in both directions along the bus and do not reflect from the ends. The token is passed from one host to another in the same random way as in part (b). In other words, a host picks another host (including itself) uniformly and at random from among all N hosts. Is the efficiency of this network higher, or lower than for the ring network above? You don t have to derive an expression for the efficiency (you can if you d like, but it s not necessary), but you do need to justify your answer. H 1 H 2 H N Page 14 of 14

CS244a: An Introduction to Computer Networks

CS244a: An Introduction to Computer Networks Do not write in this box MCQ 13: /10 14: /10 15: /0 16: /0 17: /10 18: /10 19: /0 0: /10 Total: Name: Student ID #: Campus/SITN-Local/SITN-Remote? CS44a Winter 004 Professor McKeown CS44a: An Introduction

More information

CS244a: An Introduction to Computer Networks

CS244a: An Introduction to Computer Networks Name: Student ID #: Campus/SITN-Local/SITN-Remote? MC MC Long 18 19 TOTAL /20 /20 CS244a: An Introduction to Computer Networks Final Exam: Thursday February 16th, 2000 You are allowed 2 hours to complete

More information

CS 344/444 Computer Network Fundamentals Final Exam Solutions Spring 2007

CS 344/444 Computer Network Fundamentals Final Exam Solutions Spring 2007 CS 344/444 Computer Network Fundamentals Final Exam Solutions Spring 2007 Question 344 Points 444 Points Score 1 10 10 2 10 10 3 20 20 4 20 10 5 20 20 6 20 10 7-20 Total: 100 100 Instructions: 1. Question

More information

CS244a: An Introduction to Computer Networks

CS244a: An Introduction to Computer Networks Grade: MC: 7: 8: 9: 10: 11: 12: 13: 14: Total: CS244a: An Introduction to Computer Networks Final Exam: Wednesday You are allowed 2 hours to complete this exam. (i) This exam is closed book and closed

More information

CS244a: An Introduction to Computer Networks

CS244a: An Introduction to Computer Networks Name: Grade: S MC: L MC: 15: 16: 17: Total: CS244a: An Introduction to Computer Networks Midterm Exam: Thursday You are allowed 1 hour to complete this exam. (i) This exam is closed book and closed notes.

More information

CS244 Advanced Topics in Computer Networks Midterm Exam Monday, May 2, 2016 OPEN BOOK, OPEN NOTES, INTERNET OFF

CS244 Advanced Topics in Computer Networks Midterm Exam Monday, May 2, 2016 OPEN BOOK, OPEN NOTES, INTERNET OFF CS244 Advanced Topics in Computer Networks Midterm Exam Monday, May 2, 2016 OPEN BOOK, OPEN NOTES, INTERNET OFF Your Name: Answers SUNet ID: root @stanford.edu In accordance with both the letter and the

More information

CS244a: An Introduction to Computer Networks

CS244a: An Introduction to Computer Networks mgrade: MC: 19: 20: 21: 22: 23: 24: Total: CS244a: An Introduction to Computer Networks Final Exam: Monday You are allowed 3 hours to complete this exam. (i) This exam is closed book and closed notes.

More information

CS144: Intro to Computer Networks Homework 1 Scan and submit your solution online. Due Friday January 30, 4pm

CS144: Intro to Computer Networks Homework 1 Scan and submit your solution online. Due Friday January 30, 4pm CS144: Intro to Computer Networks Homework 1 Scan and submit your solution online. Due Friday January 30, 2015 @ 4pm Your Name: SUNet ID: @stanford.edu Check if you would like exam routed back via SCPD:

More information

CS144: Intro to Computer Networks Homework 1 Scan and submit your solution online. Due Friday January 30, 4pm

CS144: Intro to Computer Networks Homework 1 Scan and submit your solution online. Due Friday January 30, 4pm CS144: Intro to Computer Networks Homework 1 Scan and submit your solution online. Due Friday January 30, 2015 @ 4pm Your Name: Answers SUNet ID: root @stanford.edu Check if you would like exam routed

More information

CS164 Final Exam Winter 2013

CS164 Final Exam Winter 2013 CS164 Final Exam Winter 2013 Name: Last 4 digits of Student ID: Problem 1. State whether each of the following statements is true or false. (Two points for each correct answer, 1 point for each incorrect

More information

ECEN Final Exam Fall Instructor: Srinivas Shakkottai

ECEN Final Exam Fall Instructor: Srinivas Shakkottai ECEN 424 - Final Exam Fall 2013 Instructor: Srinivas Shakkottai NAME: Problem maximum points your points Problem 1 10 Problem 2 10 Problem 3 20 Problem 4 20 Problem 5 20 Problem 6 20 total 100 1 2 Midterm

More information

CS 421: COMPUTER NETWORKS SPRING FINAL May 16, minutes

CS 421: COMPUTER NETWORKS SPRING FINAL May 16, minutes CS 4: COMPUTER NETWORKS SPRING 03 FINAL May 6, 03 50 minutes Name: Student No: Show all your work very clearly. Partial credits will only be given if you carefully state your answer with a reasonable justification.

More information

CS 421: COMPUTER NETWORKS SPRING FINAL May 21, minutes

CS 421: COMPUTER NETWORKS SPRING FINAL May 21, minutes CS 421: COMPUTER NETWORKS SPRING 2015 FINAL May 21, 2015 150 minutes Name: Student No: Show all your work very clearly. Partial credits will only be given if you carefully state your answer with a reasonable

More information

EE 122 Fall st Midterm. Professor: Lai Stoica

EE 122 Fall st Midterm. Professor: Lai Stoica EE 122 Fall 2001 1 st Midterm Professor: Lai Stoica Question 1 (15 pt) Layering is a key design principle in computer networks. Name two advantages, and one disadvantage to layering. Explain. Use no more

More information

CS/ECE 438: Communication Networks for Computers Spring 2018 Midterm Examination Online

CS/ECE 438: Communication Networks for Computers Spring 2018 Midterm Examination Online 1 CS/ECE 438: Communication Networks for Computers Spring 2018 Midterm Examination Online Solutions 1. General Networking a. In traditional client-server communication using TCP, a new socket is created.

More information

CSCI Spring Final Exam Solution

CSCI Spring Final Exam Solution CSCI 4211 16Spring Final Exam Solution 1. When an IP packet arrives a router, how the router decides what is the next router (output link) this packet to be forwarded to? What are the routing table and

More information

FACULTY OF COMPUTING AND INFORMATICS

FACULTY OF COMPUTING AND INFORMATICS namibia UniVERSITY OF SCIEnCE AnD TECHnOLOGY FACULTY OF COMPUTING AND INFORMATICS DEPARTMENT OF COMPUTER SCIENCE QUALIFICATION: Bachelor of Computer Science {Honours) QUALIFICATION CODE: 08BCSH LEVEL:

More information

CS 349/449 Internet Protocols Final Exam Winter /15/2003. Name: Course:

CS 349/449 Internet Protocols Final Exam Winter /15/2003. Name: Course: CS 349/449 Internet Protocols Final Exam Winter 2003 12/15/2003 Name: Course: Instructions: 1. You have 2 hours to finish 2. Question 9 is only for 449 students 3. Closed books, closed notes. Write all

More information

Computer Networks (Fall 2011) Homework 2

Computer Networks (Fall 2011) Homework 2 5-744 Computer Networks (Fall 20) Homework 2 Name: Due: Oct. 2th, 20, 3:00PM (in class) Andrew ID: October 2, 20 A Short Questions. Which of the following is true about modern high-speed routers? A. A

More information

First Exam for ECE671 Spring /22/18

First Exam for ECE671 Spring /22/18 ECE67: First Exam First Exam for ECE67 Spring 208 02/22/8 Instructions: Put your name and student number on each sheet of paper! The exam is closed book. You have 75 minutes to complete the exam. Be a

More information

EECS 122: Introduction to Communication Networks Final Exam Solutions

EECS 122: Introduction to Communication Networks Final Exam Solutions EECS 22: Introduction to Communication Networks Final Exam Solutions Problem. (6 points) How long does it take for a 3000-byte IP packet to go from host A to host B in the figure below. Assume the overhead

More information

CS 421: COMPUTER NETWORKS SPRING FINAL May 24, minutes. Name: Student No: TOT

CS 421: COMPUTER NETWORKS SPRING FINAL May 24, minutes. Name: Student No: TOT CS 421: COMPUTER NETWORKS SPRING 2012 FINAL May 24, 2012 150 minutes Name: Student No: Show all your work very clearly. Partial credits will only be given if you carefully state your answer with a reasonable

More information

EECS489 Computer Networks, Take-home Makeup Midterm (Winter 2007) due in class Wednesday 3/28

EECS489 Computer Networks, Take-home Makeup Midterm (Winter 2007) due in class Wednesday 3/28 EECS489 Computer Networks, Take-home Makeup Midterm (Winter 2007) due in class Wednesday 3/28 Note that this is entirely optional, taking this exam will only improve your grade, and not taking it will

More information

Congestion control in TCP

Congestion control in TCP Congestion control in TCP If the transport entities on many machines send too many packets into the network too quickly, the network will become congested, with performance degraded as packets are delayed

More information

MIDTERM EXAMINATION #2 OPERATING SYSTEM CONCEPTS U N I V E R S I T Y O F W I N D S O R S C H O O L O F C O M P U T E R S C I E N C E

MIDTERM EXAMINATION #2 OPERATING SYSTEM CONCEPTS U N I V E R S I T Y O F W I N D S O R S C H O O L O F C O M P U T E R S C I E N C E MIDTERM EXAMINATION #2 OPERATING SYSTEM CONCEPTS 03-60-367-01 U N I V E R S I T Y O F W I N D S O R S C H O O L O F C O M P U T E R S C I E N C E Intersession 2008 Last Name: First Name: Student ID: PLEASE

More information

CS519: Computer Networks. Lecture 5, Part 4: Mar 29, 2004 Transport: TCP congestion control

CS519: Computer Networks. Lecture 5, Part 4: Mar 29, 2004 Transport: TCP congestion control : Computer Networks Lecture 5, Part 4: Mar 29, 2004 Transport: TCP congestion control TCP performance We ve seen how TCP the protocol works Sequencing, receive window, connection setup and teardown And

More information

Department of EECS - University of California at Berkeley EECS122 - Introduction to Communication Networks - Spring 2005 Final: 5/20/2005

Department of EECS - University of California at Berkeley EECS122 - Introduction to Communication Networks - Spring 2005 Final: 5/20/2005 Name: SID: Department of EECS - University of California at Berkeley EECS122 - Introduction to Communication Networks - Spring 2005 Final: 5/20/2005 There are 10 questions in total. Please write your SID

More information

Growth. Individual departments in a university buy LANs for their own machines and eventually want to interconnect with other campus LANs.

Growth. Individual departments in a university buy LANs for their own machines and eventually want to interconnect with other campus LANs. Internetworking Multiple networks are a fact of life: Growth. Individual departments in a university buy LANs for their own machines and eventually want to interconnect with other campus LANs. Fault isolation,

More information

Link Layer Review. CS244A Winter 2008 March 7, 2008 Ben Nham

Link Layer Review. CS244A Winter 2008 March 7, 2008 Ben Nham Link Layer Review CS244A Winter 2008 March 7, 2008 Ben Nham Announcements PA3 due today PS3 due next Wednesday PA4 due next Friday Final Exam Review session next Friday 7-10 PM on Thursday, March 20 Multiple

More information

Data Communication Networks Final

Data Communication Networks Final Data Communication Networks Final Saad Mneimneh Visiting Professor Hunter College of CUNY NAME: This final test is take home... There are 8 Problems (but each problem has multiple parts, possibly on separate

More information

ECE4110, Internetwork Programming, QUIZ 2 - PRACTICE Spring 2006

ECE4110, Internetwork Programming, QUIZ 2 - PRACTICE Spring 2006 Email Address ECE4110, Internetwork Programming, QUIZ 2 - PRACTICE Spring 2006 Name (Print) Prof. John A. Copeland Practice for April 11, 2006 Tel.: 404-894-5177 E-Mail: copeland@ece.gatech.edu RULES.

More information

CS519: Computer Networks. Lecture 5, Part 5: Mar 31, 2004 Queuing and QoS

CS519: Computer Networks. Lecture 5, Part 5: Mar 31, 2004 Queuing and QoS : Computer Networks Lecture 5, Part 5: Mar 31, 2004 Queuing and QoS Ways to deal with congestion Host-centric versus router-centric Reservation-based versus feedback-based Window-based versus rate-based

More information

CSE 123A Computer Networks

CSE 123A Computer Networks CSE 123A Computer Networks Winter 2005 Lecture 14 Congestion Control Some images courtesy David Wetherall Animations by Nick McKeown and Guido Appenzeller The bad news and the good news The bad news: new

More information

CHAPTER 3 EFFECTIVE ADMISSION CONTROL MECHANISM IN WIRELESS MESH NETWORKS

CHAPTER 3 EFFECTIVE ADMISSION CONTROL MECHANISM IN WIRELESS MESH NETWORKS 28 CHAPTER 3 EFFECTIVE ADMISSION CONTROL MECHANISM IN WIRELESS MESH NETWORKS Introduction Measurement-based scheme, that constantly monitors the network, will incorporate the current network state in the

More information

Lecture 14: Congestion Control"

Lecture 14: Congestion Control Lecture 14: Congestion Control" CSE 222A: Computer Communication Networks George Porter Thanks: Amin Vahdat, Dina Katabi and Alex C. Snoeren Lecture 14 Overview" TCP congestion control review Dukkipati

More information

CS 421: COMPUTER NETWORKS FALL FINAL January 10, minutes

CS 421: COMPUTER NETWORKS FALL FINAL January 10, minutes CS 4: COMPUTER NETWORKS FALL 00 FINAL January 0, 0 50 minutes Name: Student No: Show all your work very clearly. Partial credits will only be given if you carefully state your answer with a reasonable

More information

ADVANCED COMPUTER NETWORKS

ADVANCED COMPUTER NETWORKS ADVANCED COMPUTER NETWORKS Congestion Control and Avoidance 1 Lecture-6 Instructor : Mazhar Hussain CONGESTION CONTROL When one part of the subnet (e.g. one or more routers in an area) becomes overloaded,

More information

Randomization. Randomization used in many protocols We ll study examples:

Randomization. Randomization used in many protocols We ll study examples: Randomization Randomization used in many protocols We ll study examples: Ethernet multiple access protocol Router (de)synchronization Switch scheduling 1 Ethernet Single shared broadcast channel 2+ simultaneous

More information

Randomization used in many protocols We ll study examples: Ethernet multiple access protocol Router (de)synchronization Switch scheduling

Randomization used in many protocols We ll study examples: Ethernet multiple access protocol Router (de)synchronization Switch scheduling Randomization Randomization used in many protocols We ll study examples: Ethernet multiple access protocol Router (de)synchronization Switch scheduling 1 Ethernet Single shared broadcast channel 2+ simultaneous

More information

(a) Client server model (b) MAN (c) Interfaces and services. [4+6+6] FirstRanker

(a) Client server model (b) MAN (c) Interfaces and services. [4+6+6] FirstRanker Code No: N0421/R07 Set No. 1 IV B.Tech I Semester Supplementary Examinations, March 2013 COMPUTER NETWORKS ( Common to Electronics & Communication Engineering, Electronics & Instrumentation Engineering,

More information

CPE 548 Exam #1 (50 pts) February 17, 2016

CPE 548 Exam #1 (50 pts) February 17, 2016 Name Class: 548 All answers must have supporting work. Any answer without support will receive no credit 1) (4 pts) Answer the following short answer questions. a) Explain the stop and wait ARQ (automatic

More information

Problem Max. Points Act. Points Grader

Problem Max. Points Act. Points Grader dvanced Networking ourse: 320471 International University remen ate: 2006-10-17 r. Jürgen Schönwälder eadline: 2006-10-17 Midterm xamination The IU ode of cademic Integrity applies to this examination.

More information

Computer Networks. 19 December This exam consists of 6 questions with subquestions. Every subquestion counts for 10 points.

Computer Networks. 19 December This exam consists of 6 questions with subquestions. Every subquestion counts for 10 points. Computer Networks 19 December 2014 This exam consists of 6 questions with subquestions. Every subquestion counts for 10 points. Mark every page with name and student number. Use of books, additional course

More information

There are 10 questions in total. Please write your SID on each page.

There are 10 questions in total. Please write your SID on each page. Name: SID: Department of EECS - University of California at Berkeley EECS122 - Introduction to Communication Networks - Spring 2005 to the Final: 5/20/2005 There are 10 questions in total. Please write

More information

Midterm Review. EECS 489 Computer Networks Z. Morley Mao Monday Feb 19, 2007

Midterm Review. EECS 489 Computer Networks  Z. Morley Mao Monday Feb 19, 2007 Midterm Review EECS 489 Computer Networks http://www.eecs.umich.edu/courses/eecs489/w07 Z. Morley Mao Monday Feb 19, 2007 Acknowledgement: Some slides taken from Kurose&Ross and Katz&Stoica 1 Adminstrivia

More information

Bandwidth Allocation & TCP

Bandwidth Allocation & TCP Bandwidth Allocation & TCP The Transport Layer Focus Application Presentation How do we share bandwidth? Session Topics Transport Network Congestion control & fairness Data Link TCP Additive Increase/Multiplicative

More information

King Fahd University of Petroleum and Minerals College of Computer Sciences and Engineering Department of Computer Engineering

King Fahd University of Petroleum and Minerals College of Computer Sciences and Engineering Department of Computer Engineering Student Name: Section #: King Fahd University of Petroleum and Minerals College of Computer Sciences and Engineering Department of Computer Engineering COE 344 Computer Networks (T072) Final Exam Date

More information

FINAL May 21, minutes

FINAL May 21, minutes CS 421: COMPUTER NETWORKS SPRING 2004 FINAL May 21, 2004 160 minutes Name: Student No: 1) a) Consider a 1 Mbits/sec channel with a 20 msec one-way propagation delay, i.e., 40 msec roundtrip delay. We want

More information

Tutorial 8 : Congestion Control

Tutorial 8 : Congestion Control Lund University ETSN01 Advanced Telecommunication Tutorial 8 : Congestion Control Author: Antonio Franco Emma Fitzgerald Tutor: Farnaz Moradi December 18, 2015 Contents I Before you start 3 II Exercises

More information

Department of Computer Science and Engineering. Final Examination. Instructor: N. Vlajic Date: April 15, 2011

Department of Computer Science and Engineering. Final Examination. Instructor: N. Vlajic Date: April 15, 2011 Department of Computer Science and Engineering CSE 3214: Computer Network Protocols and Applications Final Examination Instructor: N. Vlajic Date: April 15, 2011 Instructions: Examination time: 180 min.

More information

CS 421: COMPUTER NETWORKS FALL FINAL January 12, minutes

CS 421: COMPUTER NETWORKS FALL FINAL January 12, minutes CS 421: COMPUTER NETWORKS FALL 2011 FINAL January 12, 2012 150 minutes Name: Student No: Show all your work very clearly. Partial credits will only be given if you carefully state your answer with a reasonable

More information

Question Score 1 / 19 2 / 19 3 / 16 4 / 29 5 / 17 Total / 100

Question Score 1 / 19 2 / 19 3 / 16 4 / 29 5 / 17 Total / 100 NAME: Login name: Computer Science 461 Midterm Exam March 10, 2010 3:00-4:20pm This test has five (5) questions. Put your name on every page, and write out and sign the Honor Code pledge before turning

More information

Problem 7. Problem 8. Problem 9

Problem 7. Problem 8. Problem 9 Problem 7 To best answer this question, consider why we needed sequence numbers in the first place. We saw that the sender needs sequence numbers so that the receiver can tell if a data packet is a duplicate

More information

Outline Computer Networking. TCP slow start. TCP modeling. TCP details AIMD. Congestion Avoidance. Lecture 18 TCP Performance Peter Steenkiste

Outline Computer Networking. TCP slow start. TCP modeling. TCP details AIMD. Congestion Avoidance. Lecture 18 TCP Performance Peter Steenkiste Outline 15-441 Computer Networking Lecture 18 TCP Performance Peter Steenkiste Fall 2010 www.cs.cmu.edu/~prs/15-441-f10 TCP congestion avoidance TCP slow start TCP modeling TCP details 2 AIMD Distributed,

More information

CS 421: COMPUTER NETWORKS SPRING FINAL May 8, minutes

CS 421: COMPUTER NETWORKS SPRING FINAL May 8, minutes CS 421: COMPUTR NTWORKS SPRIN 2016 INL May 8, 2016 150 minutes Name: Student No: Q1 Q2 Q3 TOT 1) a) (6 pts) iven the following parameters for a datagram packet switching network: N: number of hops between

More information

EE122 MIDTERM EXAM: Scott Shenker, Ion Stoica

EE122 MIDTERM EXAM: Scott Shenker, Ion Stoica EE MITERM EXM: 00-0- Scott Shenker, Ion Stoica Last name Student I First name Login: ee- Please circle the last two letters of your login. a b c d e f g h i j k l m n o p q r s t u v w x y z a b c d e

More information

CS419: Computer Networks. Lecture 10, Part 3: Apr 13, 2005 Transport: TCP performance

CS419: Computer Networks. Lecture 10, Part 3: Apr 13, 2005 Transport: TCP performance : Computer Networks Lecture 10, Part 3: Apr 13, 2005 Transport: TCP performance TCP performance We ve seen how TCP the protocol works But there are a lot of tricks required to make it work well Indeed,

More information

Part ONE

Part ONE Networked Systems, COMPGZ0, 0 Answer TWO questions from Part ONE on the answer booklet containing lined writing paper, and answer ALL questions in Part TWO on the multiple-choice question answer sheet.

More information

Question Points Score total 100

Question Points Score total 100 CS457: Computer Networking Date: 5/8/2007 Name: Instructions: 1. Be sure that you have 8 questions 2. Write your Student ID (email) at the top of every page 3. Be sure to complete the honor statement after

More information

II. Principles of Computer Communications Network and Transport Layer

II. Principles of Computer Communications Network and Transport Layer II. Principles of Computer Communications Network and Transport Layer A. Internet Protocol (IP) IPv4 Header An IP datagram consists of a header part and a text part. The header has a 20-byte fixed part

More information

CS244a: An Introduction to Computer Networks

CS244a: An Introduction to Computer Networks CS244a: n Introduction to Computer Networks Handout 7: Congestion Control Nick McKeown Professor of Electrical Engineering and Computer Science, Stanford University nickm@stanford.edu http://www.stanford.edu/~nickm

More information

Reliable Transport II: TCP and Congestion Control

Reliable Transport II: TCP and Congestion Control Reliable Transport II: TCP and Congestion Control Stefano Vissicchio UCL Computer Science COMP0023 Recap: Last Lecture Transport Concepts Layering context Transport goals Transport mechanisms and design

More information

Recap. TCP connection setup/teardown Sliding window, flow control Retransmission timeouts Fairness, max-min fairness AIMD achieves max-min fairness

Recap. TCP connection setup/teardown Sliding window, flow control Retransmission timeouts Fairness, max-min fairness AIMD achieves max-min fairness Recap TCP connection setup/teardown Sliding window, flow control Retransmission timeouts Fairness, max-min fairness AIMD achieves max-min fairness 81 Feedback Signals Several possible signals, with different

More information

Name Student ID Department/Year. Final Examination. Introduction to Computer Networks Class#: 901 E31110 Fall 2008

Name Student ID Department/Year. Final Examination. Introduction to Computer Networks Class#: 901 E31110 Fall 2008 Name Student ID Department/Year Final Examination Introduction to Computer Networks Class#: 901 E31110 Fall 2008 9:30-11:10 Tuesday January 13, 2009 Prohibited 1. You are not allowed to write down the

More information

CSE 123 Midterm Exam

CSE 123 Midterm Exam CSE 23 Midterm Exam Fall 2 Name: Student ID: Be sure to read questions carefully and answer all parts. Use complete sentences and explain your answers. You should be able to answer the questions in a few

More information

ECE 333: Introduction to Communication Networks Fall 2001

ECE 333: Introduction to Communication Networks Fall 2001 ECE 333: Introduction to Communication Networks Fall 2001 Lecture 28: Transport Layer III Congestion control (TCP) 1 In the last lecture we introduced the topics of flow control and congestion control.

More information

Student ID: CS457: Computer Networking Date: 5/8/2007 Name:

Student ID: CS457: Computer Networking Date: 5/8/2007 Name: CS457: Computer Networking Date: 5/8/2007 Name: Instructions: 1. Be sure that you have 10 questions 2. Write your Student ID (email) at the top of every page 3. Be sure to complete the honor statement

More information

Hybrid Control and Switched Systems. Lecture #17 Hybrid Systems Modeling of Communication Networks

Hybrid Control and Switched Systems. Lecture #17 Hybrid Systems Modeling of Communication Networks Hybrid Control and Switched Systems Lecture #17 Hybrid Systems Modeling of Communication Networks João P. Hespanha University of California at Santa Barbara Motivation Why model network traffic? to validate

More information

===================================================================== Exercises =====================================================================

===================================================================== Exercises ===================================================================== ===================================================================== Exercises ===================================================================== 1 Chapter 1 1) Design and describe an application-level

More information

Answers to Sample Questions on Transport Layer

Answers to Sample Questions on Transport Layer Answers to Sample Questions on Transport Layer 1) Which protocol Go-Back-N or Selective-Repeat - makes more efficient use of network bandwidth? Why? Answer: Selective repeat makes more efficient use of

More information

Computer Communication Networks Midterm Review

Computer Communication Networks Midterm Review Computer Communication Networks Midterm Review ICEN/ICSI 416 Fall 2018 Prof. Aveek Dutta 1 Instructions The exam is closed book, notes, computers, phones. You can use calculator, but not one from your

More information

UNIVERSITY OF TORONTO FACULTY OF APPLIED SCIENCE AND ENGINEERING

UNIVERSITY OF TORONTO FACULTY OF APPLIED SCIENCE AND ENGINEERING UNIVERSITY OF TORONTO FACULTY OF APPLIED SCIENCE AND ENGINEERING ECE361 Computer Networks Midterm March 06, 2017, 6:15PM DURATION: 80 minutes Calculator Type: 2 (non-programmable calculators) Examiner:

More information

CS 556 Advanced Computer Networks Spring Solutions to Midterm Test March 10, YOUR NAME: Abraham MATTA

CS 556 Advanced Computer Networks Spring Solutions to Midterm Test March 10, YOUR NAME: Abraham MATTA CS 556 Advanced Computer Networks Spring 2011 Solutions to Midterm Test March 10, 2011 YOUR NAME: Abraham MATTA This test is closed books. You are only allowed to have one sheet of notes (8.5 11 ). Please

More information

PLEASE READ CAREFULLY BEFORE YOU START

PLEASE READ CAREFULLY BEFORE YOU START MIDTERM EXAMINATION #2 NETWORKING CONCEPTS 03-60-367-01 U N I V E R S I T Y O F W I N D S O R - S c h o o l o f C o m p u t e r S c i e n c e Fall 2011 Question Paper NOTE: Students may take this question

More information

ECE 610: Homework 4 Problems are taken from Kurose and Ross.

ECE 610: Homework 4 Problems are taken from Kurose and Ross. ECE 610: Homework 4 Problems are taken from Kurose and Ross. Problem 1: Host A and B are communicating over a TCP connection, and Host B has already received from A all bytes up through byte 248. Suppose

More information

TCP Congestion Control : Computer Networking. Introduction to TCP. Key Things You Should Know Already. Congestion Control RED

TCP Congestion Control : Computer Networking. Introduction to TCP. Key Things You Should Know Already. Congestion Control RED TCP Congestion Control 15-744: Computer Networking L-4 TCP Congestion Control RED Assigned Reading [FJ93] Random Early Detection Gateways for Congestion Avoidance [TFRC] Equation-Based Congestion Control

More information

Homework 1. Question 1 - Layering. CSCI 1680 Computer Networks Fonseca

Homework 1. Question 1 - Layering. CSCI 1680 Computer Networks Fonseca CSCI 1680 Computer Networks Fonseca Homework 1 Due: 27 September 2012, 4pm Question 1 - Layering a. Why are networked systems layered? What are the advantages of layering? Are there any disadvantages?

More information

Networked Systems (SAMPLE QUESTIONS), COMPGZ01, May 2016

Networked Systems (SAMPLE QUESTIONS), COMPGZ01, May 2016 Networked Systems (SAMPLE QUESTIONS), COMPGZ01, May 2016 Answer TWO questions from Part ONE on the answer booklet containing lined writing paper, and answer ALL questions in Part TWO on the multiple-choice

More information

Transport Protocols and TCP: Review

Transport Protocols and TCP: Review Transport Protocols and TCP: Review CSE 6590 Fall 2010 Department of Computer Science & Engineering York University 1 19 September 2010 1 Connection Establishment and Termination 2 2 1 Connection Establishment

More information

Overview. TCP congestion control Computer Networking. TCP modern loss recovery. TCP modeling. TCP Congestion Control AIMD

Overview. TCP congestion control Computer Networking. TCP modern loss recovery. TCP modeling. TCP Congestion Control AIMD Overview 15-441 Computer Networking Lecture 9 More TCP & Congestion Control TCP congestion control TCP modern loss recovery TCP modeling Lecture 9: 09-25-2002 2 TCP Congestion Control Changes to TCP motivated

More information

MCS-377 Intra-term Exam 1 Serial #:

MCS-377 Intra-term Exam 1 Serial #: MCS-377 Intra-term Exam 1 Serial #: This exam is closed-book and mostly closed-notes. You may, however, use a single 8 1/2 by 11 sheet of paper with hand-written notes for reference. (Both sides of the

More information

University of California at Berkeley College of Engineering Department of Electrical Engineering and Computer Sciences

University of California at Berkeley College of Engineering Department of Electrical Engineering and Computer Sciences University of California at Berkeley College of Engineering Department of Electrical Engineering and Computer Sciences CS168 MIDTERM EXAMINATION Monday, 20 October 2014 INSTRUCTIONS READ THEM NOW! This

More information

Department of Electrical Engineering and Computer Science MASSACHUSETTS INSTITUTE OF TECHNOLOGY Spring Quiz III

Department of Electrical Engineering and Computer Science MASSACHUSETTS INSTITUTE OF TECHNOLOGY Spring Quiz III 6.02 Spring 2010, Quiz 3 Page 1 of 11 Name: Department of Electrical Engineering and Computer Science MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.02 Spring 2010 Quiz III There are 12 questions (many with multiple

More information

Lecture 14: Congestion Control"

Lecture 14: Congestion Control Lecture 14: Congestion Control" CSE 222A: Computer Communication Networks Alex C. Snoeren Thanks: Amin Vahdat, Dina Katabi Lecture 14 Overview" TCP congestion control review XCP Overview 2 Congestion Control

More information

Name Student ID Department/Year. Final Examination. Introduction to Computer Networks Class#: 901 E31110 Fall 2006

Name Student ID Department/Year. Final Examination. Introduction to Computer Networks Class#: 901 E31110 Fall 2006 Name Student ID Department/Year Final Examination Introduction to Computer Networks Class#: 901 E31110 Fall 2006 9:20-11:00 Tuesday January 16, 2007 Prohibited 1. You are not allowed to write down the

More information

CSE/EE 461 Lecture 16 TCP Congestion Control. TCP Congestion Control

CSE/EE 461 Lecture 16 TCP Congestion Control. TCP Congestion Control CSE/EE Lecture TCP Congestion Control Tom Anderson tom@cs.washington.edu Peterson, Chapter TCP Congestion Control Goal: efficiently and fairly allocate network bandwidth Robust RTT estimation Additive

More information

CMPSCI 453 Fall Midterm 10/26/2008

CMPSCI 453 Fall Midterm 10/26/2008 CMPSCI 453 Fall 2008 - Midterm 10/26/2008 Read before starting: 1. Put down you name on the first page NOW. 2. Put down you initials on the top right corner of each page 3. This answer book has 10 pages.

More information

CS 421: COMPUTER NETWORKS FALL FINAL January 5, minutes. Name: Student No: TOT

CS 421: COMPUTER NETWORKS FALL FINAL January 5, minutes. Name: Student No: TOT S 421: OMPUTR NTWORKS ALL 2006 INAL January 5, 2007 150 minutes Name: Student No: Q1 Q2 Q3 TOT 1) a) (6 pts) iven the following parameters for a datagram packet switching network: N: number of hops between

More information

Computer Networks Medium Access Control. Mostafa Salehi Fall 2008

Computer Networks Medium Access Control. Mostafa Salehi Fall 2008 Computer Networks Medium Access Control Mostafa Salehi Fall 2008 2008 1 Outline Issues ALOHA Network Ethernet Token Ring Wireless 2 Main Issues Local Area Network (LAN) : Three or more machines are physically

More information

Review problems (for no credit): Transport and Network Layer

Review problems (for no credit): Transport and Network Layer Review problems (for no credit): Transport and Network Layer V. Arun CS 653, Fall 2018 09/06/18 Transport layer 1. Protocol multiplexing: (a) If a web server has 100 open connections, how many sockets

More information

Episode 5. Scheduling and Traffic Management

Episode 5. Scheduling and Traffic Management Episode 5. Scheduling and Traffic Management Part 2 Baochun Li Department of Electrical and Computer Engineering University of Toronto Keshav Chapter 9.1, 9.2, 9.3, 9.4, 9.5.1, 13.3.4 ECE 1771: Quality

More information

15-441: Computer Networks Homework 3

15-441: Computer Networks Homework 3 15-441: Computer Networks Homework 3 Assigned: Oct 29, 2013 Due: Nov 12, 2013 1:30 PM in class Name: Andrew ID: 1 TCP 1. Suppose an established TCP connection exists between sockets A and B. A third party,

More information

ECE/CSC 570 Section 001. Final test. December 11, 2006

ECE/CSC 570 Section 001. Final test. December 11, 2006 ECE/CSC 570 Section 001 Final test December 11, 2006 Questions 1 10 each carry 2 marks. Answer only by placing a check mark to indicate whether the statement is true of false in the appropriate box, and

More information

Transport Protocols & TCP TCP

Transport Protocols & TCP TCP Transport Protocols & TCP CSE 3213 Fall 2007 13 November 2007 1 TCP Services Flow control Connection establishment and termination Congestion control 2 1 TCP Services Transmission Control Protocol (RFC

More information

Unit 2 Packet Switching Networks - II

Unit 2 Packet Switching Networks - II Unit 2 Packet Switching Networks - II Dijkstra Algorithm: Finding shortest path Algorithm for finding shortest paths N: set of nodes for which shortest path already found Initialization: (Start with source

More information

Midterm Exam CSCE 232: Computer Networks Fall Instructions:

Midterm Exam CSCE 232: Computer Networks Fall Instructions: Midterm Exam CSCE 232: Computer Networks Fall 2007 Last Name: First Name: Student ID: Instructions: 1. This is a close-book and close-notes exam. 2. There are seven questions in total. The number of points

More information

Computer Networking. Queue Management and Quality of Service (QOS)

Computer Networking. Queue Management and Quality of Service (QOS) Computer Networking Queue Management and Quality of Service (QOS) Outline Previously:TCP flow control Congestion sources and collapse Congestion control basics - Routers 2 Internet Pipes? How should you

More information

Lecture 21: Congestion Control" CSE 123: Computer Networks Alex C. Snoeren

Lecture 21: Congestion Control CSE 123: Computer Networks Alex C. Snoeren Lecture 21: Congestion Control" CSE 123: Computer Networks Alex C. Snoeren Lecture 21 Overview" How fast should a sending host transmit data? Not to fast, not to slow, just right Should not be faster than

More information

Lecture 7. Reminder: Homework 2, Programming Project 1 due today. Homework 3, Programming Project 2 out, due Thursday next week. Questions?

Lecture 7. Reminder: Homework 2, Programming Project 1 due today. Homework 3, Programming Project 2 out, due Thursday next week. Questions? Lecture 7 Reminder: Homework 2, Programming Project 1 due today. Homework 3, Programming Project 2 out, due Thursday next week. Questions? Thursday, September 15 CS 475 Networks - Lecture 7 1 Outline Chapter

More information