Final Review Fall 2017 Profs Peter Steenkiste & Justine Sherry

Size: px
Start display at page:

Download "Final Review Fall 2017 Profs Peter Steenkiste & Justine Sherry"

Transcription

1 Final Review Fall 2017 Profs Peter Steenkiste & Justine Sherry

2 Facts The Final is next week. It mostly covers things after the midterm, but there is significant material from before. There were two TCP questions on the original version of the midterm, but we cut one because it was too long. That TCP question is now on the final. The big things to know are Security, Wireless, Link Layer, and QoS/ Prioritization.

3 Your Piazza Questions broke down in to two camps: TCP/CWNDs and CSMA/CD, CA, etc.

4 What is the relationship between CWND and BDP?

5 What is CWND?

6 CWND: The number of unacked bytes that TCP can have outstanding.

7 CWND is another way of saying: how many bytes should TCP be able to have in the network without B having received them yet?

8 Abstract View of Link A B Sending Host Receiving Host

9 Abstract View of Link A B Sending Host Receiving Host

10 Abstract View of Link A B Sending Host Receiving Host A sends to B at a rate of r Mbps over a link with latency d millisec.

11 Abstract View of Link A B Sending Host Receiving Host A sends to B at a rate of r Mbps over a link with latency d millisec. In b milliseconds, A can stuff r*d packets into the pipe These packets have been sent by A, but have not yet been received by B

12 Abstract View of Link A B Sending Host Receiving Host r * d is our bandwidth-delay product AKA how much stuff fits in the pipe at a time.

13 Big Idea: if A maintains that there are r * d bytes in that pipe constantly, then A can keep the pipe full meaning achieve the maximum possible sending rate through that pipe.

14 Hence, perfect CWND is 2 * r * d (or r * RTT). Why * 2?

15 Need to wait for the ACKs!

16 Abstract View of Link A B Sending Host Receiving Host 2 * r * d total packets in the network.

17 From the homework: Wireshark does not show CWND directly. Give your best estimation about the initial CWND and explain how did you get the value.

18 Anyone want to explain how they did it?

19 Count the number of packets in the pipe! A B Sending Host Receiving Host After the handshake, you should have seen some number of packets leave A how many packets left A before you received the first ACK back for that first packet after the handshake?

20 Selective ACKs in TCP

21 SACKs are useful when you have multiple losses.

22 Seq = 1 Seq = 2 By default, TCP uses cumulative ACKS. Seq = 3 Seq = 4 Return one value: the next byte expected.

23 ACK 2 ACK 3 ACK 4 ACK 5 Seq = 1 Seq = 2 Seq = 3 Seq = 4 By default, TCP uses cumulative ACKS. Return one value: the next byte expected.

24 Seq = 1 ACK 2 On loss: only know one byte that was lost: Seq = 4 the next byte ACK 2 expected.

25 Seq = 1 ACK 2 On loss: only know one byte that was lost: Seq = 4 the next byte expected.

26 Seq = 1 ACK 2 On loss: only know one byte that was lost: Seq = 4 the next byte ACK 2 expected. Seq = 2 ACK 3

27 Seq = 1 ACK 2 On loss: only know one byte that was lost: Seq = 4 the next byte ACK 2 expected. Seq = 2 ACK 3 Seq = 3 ACK 5

28 Seq = 1 ACK [1, _, _, _] With SACK, we send back a scoreboard Seq = 4 of ACKs rather than a ACK [1, _, _, 4] cumulative ACK.

29 Seq = 1 ACK [1, _, _, _] With SACK, we send back a scoreboard Seq = 4 of ACKs rather than a ACK [1, _, _, 4] cumulative ACK. ACK [2, _, 4, _] ACK [5, _, _, _] Seq = 2 Seq = 3 Can retransmit more efficiently!

30 The difference between CSMA/CA and CSMA/CD

31 Quick, someone describe CSMA/CD!

32 Key to CSMA/CD: everyone who wants to transmit can detect when collision happens. (This is not the case in wireless.)

33 Hidden Terminals A B C 27

34 Hidden Terminals A B C 27

35 Hidden Terminals A B C transmit range 27

36 Hidden Terminals A B C transmit range A and C can both send to B but can t hear each other A is a hidden terminal for C and vice versa 27

37 Hidden Terminals A B C transmit range A and C can both send to B but can t hear each other A is a hidden terminal for C and vice versa Carrier Sense will be ineffective 27

38 Exposed Terminals A B C D 28

39 Exposed Terminals A B C D 28

40 Exposed Terminals A B C D 28

41 Exposed Terminals A B C D Exposed node: B sends a packet to A; C hears this and decides not to send a packet to D (despite the fact that this will not cause interference)! 28

42 Exposed Terminals A B C D Exposed node: B sends a packet to A; C hears this and decides not to send a packet to D (despite the fact that this will not cause interference)! Carrier sense would prevent a successful transmission. 28

43 Key Points 29

44 Key Points No concept of a global collision Different receivers hear different signals Different senders reach different receivers 29

45 Key Points No concept of a global collision Different receivers hear different signals Different senders reach different receivers Collisions are at receiver, not sender Only care if receiver can hear the sender clearly It does not matter if sender can hear someone else As long as that signal does not interfere with receiver 29

46 Key Points No concept of a global collision Different receivers hear different signals Different senders reach different receivers Collisions are at receiver, not sender Only care if receiver can hear the sender clearly It does not matter if sender can hear someone else As long as that signal does not interfere with receiver Goal of protocol: Detect if receiver can hear sender Tell senders who might interfere with receiver to shut up 29

47 Basic Collision Avoidance 30

48 Basic Collision Avoidance Since can t detect collisions, we try to avoid them 30

49 Basic Collision Avoidance Since can t detect collisions, we try to avoid them Carrier sense: When medium busy, choose random interval Wait that many idle timeslots to pass before sending 30

50 Basic Collision Avoidance Since can t detect collisions, we try to avoid them Carrier sense: When medium busy, choose random interval Wait that many idle timeslots to pass before sending When a collision is inferred, retransmit with binary exponential backoff (like Ethernet) Use ACK from receiver to infer no collision Use exponential backoff to adapt contention window 30

51 CSMA/CA -MA with Collision Avoidance sender receiver other node in sender s range Before every data transmission 31

52 CSMA/CA -MA with Collision Avoidance sender RTS receiver other node in sender s range Before every data transmission Sender sends a Request to Send (RTS) frame containing the length of the transmission 31

53 CSMA/CA -MA with Collision Avoidance sender RTS CTS receiver other node in sender s range Before every data transmission Sender sends a Request to Send (RTS) frame containing the length of the transmission Receiver respond with a Clear to Send (CTS) frame 31

54 CSMA/CA -MA with Collision Avoidance sender RTS CTS data receiver other node in sender s range Before every data transmission Sender sends a Request to Send (RTS) frame containing the length of the transmission Receiver respond with a Clear to Send (CTS) frame Sender sends data 31

55 CSMA/CA -MA with Collision Avoidance sender RTS CTS data ACK receiver other node in sender s range Before every data transmission Sender sends a Request to Send (RTS) frame containing the length of the transmission Receiver respond with a Clear to Send (CTS) frame Sender sends data Receiver sends an ACK; now another sender can send data 31

56 CSMA/CA -MA with Collision Avoidance sender RTS CTS data ACK receiver other node in sender s range Before every data transmission Sender sends a Request to Send (RTS) frame containing the length of the transmission Receiver respond with a Clear to Send (CTS) frame Sender sends data Receiver sends an ACK; now another sender can send data When sender doesn t get a CTS back, it assumes collision 31

57 CSMA/CA, con t receiver sender RTS other node in sender s range CTS data data 32

58 CSMA/CA, con t receiver sender RTS other node in sender s range CTS data data If other nodes hear RTS, but not CTS: send Presumably, destination for first sender is out of node s range 32

59 CSMA/CA, con t sender RTS CTS receiver other node in sender s range If other nodes hear RTS, but not CTS: send Presumably, destination for first sender is out of node s range Can cause problems when a CTS is lost 33

60 CSMA/CA, con t sender RTS CTS data ACK receiver other node in sender s range If other nodes hear RTS, but not CTS: send Presumably, destination for first sender is out of node s range Can cause problems when a CTS is lost When you hear a CTS, you keep quiet until scheduled transmission is over (hear ACK) 33

61 RTS / CTS Protocols (CSMA/CA) B sends to C B C 34

62 RTS / CTS Protocols (CSMA/CA) B sends to C A B C D Overcome hidden terminal problems with contention-free protocol 34

63 RTS / CTS Protocols (CSMA/CA) B sends to C A RTS B C D Overcome hidden terminal problems with contention-free protocol 1. B sends to C Request To Send (RTS) 34

64 RTS / CTS Protocols (CSMA/CA) B sends to C A RTS B C D Overcome hidden terminal problems with contention-free protocol 1. B sends to C Request To Send (RTS) 2. A hears RTS and defers (to allow C to answer) 34

65 RTS / CTS Protocols (CSMA/CA) B sends to C A RTS B C D CTS Overcome hidden terminal problems with contention-free protocol 1. B sends to C Request To Send (RTS) 2. A hears RTS and defers (to allow C to answer) 3. C replies to B with Clear To Send (CTS) 34

66 RTS / CTS Protocols (CSMA/CA) B sends to C A RTS B C D CTS Overcome hidden terminal problems with contention-free protocol 1. B sends to C Request To Send (RTS) 2. A hears RTS and defers (to allow C to answer) 3. C replies to B with Clear To Send (CTS) 4. D hears CTS and defers to allow the data 34

67 RTS / CTS Protocols (CSMA/CA) B sends to C A RTS B C D CTS Overcome hidden terminal problems with contention-free protocol 1. B sends to C Request To Send (RTS) 2. A hears RTS and defers (to allow C to answer) 3. C replies to B with Clear To Send (CTS) 4. D hears CTS and defers to allow the data 5. B sends to C 34

68 Alt: Preventing Collisions Altogether 35

69 Alt: Preventing Collisions Altogether Partition space into non-overlapping cells. 35

70 Alt: Preventing Collisions Altogether Partition space into non-overlapping cells. 35

71 Why doesn t Google use anycast to redirect traffic to its servers instead of DNS redirection?

72 Answer: performance

73 Answer: performance Recall: routing over the Internet follows sub-optimal paths. Why?

74 Answer: performance Recall: routing over the Internet follows sub-optimal paths. Why? Follow the money policies (choose cheap routes over short ones)

75 Answer: performance Recall: routing over the Internet follows sub-optimal paths. Why? Follow the money policies (choose cheap routes over short ones) AS path lengths don t necessarily correlate to shortest geographic paths / lowest latencies anyway

76 Answer: performance Recall: routing over the Internet follows sub-optimal paths. Why? Follow the money policies (choose cheap routes over short ones) AS path lengths don t necessarily correlate to shortest geographic paths / lowest latencies anyway And it s common for operators to just misconfigure stuff too.

77 If we use anycast, we re letting the sub-optimal routing protocols take charge: no guarantee they ll pick the best choice. google.com AS 2 AS 3 google.com ? AS 1 google.com AS 4

78 With DNS redirection, Google can pick best route themselves, based on what IP address their DNS server returns for the domain name google.com AS 2 AS 3 google.com AS 1 google.com AS 4

79 Bonus question: if anycast leads to sub-optimal routing, why does Google DNS ( ) use anycast?

80 Answer: it s a chicken and egg problem. You can t use DNS redirection to find your optimal DNS resolver, because you d need to use your DNS resolver to look up its own DNS name

81 What is a PKI?

82 Public Key Infrastructure

83 Public Key Infrastructure How do I get the public key of someone I don t know? How do I know it s them?

84 Public Key Infrastructure How do I get the public key of someone I don t know? How do I know it s them? I can go find them in the real world, check their ID card, get their public key.

85 Public Key Infrastructure How do I get the public key of someone I don t know? How do I know it s them? I can go find them in the real world, check their ID card, get their public key. Or, I can ask a central database that authoritatively stores everyone s public key.

86 Public Key Infrastructure How do I get the public key of someone I don t know? How do I know it s them? I can go find them in the real world, check their ID card, get their public key. Or, I can ask a central database that authoritatively stores everyone s public key. Everyone registers with the central database, and anyone can look up anyone else s public key in the database.

87 Public Key Infrastructure How do I get the public key of someone I don t know? How do I know it s them? I can go find them in the real world, check their ID card, get their public key. Or, I can ask a central database that authoritatively stores everyone s public key. Everyone registers with the central database, and anyone can look up anyone else s public key in the database. Implication: everyone has to trust the key provider.

88 What does the Hamming Distance figure in the lecture slides mean?

89 I don t understand the figure either.

90 Here s a review of Hamming Distances though.

91 How many bit flips do you need to turn one binary string into another? That s it. That s Hamming distance.

92 Why do Hamming distances matter? Hamming distances put a bound on how much a Forward Error Correction algorithm can fix corrupted bitstrings back to their original value. If the valid words of a code have minimum Hamming distance D, then D-1 bit errors can be detected. If the valid words of a code have minimum Hamming distance D, then [(D-1)/2] bit errors can be corrected.

93 Good luck! My office hours ARE being held next week, but Prof Steenkiste s are not. TA s OH are pending their own exam schedules.

CSE/EE 461 Wireless and Contention-Free Protocols

CSE/EE 461 Wireless and Contention-Free Protocols CSE/EE 461 Wireless and Contention-Free Protocols Last Time The multi-access problem Medium Access Control (MAC) sublayer Random access protocols: Aloha CSMA variants Classic Ethernet (CSMA/CD) Application

More information

Virtual University of Pakistan. Describe the Hidden Node and Exposed Node problems in Standard? VUSR. [Larry L. Peterson]

Virtual University of Pakistan. Describe the Hidden Node and Exposed Node problems in Standard? VUSR. [Larry L. Peterson] www..net Solution Assignment No. 2 Question No. 1 Describe the Hidden Node and Exposed Node problems in 802.11 Standard? Hidden Node Problem: Consider the figure below. [Larry L. Peterson] B can exchange

More information

CSE 461: Multiple Access Networks. This Lecture

CSE 461: Multiple Access Networks. This Lecture CSE 461: Multiple Access Networks This Lecture Key Focus: How do multiple parties share a wire? This is the Medium Access Control (MAC) portion of the Link Layer Randomized access protocols: 1. Aloha 2.

More information

Link Layer: Retransmissions

Link Layer: Retransmissions Link Layer: Retransmissions Context on Reliability Where in the stack should we place reliability functions? Application Transport Network Link Physical CSE 461 University of Washington 2 Context on Reliability

More information

CSE 461: Wireless Networks

CSE 461: Wireless Networks CSE 461: Wireless Networks Wireless IEEE 802.11 A physical and multiple access layer standard for wireless local area networks (WLAN) Ad Hoc Network: no servers or access points Infrastructure Network

More information

Link Layer. (continued)

Link Layer. (continued) Link Layer (continued) Topics 1. Framing Delimiting start/end of frames 2. Error detection and correction Handling errors 3. Retransmissions Handling loss 4. Multiple Access 802.11, classic Ethernet 5.

More information

CS 3640: Introduction to Networks and Their Applications

CS 3640: Introduction to Networks and Their Applications CS 3640: Introduction to Networks and Their Applications Fall 2018, Lecture 7: The Link Layer II Medium Access Control Protocols Instructor: Rishab Nithyanand Teaching Assistant: Md. Kowsar Hossain 1 You

More information

CSE/EE 461 Section 2

CSE/EE 461 Section 2 CSE/EE 461 Section 2 Latency in a store-and-forward network 4ms, 10MB/s B How long does it take to send a 2kB packet from to B? 2ms, 10MB/s C 2ms, 10MB/s B What if it has to pass through a node C? Plan

More information

High Level View. EE 122: Ethernet and Random Access protocols. Medium Access Protocols

High Level View. EE 122: Ethernet and Random Access protocols. Medium Access Protocols High Level View EE 122: Ethernet and 802.11 Ion Stoica September 18, 2002 Goal: share a communication medium among multiple hosts connected to it Problem: arbitrate between connected hosts Solution goals:

More information

Getting Connected (Chapter 2 Part 4) Networking CS 3470, Section 1 Sarah Diesburg

Getting Connected (Chapter 2 Part 4) Networking CS 3470, Section 1 Sarah Diesburg Getting Connected (Chapter 2 Part 4) Networking CS 3470, Section 1 Sarah Diesburg Five Problems Encoding/decoding Framing Error Detection Error Correction Media Access Five Problems Encoding/decoding Framing

More information

EE 122: Ethernet and

EE 122: Ethernet and EE 122: Ethernet and 802.11 Ion Stoica September 18, 2002 (* this talk is based in part on the on-line slides of J. Kurose & K. Rose) High Level View Goal: share a communication medium among multiple hosts

More information

Mohamed Khedr.

Mohamed Khedr. Mohamed Khedr http://webmail.aast.edu/~khedr Tentatively Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7 Week 8 Week 9 Week 10 Week 11 Week 12 Week 13 Week 14 Week 15 Overview Packet Switching IP addressing

More information

CSE 461 Multiple Access. David Wetherall

CSE 461 Multiple Access. David Wetherall CSE 461 Multiple Access David Wetherall djw@cs.washington.edu How to share a link Multiplexing = networking term for sharing a resource among multiple users (e.g., link, protocol instance) Topics: Multiplexing

More information

CS 43: Computer Networks. 27: Media Access Contd. December 3, 2018

CS 43: Computer Networks. 27: Media Access Contd. December 3, 2018 CS 43: Computer Networks 27: Media Access Contd. December 3, 2018 Last Class The link layer provides lots of functionality: addressing, framing, media access, error checking could be used independently

More information

Chapter 12 Multiple Access 12.1

Chapter 12 Multiple Access 12.1 Chapter 12 Multiple Access 12.1 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. 12.2 Figure 12.1 Data link layer divided into two functionality-oriented sublayers

More information

Homework #4. Due: December 2, 4PM. CWND (#pkts)

Homework #4. Due: December 2, 4PM. CWND (#pkts) Homework #4 Due: December 2, 2009 @ 4PM EE122: Introduction to Communication Networks (Fall 2009) Department of Electrical Engineering and Computer Sciences College of Engineering University of California,

More information

Announcements: Assignment 4 due now Lab 4 due next Tuesday Assignment 5 posted, due next Thursday

Announcements: Assignment 4 due now Lab 4 due next Tuesday Assignment 5 posted, due next Thursday ECE/CS 372 introduction to computer networks Lecture 15 Announcements: Assignment 4 due now Lab 4 due next Tuesday Assignment 5 posted, due next Thursday Credit for lecture slides to Professor Bechir Hamdaoui

More information

CMPE 257: Wireless and Mobile Networking

CMPE 257: Wireless and Mobile Networking CMPE 257: Wireless and Mobile Networking Katia Obraczka Computer Engineering UCSC Baskin Engineering Lecture 3 CMPE 257 Winter'11 1 Announcements Accessing secure part of the class Web page: User id: cmpe257.

More information

Wireless Challenges : Computer Networking. Overview. Routing to Mobile Nodes. Lecture 25: Wireless Networking

Wireless Challenges : Computer Networking. Overview. Routing to Mobile Nodes. Lecture 25: Wireless Networking Wireless Challenges 15-441: Computer Networking Lecture 25: Wireless Networking Force us to rethink many assumptions Need to share airwaves rather than wire Don t know what hosts are involved Host may

More information

ECEN 5032 Data Networks Medium Access Control Sublayer

ECEN 5032 Data Networks Medium Access Control Sublayer ECEN 5032 Data Networks Medium Access Control Sublayer Peter Mathys mathys@colorado.edu University of Colorado, Boulder c 1996 2005, P. Mathys p.1/35 Overview (Sub)networks can be divided into two categories:

More information

IEEE , Token Rings. 10/11/06 CS/ECE UIUC, Fall

IEEE , Token Rings. 10/11/06 CS/ECE UIUC, Fall IEEE 802.11, Token Rings 10/11/06 CS/ECE 438 - UIUC, Fall 2006 1 Medium Access Control Wireless channel is a shared medium Need access control mechanism to avoid interference Why not CSMA/CD? 10/11/06

More information

Wireless and Mobile Networks

Wireless and Mobile Networks Wireless and Mobile Networks Raj Jain Washington University in Saint Louis Saint Louis, MO 63130 Jain@wustl.edu Audio/Video recordings of this lecture are available on-line at: http://www.cse.wustl.edu/~jain/cse473-11/

More information

Computer Network Fundamentals Spring Week 3 MAC Layer Andreas Terzis

Computer Network Fundamentals Spring Week 3 MAC Layer Andreas Terzis Computer Network Fundamentals Spring 2008 Week 3 MAC Layer Andreas Terzis Outline MAC Protocols MAC Protocol Examples Channel Partitioning TDMA/FDMA Token Ring Random Access Protocols Aloha and Slotted

More information

Unit 7 Media Access Control (MAC)

Unit 7 Media Access Control (MAC) Unit 7 Media Access Control (MAC) 1 Internet Model 2 Sublayers of Data Link Layer Logical link control (LLC) Flow control Error control Media access control (MAC) access control 3 Categorization of MAC

More information

Computer Communication Networks Midterm Review

Computer Communication Networks Midterm Review Computer Communication Networks Midterm Review ICEN/ICSI 416 Fall 2018 Prof. Aveek Dutta 1 Instructions The exam is closed book, notes, computers, phones. You can use calculator, but not one from your

More information

CMPE 257: Wireless and Mobile Networking

CMPE 257: Wireless and Mobile Networking CMPE 257: Wireless and Mobile Networking Katia Obraczka Computer Engineering UCSC Baskin Engineering Lecture 3 CMPE 257 Spring'15 1 Next week Announcements April 14: ICN (Spencer Sevilla) April 16: DTN

More information

Review. Error Detection: CRC Multiple access protocols. LAN addresses and ARP Ethernet. Slotted ALOHA CSMA/CD

Review. Error Detection: CRC Multiple access protocols. LAN addresses and ARP Ethernet. Slotted ALOHA CSMA/CD Review Error Detection: CRC Multiple access protocols Slotted ALOHA CSMA/CD LAN addresses and ARP Ethernet Some slides are in courtesy of J. Kurose and K. Ross Overview Ethernet Hubs, bridges, and switches

More information

CSCD 433 Network Programming Fall Lecture 7 Ethernet and Wireless

CSCD 433 Network Programming Fall Lecture 7 Ethernet and Wireless CSCD 433 Network Programming Fall 2016 Lecture 7 Ethernet and Wireless 802.11 1 Topics 802 Standard MAC and LLC Sublayers Review of MAC in Ethernet MAC in 802.11 Wireless 2 IEEE Standards In 1985, Computer

More information

ECE 435 Network Engineering Lecture 10

ECE 435 Network Engineering Lecture 10 ECE 435 Network Engineering Lecture 10 Vince Weaver http://web.eece.maine.edu/~vweaver vincent.weaver@maine.edu 28 September 2017 Announcements HW#4 was due HW#5 will be posted. midterm/fall break You

More information

IEEE Medium Access Control. Medium Access Control

IEEE Medium Access Control. Medium Access Control IEEE 802.11 Medium Access Control EECS3214 3 April 2018 Medium Access Control reliable data delivery access control MAC layer covers three functional areas: security 2 1 MAC Requirements To avoid interference

More information

Lecture 15 Networking Fundamentals. Today s Plan

Lecture 15 Networking Fundamentals. Today s Plan Lecture 15 Networking Fundamentals Slides attributed to Neil Spring Today s Plan Talk about networking in general Layers, Routing Specifically about IP and TCP Service model, what TCP provides Work our

More information

COMP/ELEC 429/556 Introduction to Computer Networks

COMP/ELEC 429/556 Introduction to Computer Networks COMP/ELEC 429/556 Introduction to Computer Networks Broadcast network access control Some slides used with permissions from Edward W. Knightly, T. S. Eugene Ng, Ion Stoica, Hui Zhang T. S. Eugene Ng eugeneng

More information

CS118 Discussion 1A, Week 9. Zengwen Yuan Dodd Hall 78, Friday 10:00 11:50 a.m.

CS118 Discussion 1A, Week 9. Zengwen Yuan Dodd Hall 78, Friday 10:00 11:50 a.m. CS118 Discussion 1A, Week 9 Zengwen Yuan Dodd Hall 78, Friday 10:00 11:50 a.m. 1 Outline Wireless: 802.11 Mobile IP Cellular Networks: LTE Sample final 2 Wireless and Mobile Network Wireless access: WIFI

More information

Medium Access Control. CSCI370 Lecture 5 Michael Hutt New York Institute of Technology

Medium Access Control. CSCI370 Lecture 5 Michael Hutt New York Institute of Technology Medium Access Control CSCI370 Lecture 5 Michael Hutt New York Institute of Technology The Data Link Layer Logical Link Control (LLC) IEEE 802.2 Standard RFC 1042 Provides three service options Unreliable

More information

15-441: Computer Networking. Wireless Networking

15-441: Computer Networking. Wireless Networking 15-441: Computer Networking Wireless Networking Outline Wireless Challenges 802.11 Overview Link Layer Ad-hoc Networks 2 Assumptions made in Internet Host are (mostly) stationary Address assignment, routing

More information

ECE 4450:427/527 - Computer Networks Spring 2017

ECE 4450:427/527 - Computer Networks Spring 2017 ECE 4450:427/527 - Computer Networks Spring 2017 Dr. Nghi Tran Department of Electrical & Computer Engineering Lecture 5.6: Wireless Networks - MAC Dr. Nghi Tran (ECE-University of Akron) ECE 4450:427/527

More information

CHAPTER 7 MAC LAYER PROTOCOLS. Dr. Bhargavi Goswami Associate Professor & Head Department of Computer Science Garden City College

CHAPTER 7 MAC LAYER PROTOCOLS. Dr. Bhargavi Goswami Associate Professor & Head Department of Computer Science Garden City College CHAPTER 7 MAC LAYER PROTOCOLS Dr. Bhargavi Goswami Associate Professor & Head Department of Computer Science Garden City College MEDIUM ACCESS CONTROL - MAC PROTOCOLS When the two stations transmit data

More information

Wireless Network and Mobility

Wireless Network and Mobility Wireless Network and Mobility Dept. of Computer Science, University of Rochester 2008-11-17 CSC 257/457 - Fall 2008 1 Wireless Networks and Mobility Wireless networking in the data link layer Short range:

More information

Medium Access Control. MAC protocols: design goals, challenges, contention-based and contention-free protocols

Medium Access Control. MAC protocols: design goals, challenges, contention-based and contention-free protocols Medium Access Control MAC protocols: design goals, challenges, contention-based and contention-free protocols 1 Why do we need MAC protocols? Wireless medium is shared Many nodes may need to access the

More information

Strengthening Unlicensed Band Wireless Backhaul

Strengthening Unlicensed Band Wireless Backhaul be in charge Strengthening Unlicensed Band Wireless Backhaul Use TDD/TDMA Based Channel Access Mechanism WHITE PAPER Strengthening Unlicensed Band Wireless Backhaul: Use TDD/TDMA Based Channel Access Mechanism

More information

Lecture 16: QoS and "

Lecture 16: QoS and Lecture 16: QoS and 802.11" CSE 123: Computer Networks Alex C. Snoeren HW 4 due now! Lecture 16 Overview" Network-wide QoS IntServ DifServ 802.11 Wireless CSMA/CA Hidden Terminals RTS/CTS CSE 123 Lecture

More information

Medium Access Control. IEEE , Token Rings. CSMA/CD in WLANs? Ethernet MAC Algorithm. MACA Solution for Hidden Terminal Problem

Medium Access Control. IEEE , Token Rings. CSMA/CD in WLANs? Ethernet MAC Algorithm. MACA Solution for Hidden Terminal Problem Medium Access Control IEEE 802.11, Token Rings Wireless channel is a shared medium Need access control mechanism to avoid interference Why not CSMA/CD? 9/15/06 CS/ECE 438 - UIUC, Fall 2006 1 9/15/06 CS/ECE

More information

Computer Communication III

Computer Communication III Computer Communication III Wireless Media Access IEEE 802.11 Wireless LAN Advantages of Wireless LANs Using the license free ISM band at 2.4 GHz no complicated or expensive licenses necessary very cost

More information

file:///c:/users/hpguo/dropbox/website/teaching/fall 2017/CS4470/H...

file:///c:/users/hpguo/dropbox/website/teaching/fall 2017/CS4470/H... 1 of 9 11/26/2017, 11:28 AM Homework 3 solutions 1. A window holds bytes 2001 to 5000. The next byte to be sent is 3001. Draw a figure to show the situation of the window after the following two events:

More information

Final Exam Computer Networks Fall 2015 Prof. Cheng-Fu Chou

Final Exam Computer Networks Fall 2015 Prof. Cheng-Fu Chou Final Exam Computer Networks Fall 2015 Prof. Cheng-Fu Chou Question 1: CIDR (10%) You are given a pool of 220.23.16.0/24 IP addresses to assign to hosts and routers in the system drawn below: a) (3%) How

More information

TCP so far Computer Networking Outline. How Was TCP Able to Evolve

TCP so far Computer Networking Outline. How Was TCP Able to Evolve TCP so far 15-441 15-441 Computer Networking 15-641 Lecture 14: TCP Performance & Future Peter Steenkiste Fall 2016 www.cs.cmu.edu/~prs/15-441-f16 Reliable byte stream protocol Connection establishments

More information

Total /75 xxxxxxxxxx

Total /75 xxxxxxxxxx ECE 358 Midterm Exam, F 2014 Dept. of Electrical and Computer Engineering ECE 358 Computer Networks Instructor: Sagar Naik Exam. Date and Time: Oct. 20, 2014, 1:30 PM 2:45 PM Rooms: EIT 1015 and RCH 307

More information

CS 43: Computer Networks Media Access. Kevin Webb Swarthmore College November 30, 2017

CS 43: Computer Networks Media Access. Kevin Webb Swarthmore College November 30, 2017 CS 43: Computer Networks Media Access Kevin Webb Swarthmore College November 30, 2017 Multiple Access Links & Protocols Two classes of links : point-to-point dial-up access link between Ethernet switch,

More information

The Link Layer II: Ethernet

The Link Layer II: Ethernet Monday Recap The Link Layer II: Ethernet q Link layer services q Principles for multiple access protocols q Categories of multiple access protocols CSC 249 March 24, 2017 1 2 Recap: Random Access Protocols

More information

ECE 158A: Lecture 13. Fall 2015

ECE 158A: Lecture 13. Fall 2015 ECE 158A: Lecture 13 Fall 2015 Random Access and Ethernet! Random Access! Basic idea: Exploit statistical multiplexing Do not avoid collisions, just recover from them When a node has packet to send Transmit

More information

Wireless LANs. ITS 413 Internet Technologies and Applications

Wireless LANs. ITS 413 Internet Technologies and Applications Wireless LANs ITS 413 Internet Technologies and Applications Aim: Aim and Contents Understand how IEEE 802.11 wireless LANs work Understand what influences the performance of wireless LANs Contents: IEEE

More information

Multiple Access Links and Protocols

Multiple Access Links and Protocols Multiple Access Links and Protocols Two types of links : point-to-point PPP for dial-up access point-to-point link between Ethernet switch and host broadcast (shared wire or medium) old-fashioned Ethernet

More information

Announcements / Wireless Networks and Applications Lecture 9: Wireless LANs Wireless. Regular Ethernet CSMA/CD.

Announcements / Wireless Networks and Applications Lecture 9: Wireless LANs Wireless. Regular Ethernet CSMA/CD. Announcements 18-452/18-750 Wireless Networks and Applications Lecture 9: Wireless LANs 802.11 Wireless Peter Steenkiste Homework 1 should be out by tomorrow Project 1 by Friday Schedule:» Thursday lecture

More information

Local Area Networks NETW 901

Local Area Networks NETW 901 Local Area Networks NETW 901 Lecture 4 Wireless LAN Course Instructor: Dr.-Ing. Maggie Mashaly maggie.ezzat@guc.edu.eg C3.220 1 Contents What is a Wireless LAN? Applications and Requirements Transmission

More information

Introduction to Wireless Networking CS 490WN/ECE 401WN Winter Lecture 4: Wireless LANs and IEEE Part II

Introduction to Wireless Networking CS 490WN/ECE 401WN Winter Lecture 4: Wireless LANs and IEEE Part II Introduction to Wireless Networking CS 490WN/ECE 401WN Winter 2007 Lecture 4: Wireless LANs and IEEE 802.11 Part II This lecture continues the study of wireless LANs by looking at IEEE 802.11. I. 802.11

More information

Lecture 12 December 04, Wireless Access. Graduate course in Communications Engineering. University of Rome La Sapienza. Rome, Italy

Lecture 12 December 04, Wireless Access. Graduate course in Communications Engineering. University of Rome La Sapienza. Rome, Italy Lecture 12 December 04, 2017 Wireless Access Graduate course in Communications Engineering University of Rome La Sapienza Rome, Italy 2017-2018 Random Medium Access Control Part II - CSMA and Collision

More information

CS 716: Introduction to communication networks. - 9 th class; 19 th Aug Instructor: Sridhar Iyer IIT Bombay

CS 716: Introduction to communication networks. - 9 th class; 19 th Aug Instructor: Sridhar Iyer IIT Bombay CS 716: Introduction to communication networks - 9 th class; 19 th Aug 2011 Instructor: Sridhar Iyer IIT Bombay Contention-based MAC: ALOHA Users transmit whenever they have data to send Collisions occur,

More information

LECTURE PLAN. Script. Introduction about MAC Types o ALOHA o CSMA o CSMA/CD o CSMA/CA

LECTURE PLAN. Script. Introduction about MAC Types o ALOHA o CSMA o CSMA/CD o CSMA/CA Course- B.Sc. Applied Physical Science (Computer Science) Year- IIIrd, Sem- Vth Subject Computer Science Paper- XVIIth, Computer Networks Lecture -11 Lecture Title- Medium Access Layer Script Today in

More information

Wireless Local Area Networks. Networks: Wireless LANs 1

Wireless Local Area Networks. Networks: Wireless LANs 1 Wireless Local Area Networks Networks: Wireless LANs 1 Wireless Local Area Networks The proliferation of laptop computers and other mobile devices (PDAs and cell phones) created an obvious application

More information

CSCI Spring Final Exam Solution

CSCI Spring Final Exam Solution CSCI 4211 16Spring Final Exam Solution 1. When an IP packet arrives a router, how the router decides what is the next router (output link) this packet to be forwarded to? What are the routing table and

More information

Multiple Access in Cellular and Systems

Multiple Access in Cellular and Systems Multiple Access in Cellular and 802.11 Systems 1 GSM The total bandwidth is divided into many narrowband channels. (200 khz in GSM) Users are given time slots in a narrowband channel (8 users) A channel

More information

CS519: Computer Networks. Lecture 5, Part 1: Mar 3, 2004 Transport: UDP/TCP demux and flow control / sequencing

CS519: Computer Networks. Lecture 5, Part 1: Mar 3, 2004 Transport: UDP/TCP demux and flow control / sequencing : Computer Networks Lecture 5, Part 1: Mar 3, 2004 Transport: UDP/TCP demux and flow control / sequencing Recall our protocol layers... ... and our protocol graph IP gets the packet to the host Really

More information

Lecture (08) Wireless Traffic Flow and AP Discovery

Lecture (08) Wireless Traffic Flow and AP Discovery Lecture (08) Wireless Traffic Flow and AP Discovery Dr. Ahmed ElShafee 1 Dr. Ahmed ElShafee, ACU Spring 2011, Wireless Network Agenda Wireless Frame Types Sending a Frames Wireless Frame Headers Frame

More information

Sharing Channels CS 118

Sharing Channels CS 118 Sharing Channels Computer Network Fundamentals Peter Reiher Page 1 Outline Carrier sense channel sharing Naming?? Page 2 Sending without a master 1. Message to send 2. Listen for quiet 3. Send message

More information

ICE 1332/0715 Mobile Computing (Summer, 2008)

ICE 1332/0715 Mobile Computing (Summer, 2008) ICE 1332/0715 Mobile Computing (Summer, 2008) Medium Access Control Prof. Chansu Yu http://academic.csuohio.edu/yuc/ Simplified Reference Model Application layer Transport layer Network layer Data link

More information

Wireless Local Area Networks (WLANs)) and Wireless Sensor Networks (WSNs) Computer Networks: Wireless Networks 1

Wireless Local Area Networks (WLANs)) and Wireless Sensor Networks (WSNs) Computer Networks: Wireless Networks 1 Wireless Local Area Networks (WLANs)) and Wireless Sensor Networks (WSNs) Computer Networks: Wireless Networks 1 Wireless Local Area Networks The proliferation of laptop computers and other mobile devices

More information

Chapter 16 Networking

Chapter 16 Networking Chapter 16 Networking Outline 16.1 Introduction 16.2 Network Topology 16.3 Network Types 16.4 TCP/IP Protocol Stack 16.5 Application Layer 16.5.1 Hypertext Transfer Protocol (HTTP) 16.5.2 File Transfer

More information

Name Student ID Department/Year. Final Examination. Introduction to Computer Networks Class#: Fall :20-11:00 Tuesday January 13, 2004

Name Student ID Department/Year. Final Examination. Introduction to Computer Networks Class#: Fall :20-11:00 Tuesday January 13, 2004 Final Examination Introduction to Computer Networks Class#: 901 31110 Fall 2003 9:20-11:00 Tuesday January 13, 2004 Prohibited 1. You are not allowed to write down the answers using pencils. Use only black-

More information

Lesson 2-3: The IEEE x MAC Layer

Lesson 2-3: The IEEE x MAC Layer Module 2: Establishing Wireless Connectivity Lesson 2-3: The IEEE 802.11x MAC Layer Lesson Overview This lesson describes basic IEEE 802.11x MAC operation, beginning with an explanation of contention schemes

More information

Medium Access Control (MAC) Protocols for Ad hoc Wireless Networks -IV

Medium Access Control (MAC) Protocols for Ad hoc Wireless Networks -IV Medium Access Control (MAC) Protocols for Ad hoc Wireless Networks -IV CS: 647 Advanced Topics in Wireless Networks Drs. Baruch Awerbuch & Amitabh Mishra Department of Computer Science Johns Hopkins University

More information

CS 123: Lecture 12, LANs, and Ethernet. George Varghese. October 24, 2006

CS 123: Lecture 12, LANs, and Ethernet. George Varghese. October 24, 2006 CS 123: Lecture 12, LANs, and Ethernet George Varghese October 24, 2006 Selective Reject Modulus failure Example w = 2, Max = 3 0 0 1 3 0 A(1) A(2) 1 0 retransmit A(1) A(2) buffer Case 1 Case 2 reject

More information

Review Materials: Set B EE122 Fall 2012

Review Materials: Set B EE122 Fall 2012 Review Materials: Set B EE122 Fall 2012 1. Lucky you re with AIMD Consider a generalized version of AIMD, where: for every window of data ACKed, the window size increases by a constant A when the window

More information

Student ID: CS457: Computer Networking Date: 5/8/2007 Name:

Student ID: CS457: Computer Networking Date: 5/8/2007 Name: CS457: Computer Networking Date: 5/8/2007 Name: Instructions: 1. Be sure that you have 10 questions 2. Write your Student ID (email) at the top of every page 3. Be sure to complete the honor statement

More information

Wireless MACs: MACAW/802.11

Wireless MACs: MACAW/802.11 Wireless MACs: MACAW/802.11 Mark Handley UCL Computer Science CS 3035/GZ01 Fundamentals: Spectrum and Capacity A particular radio transmits over some range of frequencies; its bandwidth, in the physical

More information

Lecture 24: CSE 123: Computer Networks Stefan Savage. HW4 due NOW

Lecture 24: CSE 123: Computer Networks Stefan Savage. HW4 due NOW Lecture 24: 802.11 CSE 123: Computer Networks Stefan Savage HW4 due NOW About the final Similar in style to midterm Some combination of easy questions, short answer and more in-depth questions Sample final

More information

Shared Access Networks Wireless. 1/27/14 CS mywireless 1

Shared Access Networks Wireless. 1/27/14 CS mywireless 1 Shared Access Networks Wireless 1 Wireless and Mobile Networks Background: # wireless (mobile) phone subscribers now exceeds # wired phone subscribers (5-to-1)! # wireless Internet-connected devices equals

More information

Rahman 1. Application

Rahman 1. Application Data Link layer Overview of IEEE 802.11 Application Presentation Session Transport LLC: On transmission, assemble data into a frame with address and CRC fields. On reception, disassemble frame, perform

More information

Aloha and slotted aloha

Aloha and slotted aloha CSMA 2/13/06 Aloha and slotted aloha Slotted aloha: transmissions are synchronized and only start at the beginning of a time slot. Aloha sender A sender B collision sender C t Slotted Aloha collision sender

More information

Midterm Exam CSCE 232: Computer Networks Fall Instructions:

Midterm Exam CSCE 232: Computer Networks Fall Instructions: Midterm Exam CSCE 232: Computer Networks Fall 2007 Last Name: First Name: Student ID: Instructions: 1. This is a close-book and close-notes exam. 2. There are seven questions in total. The number of points

More information

CSCI 466 Midterm Networks Fall 2011

CSCI 466 Midterm Networks Fall 2011 CSCI 466 Midterm Networks Fall 2011 Name: This exam consists of 7 problems on the following 9 pages. You may use your single- sided hand- written 8 ½ x 11 note sheet and a calculator during the exam. No

More information

Lecture 23 Overview. Last Lecture. This Lecture. Next Lecture ADSL, ATM. Wireless Technologies (1) Source: chapters 6.2, 15

Lecture 23 Overview. Last Lecture. This Lecture. Next Lecture ADSL, ATM. Wireless Technologies (1) Source: chapters 6.2, 15 Lecture 23 Overview Last Lecture ADSL, ATM This Lecture Wireless Technologies (1) Wireless LAN, CSMA/CA, Bluetooth Source: chapters 6.2, 15 Next Lecture Wireless Technologies (2) Source: chapter 16, 19.3

More information

Computer Network. Direct Link Networks Reliable Transmission. rev /2/2004 1

Computer Network. Direct Link Networks Reliable Transmission. rev /2/2004 1 Computer Network Direct Link Networks Reliable Transmission rev 1.01 24/2/2004 1 Outline Direct link networks (Ch. 2) Encoding Framing Error detection Reliable delivery Media access control Network Adapter

More information

COMP3331/9331 XXXX Computer Networks and Applications Final Examination (SAMPLE SOLUTIONS)

COMP3331/9331 XXXX Computer Networks and Applications Final Examination (SAMPLE SOLUTIONS) COMP3331/9331 XXXX Computer Networks and Applications Final Examination (SAMPLE SOLUTIONS) Question 1 (X marks) (a) The one-way propagation delay between A and B is 100/1 = 100 seconds. The RTT will be

More information

Links Reading: Chapter 2. Goals of Todayʼs Lecture. Message, Segment, Packet, and Frame

Links Reading: Chapter 2. Goals of Todayʼs Lecture. Message, Segment, Packet, and Frame Links Reading: Chapter 2 CS 375: Computer Networks Thomas Bressoud 1 Goals of Todayʼs Lecture Link-layer services Encoding, framing, and error detection Error correction and flow control Sharing a shared

More information

TCP over Wireless. Protocols and Networks Hadassah College Spring 2018 Wireless Dr. Martin Land 1

TCP over Wireless. Protocols and Networks Hadassah College Spring 2018 Wireless Dr. Martin Land 1 TCP over Wireless Protocols and Networks Hadassah College Spring 218 Wireless Dr. Martin Land 1 Classic TCP-Reno Ideal operation in-flight segments = cwnd (send cwnd without stopping) Cumulative ACK for

More information

A and C cant see each other, both send to B RTS/CTS can help

A and C cant see each other, both send to B RTS/CTS can help Virtual carrier sensing Recita,on 8 Wireless Networks First exchange control frames before transmi@ng data Sender issues Request to Send (RTS), incl. length of data Receiver responds with Clear to Send

More information

Reminder: Datalink Functions Computer Networking. Datalink Architectures

Reminder: Datalink Functions Computer Networking. Datalink Architectures Reminder: Datalink Functions 15-441 15 441 15-641 Computer Networking Lecture 5 Media Access Control Peter Steenkiste Fall 2015 www.cs.cmu.edu/~prs/15-441-f15 Framing: encapsulating a network layer datagram

More information

Lecture 25: CSE 123: Computer Networks Alex C. Snoeren. HW4 due NOW

Lecture 25: CSE 123: Computer Networks Alex C. Snoeren. HW4 due NOW Lecture 25: 802.11 CSE 123: Computer Networks Alex C. Snoeren HW4 due NOW Lecture 25 Overview 802.11 Wireless PHY layer overview Hidden Terminals Basic wireless challenge RTS/CTS Virtual carrier sense

More information

IEEE Technical Tutorial. Introduction. IEEE Architecture

IEEE Technical Tutorial. Introduction. IEEE Architecture IEEE 802.11 Technical Tutorial Introduction The purpose of this document is to give technical readers a basic overview of the new 802.11 Standard, enabling them to understand the basic concepts, principle

More information

Ethernet Switches Bridges on Steroids. Ethernet Switches. IEEE Wireless LAN. Ad Hoc Networks

Ethernet Switches Bridges on Steroids. Ethernet Switches. IEEE Wireless LAN. Ad Hoc Networks Ethernet Switches Bridges on Steroids layer 2 (frame) forwarding, filtering using LAN addresses Switching: A-to-B and A - to-b simultaneously, no collisions large number of interfaces often: individual

More information

Data and Computer Communications. Chapter 13 Wireless LANs

Data and Computer Communications. Chapter 13 Wireless LANs Data and Computer Communications Chapter 13 Wireless LANs Wireless LAN Topology Infrastructure LAN Connect to stations on wired LAN and in other cells May do automatic handoff Ad hoc LAN No hub Peer-to-peer

More information

Homework 1. Question 1 - Layering. CSCI 1680 Computer Networks Fonseca

Homework 1. Question 1 - Layering. CSCI 1680 Computer Networks Fonseca CSCI 1680 Computer Networks Fonseca Homework 1 Due: 27 September 2012, 4pm Question 1 - Layering a. Why are networked systems layered? What are the advantages of layering? Are there any disadvantages?

More information

Wireless Challenges : Computer Networking. Overview. Routing to Mobile Nodes. Lecture 24: Mobile and Wireless

Wireless Challenges : Computer Networking. Overview. Routing to Mobile Nodes. Lecture 24: Mobile and Wireless Wireless Challenges 15-441: Computer Networking Lecture 24: Mobile and Wireless Peter Steenkiste Fall 2010 www.cs.cmu.edu/~prs/15-441-f10 Force us to rethink many assumptions Need to share airwaves rather

More information

TCP : Fundamentals of Computer Networks Bill Nace

TCP : Fundamentals of Computer Networks Bill Nace TCP 14-740: Fundamentals of Computer Networks Bill Nace Material from Computer Networking: A Top Down Approach, 6 th edition. J.F. Kurose and K.W. Ross Administrivia Lab #1 due now! Reminder: Paper Review

More information

Outline Computer Networking. TCP slow start. TCP modeling. TCP details AIMD. Congestion Avoidance. Lecture 18 TCP Performance Peter Steenkiste

Outline Computer Networking. TCP slow start. TCP modeling. TCP details AIMD. Congestion Avoidance. Lecture 18 TCP Performance Peter Steenkiste Outline 15-441 Computer Networking Lecture 18 TCP Performance Peter Steenkiste Fall 2010 www.cs.cmu.edu/~prs/15-441-f10 TCP congestion avoidance TCP slow start TCP modeling TCP details 2 AIMD Distributed,

More information

Logical Link Control (LLC) Medium Access Control (MAC)

Logical Link Control (LLC) Medium Access Control (MAC) Overview of IEEE 802.11 Data Link layer Application Presentation Session Transport LLC: On transmission, assemble data into a frame with address and CRC fields. On reception, disassemble frame, perform

More information

Media Access Control in Ad Hoc Networks

Media Access Control in Ad Hoc Networks Media Access Control in Ad Hoc Networks The Wireless Medium is a scarce precious resource. Furthermore, the access medium is broadcast in nature. It is necessary to share this resource efficiently and

More information

CSCI-1680 Wireless Rodrigo Fonseca

CSCI-1680 Wireless Rodrigo Fonseca CSCI-1680 Wireless Rodrigo Fonseca Based partly on lecture notes by Sco2 Shenker and John Janno6 Wireless Today: wireless networking truly ubiquitous 802.11, 3G, (4G), WiMAX, Bluetooth, RFID, Sensor networks,

More information

EECS 122, Lecture 19. Reliable Delivery. An Example. Improving over Stop & Wait. Picture of Go-back-n/Sliding Window. Send Window Maintenance

EECS 122, Lecture 19. Reliable Delivery. An Example. Improving over Stop & Wait. Picture of Go-back-n/Sliding Window. Send Window Maintenance EECS 122, Lecture 19 Today s Topics: More on Reliable Delivery Round-Trip Timing Flow Control Intro to Congestion Control Kevin Fall, kfall@cs cs.berkeley.eduedu Reliable Delivery Stop and Wait simple

More information

Problem 7. Problem 8. Problem 9

Problem 7. Problem 8. Problem 9 Problem 7 To best answer this question, consider why we needed sequence numbers in the first place. We saw that the sender needs sequence numbers so that the receiver can tell if a data packet is a duplicate

More information