Media Access. Both are on shared media. Then, what s really the problem?

Size: px
Start display at page:

Download "Media Access. Both are on shared media. Then, what s really the problem?"

Transcription

1 Multiple Access

2 Media Access Both are on shared media. Then, what s really the problem? 2

3 The Channel Access Problem Multiple nodes share a channel A B C Pairwise communication desired Simultaneous communication not possible MAC Protocols Suggests a scheme to schedule communication Maximize number of communications Ensure fairness among all transmitters 3

4 The Trivial Solution Transmit and pray Plenty of collisions --> poor throughput at high load A B C collision 4

5 The Simple Fix Transmit and pray Plenty of collisions --> poor throughput at high load Listen before you talk Carrier sense multiple access (CSMA) Defer transmission when signal on channel Don t transmit A B C Can collisions still occur? 5

6 CSMA collisions Collisions can still occur: Propagation delay non-zero between transmitters spatial layout of nodes When collision: Entire packet transmission time wasted note: Role of distance & propagation delay in determining collision probability 6

7 Collision Detection in Wired Media

8 CSMA/CD (Collision Detection) Keep listening to channel While transmitting If (Transmitted_Signal!= Sensed_Signal) Sender knows it s a Collision ABORT 8

9 2 Observations on CSMA/CD Transmitter can send/listen concurrently If (Transmitted - Sensed = null)? Then success The signal is identical at Tx and Rx Non-dispersive The TRANSMITTER can detect if and when collision occurs 9

10 Unfortunately Both observations do not hold for wireless! Because 10

11 Wireless Medium Access Control A B C D Signal power Distance 11

12 Wireless Media Disperse Energy A cannot send and listen in parallel A B C D Signal power Signal not same at different locations Distance 12

13 Collision Detection Difficult D A B C Signal reception based on SINR Transmitter can only hear itself Cannot determine signal quality at receiver 13

14 14 Calculating SINR A B C α α CB C transmit C B AB A A B d P I d P SoI N Noise I Interference SoI SignalOfInterest SINR transmit = = + = ) ( ) ( ) ( α α CB C transmit AB A A B d P N d P SINR transmit + = D

15 Red signal >> Blue signal Red < Blue = collision X A B C D Signal power Distance 15

16 Important: C has not heard A, but can interfere at receiver B C is the hidden terminal to A X A B C D Signal power Distance 16

17 Important: X has heard A, but should not defer transmission to Y Y X is the exposed terminal to A X A B C D Signal power Critical fact #1: Interference is receiver driven while CSMA is sender driven Distance 17

18 So, how do we cope with Hidden/Exposed Terminals? 18

19 How to prevent C from trasmitting? X A B C D Signal power Distance 19

20 An Idea! A B C D A node decides to intelligently choose a Carrier sensing threshold (T) The node senses channel If signal > T, then node does not transmit If signal < T, then transmit Possible to guarantee no collisions? 20

21 An Idea! X A B C D Signal power Distance 21

22 A Project Idea! Will this solve the wireless MAC problem? Do not transmit in this region X A B C D Signal power T Distance 22

23 The Emergence of MACA, MACAW, & Wireless MAC proved to be non-trivial research by Karn (MACA) research by Bhargavan (MACAW) Led to IEEE committee The standard was ratified in

24 IEEE RTS = Request To Send M Y CTS = Clear To Send S RTS CTS D X K 24

25 IEEE silenced M Y S Data D silenced ACK X silenced K silenced 25

26 MACA variant: DFWMAC in IEEE sender receiver idle idle ACK RxBusy time-out NAK; RTS packet ready to send; RTS wait for the right to send CTS; data time-out; RTS data; ACK time-out data; NAK RTS; CTS wait for ACK wait for data ACK: positive acknowledgement NAK: negative acknowledgement RxBusy: receiver busy RTS; RxBusy

27 CSMA/CA CSMA: Listen before transmit Collision avoidance when transmitting a packet, choose a backoff interval in the range [0, CW] CW is contention window Count down the backoff interval when medium is idle count-down is suspended if medium becomes busy Transmit when backoff interval reaches 0

28 Congestion Avoidance: Example busy B1 = 25 wait B1 = 5 data B2 = 20 busy data B2 = 15 wait B2 = 10 B1 and B2 are backoff intervals at nodes 1 and 2

29 RTS/CTS + ACK Sender sends RTS with NAV (Network allocation Vector, i.e. reservation parameter that determines amount of time the data packet needs the medium) Receiver acknowledges via CTS (if ready to receive) CTS reserves channel for sender, notifying possibly hidden stations Sender can now send data at once, acknowledgement via ACK Other stations store NAV distributed via RTS and CTS sender DIFS RTS data receiver SIFS CTS SIFS SIFS ACK other stations NAV (RTS) NAV (CTS) defer access DIFS new contention data t

30 Fragmentation sender receiver DIFS RTS SIFS CTS SIFS frag 1 SIFS ACK SIFS 1 frag 2 SIFS ACK2 other stations NAV (RTS) NAV (CTS) NAV (frag 1 ) NAV (ACK 1 ) DIFS contention data t

31 Steps All backlogged nodes choose a random number R = rand (0, CW_min) Each node counts down R Continue carrier sensing while counting down Once carrier busy, freeze countdown Whoever reaches ZERO transmits RTS Neighbors freeze countdown, decode RTS RTS contains (CTS + DATA + ACK) duration = T_comm Neighbors set NAV = T_comm Remains silent for NAV time 31

32 Steps Receiver replies with CTS Also contains (DATA + ACK) duration. Neighbors update NAV again Tx sends DATA, Rx acknowledges with ACK After ACK, everyone initiates remaining countdown Tx chooses new R = rand (0, CW_min) If RTS or DATA collides (i.e., no CTS/ACK returns) Indicates collision RTS chooses new random no. R1 = rand (0, 2*CW_min) Note Exponential Backoff Ri = rand (0, 2^i * CW_min) Once successful transmission, reset to rand(0, CW_min) 32

33 But is that enough? 33

34 RTS/CTS Does it solve hidden terminals? Assuming carrier sensing zone = communication zone CTS E RTS F A B C CTS D E does not receive CTS successfully Can later initiate transmission to D. Hidden terminal problem remains. 34

35 Hidden Terminal Problem How about increasing carrier sense range?? E will defer on sensing carrier no collision!!! CTS E RTS F A B C Data D 35

36 Hidden Terminal Problem But what if barriers/obstructions?? E doesn t hear C Carrier sensing does not help CTS E RTS F A B C Data D 36

37 Exposed Terminal B should be able to transmit to A RTS prevents this RTS CTS E A B C D 37

38 Exposed Terminal B should be able to transmit to A Carrier sensing makes the situation worse RTS CTS E A B C D 38

39 Another Problem Multi-Channel Hidden Terminals Channel 1 Channel 2 RTS A B C A sends RTS Slides Courtesy of So and Vaidya

40 Multi-Channel Hidden Terminals Channel 1 Channel 2 CTS A B C B sends CTS C does not hear CTS because C is listening on channel 2

41 Multi-Channel Hidden Terminals Channel 1 Channel 2 DATA RTS A B C C switches to channel 1 and transmits RTS Collision occurs at B

42 Thoughts! does not solve HT/ET completely Only alleviates the problem through RTS/CTS and recommends larger CS zone Large CS zone aggravates exposed terminals Spatial reuse reduces A tradeoff RTS/CTS packets also consume bandwidth Moreover, backing off mechanism is also wasteful The search for the best MAC protocol is still on. However, is being optimized too. Thus, wireless MAC research still alive 42

43 WLAN - IEEE

44 Mobile Communication Technology according to IEEE Local wireless networks WLAN WiFi a b h g i/e/ /n/ /z/aa Personal wireless nw WPAN Bluetooth ZigBee a/b/c/d/e/f/g ,.6 (WBAN) b/c Wireless distribution networks WMAN (Broadband Wireless Access) WiMAX + Mobility [ (Mobile Broadband Wireless Access)] e (addition to.16 for mobile devices)

45 IEEE Requirements Wi-Fi often used by the public as a synonym for IEEE wireless LAN (WLAN). Design for small coverage (e.g. office, home) Low/no mobility High data-rate applications Ability to integrate real time applications and non-real-time applications Use un-licensed spectrum

46 802.11: Infrastructure STA 1 ESS LAN BSS 1 Access Point BSS 2 Portal Distribution System Access Point 802.x LAN STA LAN STA 3 Architecture similar to cellular networks station (STA) terminal with access mechanisms to the wireless medium and radio contact to the access point access point (AP) station integrated into the wireless LAN and the distribution system basic service set (BSS) group of stations using the same AP portal bridge to other (wired) networks distribution system interconnection network to form one logical network (EES: Extended Service Set) based on several BSS

47 Architecture of An Ad-hoc Network LAN Direct communication within a limited range STA 1 IBSS 1 STA 3 Station (STA): terminal with access mechanisms to the wireless medium STA 2 Independent Basic Service Set (IBSS): group of stations using the same radio frequency IBSS 2 STA 5 STA LAN

48 IEEE Standard mobile terminal fixed terminal application TCP IP access point infrastructure network application TCP IP LLC LLC LLC MAC MAC MAC MAC PHY PHY PHY PHY

49 Layers and functions MAC access mechanisms, fragmentation, encryption MAC Management synchronization, roaming, MIB, power management PLCP Physical Layer Convergence Protocol clear channel assessment signal (carrier sense) PMD Physical Medium Dependent modulation, coding PHY Management channel selection, MIB Station Management coordination of all management functions PHY DLC LLC MAC PLCP PMD MAC Management PHY Management Station Management

50 IEEE Physical Layer Family of IEEE standards: unlicensed frequency spectrum: 900Mhz, 2.4Ghz, 5.1Ghz, 5.7Ghz 300 MHz GHz GHz and b/g a

51 The IEEE Family Protocol Release Data Freq. Rate (typical) Rate (max) Legacy GHz 1 Mbps 2Mbps? Range (indoor) a GHz 25 Mbps 54 Mbps b GHz 6.5 Mbps 11 Mbps g GHz 25 Mbps 54 Mbps n /5 GHz 200 Mbps 540 Mbps ~30 m ~30 m ~30 m ~50 m

52 802.11a Modulation Use OFDM to divide each physical channel (20 MHz) into 52 subcarriers (312.5 KHz each) 48 data, 4 pilot Adaptive modulation BPSK: 6, 9 Mbps QPSK: 12, 18 Mbps 16-QAM: 24, 36 Mbps 64-QAM: 48, 54 Mbps

53 MAC layer I - DFWMAC Traffic services Asynchronous Data Service (mandatory) exchange of data packets based on best-effort support of broadcast and multicast Time-Bounded Service (optional) implemented using PCF (Point Coordination Function) Access methods DFWMAC-DCF CSMA/CA (mandatory) collision avoidance via randomized back-off mechanism minimum distance between consecutive packets ACK packet for acknowledgements (not for broadcasts) DFWMAC-DCF w/ RTS/CTS (optional) Distributed Foundation Wireless MAC avoids hidden terminal problem DFWMAC- PCF (optional) access point polls terminals according to a list

54 MAC layer II Priorities defined through different inter frame spaces no guaranteed, hard priorities SIFS (Short Inter Frame Spacing) highest priority, for ACK, CTS, polling response PIFS (PCF IFS) medium priority, for time-bounded service using PCF DIFS (DCF, Distributed Coordination Function IFS) lowest priority, for asynchronous data service DIFS DIFS medium busy PIFS SIFS contention next frame direct access if medium is free DIFS t

55 Inter Frame Spacing b a g asifstime 10 usec 16 usec 10 usec aslottime 20 usec 9 usec 20 usec (mixed); 9 usec (g only) adiftime (2xSlot+SIFS) 50 usec 34 usec 50 usec; 28 usec 55

56 Frame format Types control frames, management frames, data frames Sequence numbers important against duplicated frames due to lost ACKs Addresses receiver, transmitter (physical), BSS identifier, sender (logical) Miscellaneous sending time, checksum, frame control, data bytes Duration/ Address Address Address Sequence ID Control Frame Control Protocol version Type Subtype To DS More Frag Retry Power Mgmt Address Data 4 bits From DS More Data WEP Order CRC

57 MAC address format scenario to DS from address 1 address 2 address 3 address 4 DS ad-hoc network 0 0 DA SA BSSID - infrastructure 0 1 DA BSSID SA - network, from AP infrastructure 1 0 BSSID SA DA - network, to AP infrastructure network, within DS 1 1 RA TA DA SA DS: Distribution System AP: Access Point DA: Destination Address SA: Source Address BSSID: Basic Service Set Identifier RA: Receiver Address TA: Transmitter Address

58 Special Frames: ACK, RTS, CTS Acknowledgement ACK bytes Frame Duration Receiver Control Address CRC Request To Send RTS bytes Frame Duration Receiver Transmitter CRC Control Address Address Clear To Send CTS bytes Frame Duration Receiver Control Address CRC

59 Example: b Throughout Suppose TCP with 1460 bytes payload b data frame size (not including preamble): 1536 bytes TCP ACK data frame size (not including preamble): 76 bytes b ACK frame size 14 bytes Suppose b at the highest rate 8 bits per symbol Msps Q: What is TCP/802.11b throughput?

60 Example: b Throughout Each transaction requires 2,084 µs. At that duration, 479 exchanges can complete per second. With a TCP payload of 1,460 bytes per exchange, the throughput is 5.7 Mbps.

61 Wireless Ad-Hoc Networks

62 Wireless Ad-hoc Networks Network without infrastructure Use components of participants for networking Examples Single-hop: All partners max. one hop apart Bluetooth piconet, PDAs in a room, gaming devices Multi-hop: Cover larger distances, circumvent obstacles Bluetooth scatternet, TETRA police network, car-to-car networks Internet: MANET (Mobile Ad-hoc Networking) group

63 Manet: Mobile Ad-hoc Networking Mobile Router Manet Mobile Devices Mobile IP, DHCP Fixed Network Router End system

64 Routing Goal: determine good path (sequence of routers) thru network from source to dest Global information: all routers have complete Topology, link cost info link state algorithm Decentralized: router knows physically-connected neighbors, link costs to Neighbors routers exchange of info with neighbors Distance vector routing: the routing table is constructed from a distance vector at each node routing table (at each host): the next hop for each destination in the network

65 Distance Vector Routing Distance vector at node E D (E,D,C) c(e,d) + shortest(d,c) ==2+2 = 4 D (E,D,A) c(e,d) + shortest(d,a) ==2+3 = 5 D (E,B,A) c(e,b) + shortest(b,a) ==8+6 = 14

66 Routing Problem Highly dynamic network topology Device mobility plus varying channel quality Separation and merging of networks possible Asymmetric connections possible N 7 N 6 N 6 N 7 N 1 N 1 N 2 N 3 N 3 N 2 N 4 N 5 good link weak link N 4 N 5 time = t 1 time = t 2

67 Traditional routing algorithms Distance Vector periodic exchange of messages with all physical neighbors that contain information about who can be reached at what distance selection of the shortest path if several paths available Link State periodic notification of all routers about the current state of all physical links router get a complete picture of the network Example ARPA packet radio network (1973), DV-Routing every 7.5s exchange of routing tables including link quality updating of tables also by reception of packets routing problems solved with limited flooding

68 Routing in Ad-hoc Networks THE big topic in many research projects Far more than 50 different proposals exist The most simplest one: Flooding! Reasons Classical approaches from fixed networks fail Very slow convergence, large overhead High dynamicity, low bandwidth, low computing power Metrics for routing Minimal Number of nodes, loss rate, delay, congestion, interference Maximal Stability of the logical network, battery run-time, time of connectivity

69 Problems of Traditional Routing Algorithms Dynamic of the topology frequent changes of connections, connection quality, participants Limited performance of mobile systems periodic updates of routing tables need energy without contributing to the transmission of user data, sleep modes difficult to realize limited bandwidth of the system is reduced even more due to the exchange of routing information links can be asymmetric, i.e., they can have a direction dependent transmission quality

70 Distance Vector Routing Early work on demand version: AODV Expansion of distance vector routing Sequence numbers for all routing updates assures in-order execution of all updates avoids loops and inconsistencies Decrease of update frequency store time between first and best announcement of a path inhibit update if it seems to be unstable (based on the stored time values)

71 Distance Vector Routing B A Link 1 Link 2 C Link 3 Link 5 Link 4 Destination Link Hop count A 4 2 B 4 2 C 4 1 D local 0 E 6 1 E D Link 6 Consider D Initially nothing in routing table. When it receives an update from C and E, it notes that these nodes are one hop away. Subsequent route updates allow D to form its routing table.

72 Destination Sequenced Distance Vector (DSDV) A Link 2 Broken Link 4 D Link 1 C Link 6 Broken B Link 3 Link 5 Network partitions into two isolated islands Disadvantage of Distance Vector Routing is formation of loops. Let Link 2 break, and after some time let link 3 break. E

73 Destination Sequenced Distance Vector (DSDV) After Link 2 is broken, Node A routes packets to C, D, and E through Node B. Node B detects that Link 3 is broken. It sets the distance to nodes C, D and E to be infinity. Let Node A in the meantime transmit a update saying that it can reach nodes C, D, and E with the appropriate costs that were existing before i.e., via Node B. Node B thinks it can route packets to C, D, and E via Node A. Node A thinks it can route packets to C, D, and E, via Node B. A routing loop is formed Counting to Infinity problem. Methods that were proposed to overcome this

74 Destination Sequenced Distance Vector (DSDV) A D Lin k 1 BrokenLin k 2 Broken C Lin k 4 Lin k 6 B Lin k 3 Lin k 5 Network partitions into two isolated islands Node A s update is stale!!! Sequence number indicated for nodes C,D, and E is lower than the sequence number maintained at B. Looping avoided! E Each routing table entry is tagged with a sequence number that is originated by the corresponding destination node in that entry.

75 Dynamic Source Routing I Split routing into discovering a path and maintaining a path Discover a path only if a path for sending packets to a certain destination is needed and no path is currently available Maintaining a path only while the path is in use one has to make sure that it can be used continuously No periodic updates needed!

76 Dynamic Source Routing II Path discovery broadcast a packet with destination address and unique ID if a station receives a broadcast packet if the station is the receiver (i.e., has the correct destination address) then return the packet to the sender (path was collected in the packet) if the packet has already been received earlier (identified via ID) then discard the packet otherwise, append own address and broadcast packet sender receives packet with the current path (address list) Optimizations limit broadcasting if maximum diameter of the network is known caching of address lists (i.e. paths) with help of passing packets stations can use the cached information for path discovery (own paths or paths for other hosts)

77 DSR: Route Discovery Sending from C to O P R C G Q A B E H I K M O D F J L N

78 DSR: Route Discovery Broadcast P R [O,C,4711] C [O,C,4711] G Q A B E H I K M O D F J L N

79 DSR: Route Discovery P R [O,C/B,4711] C [O,C/G,4711] G [O,C/G,4711] Q A B E [O,C/E,4711] H I K M O D F J L N

80 DSR: Route Discovery P R C G Q A [O,C/B/A,4711] B D E F H I [O,C/G/I,4711] K [O,C/E/H,4711] L J M N O [O,C/B/D,4711] (alternatively: [O,C/E/D,4711])

81 DSR: Route Discovery P R C G Q A B E H I [O,C/G/I/K,4711] K M O D F J L N [O,C/B/D/F,4711] [O,C/E/H/J,4711]

82 DSR: Route Discovery P R C G Q A B E H I K [O,C/G/I/K/M,4711] M O D F J L N [O,C/E/H/J/L,4711] (alternatively: [O,C/G/I/K/L,4711])

83 DSR: Route Discovery P R C G Q A B E H I K M O D F J L N [O,C/E/H/J/L/N,4711]

84 DSR: Route Discovery P R C G Q A B E H I K Path: M, K, I, G M O D F J L N

85 Dynamic Source Routing III Maintaining paths after sending a packet wait for an acknowledgement (if applicable) listen into the medium to detect if other stations forward the packet (if possible) request an explicit acknowledgement if a station encounters problems it can inform the sender of a packet or look-up a new path locally

86 Interference-based routing Routing based on assumptions about interference between signals N 1 N 2 R 1 S 1 N 3 N 4 N 5 N 6 R 2 S 2 neighbors (i.e. within radio range) N 7 N 8 N 9 Transmissions along the red and blue routes will mutually interfere

87 Examples for Interference based Routing Least Interference Routing (LIR) calculate the cost of a path based on the number of stations that can receive a transmission Max-Min Residual Capacity Routing (MMRCR) calculate the cost of a path based on a probability function of successful transmissions and interference Least Resistance Routing (LRR) calculate the cost of a path based on interference, jamming and other transmissions LIR is very simple to implement, only information from direct neighbors is necessary

88 A Plethora of Ad Hoc Routing Protocols Flat proactive FSLS Fuzzy Sighted Link State FSR Fisheye State Routing OLSR Optimized Link State Routing Protocol (RFC 3626) TBRPF Topology Broadcast Based on Reverse Path Forwarding reactive AODV Ad hoc On demand Distance Vector (RFC 3561) DSR Dynamic Source Routing (RFC 4728) DYMO Dynamic MANET On-demand Hierarchical CGSR Clusterhead-Gateway Switch Routing HSR Hierarchical State Routing LANMAR Landmark Ad Hoc Routing ZRP Zone Routing Protocol Geographic position assisted DREAM Distance Routing Effect Algorithm for Mobility GeoCast Geographic Addressing and Routing GPSR Greedy Perimeter Stateless Routing LAR Location-Aided Routing

89 Further Difficulties and Research Areas Auto-Configuration Assignment of addresses, function, profile, program, Service discovery Discovery of services and service providers Multicast Transmission to a selected group of receivers Quality-of-Service Maintenance of a certain transmission quality Power control Minimizing interference, energy conservation mechanisms Security Data integrity, protection from attacks (e.g. Denial of Service) Scalability 10 nodes? 100 nodes? 1000 nodes? nodes? Integration with fixed networks

90 Clustering of Ad-hoc Networks Base station Internet Cluster head Cluster Super cluster

91 Challenges in WiFi Again, explosion of users, devices Interference, interference, interference Heavy interference /contention when accessing the AP, no QoS support Inter-AP interference Interference from other devices (microwave, cordless phones) in the same frequency band Mobility support Seamless roaming when users move between APs Normally low speed (3-10mph)

92 Challenges in Ad-hoc Networks A flexible network infrastructure Peer-to-peer communications No backbone infrastructure Routing can be multi-hop Topology is dynamic Challenges Devices need to self-manage to survive Manage interference (similar to WiFi but without AP, much harder) Manage connectivity and routing (node mobility and unreliable links) Transmission, access, and routing strategies for ad-hoc networks are generally ad-hoc User collaboration is a good direction but there are always selfish / malicious users

93 How does Wireless affect Networking? Wireless access is different from Ethernet access Wireless routing is different from IP routing Wireless security is different from wired security

94 Wireless Access vs. Ethernet Access Ethernet: fixed connection, always on, stable, fixed rate Wireless: unreliable connection, competition based, fading/unreliable, dynamic rate, limited bandwidth Critical: how to coordinate among devices to avoid interference Mobility Cellular: centralized, base station tells each device when and how to send/receive data WLAN + Ad hoc: distributed, CSMA, compete and backoff neighbor discovery + topology control Rate adaptations

95 Wireless Routing vs. Wired Routing Aside from traditional multi-hop routing Mobility: route discovery and maintenance Interference, interference, interference Multi-hop interference mitigation Spectrum assignment, multi-channel networks

96 Why is Security more of a Concern in Wireless? No inherent physical protection Physical connections between devices are replaced by logical associations Sending and receiving messages do not need physical access to the network infrastructure (cables, hubs, routers, etc.) Broadcast communications Wireless usually has a broadcast nature Transmissions can be overheard by anyone in range Anyone can generate transmissions, which will be received by other devices in range which will interfere with other nearby transmissions and may prevent their correct reception (jamming)

97 Wireless Attacks Eavesdropping is easy Injecting bogus messages into the network is easy Replaying previously recorded messages is easy Illegitimate access to the network and its services is easy Denial of service is easily achieved by jamming More

standard. Acknowledgement: Slides borrowed from Richard Y. Yale

standard. Acknowledgement: Slides borrowed from Richard Y. Yale 802.11 standard Acknowledgement: Slides borrowed from Richard Y. Yang @ Yale IEEE 802.11 Requirements Design for small coverage (e.g. office, home) Low/no mobility High data rate applications Ability to

More information

Media Access. Both are on shared media. Then, what s really the problem?

Media Access. Both are on shared media. Then, what s really the problem? Multiple Access Media Access Both are on shared media. Then, what s really the problem? 2 The Channel Access Problem Multiple nodes share a channel A B C Pairwise communication desired Simultaneous communication

More information

Data Communications. Data Link Layer Protocols Wireless LANs

Data Communications. Data Link Layer Protocols Wireless LANs Data Communications Data Link Layer Protocols Wireless LANs Wireless Networks Several different types of communications networks are using unguided media. These networks are generally referred to as wireless

More information

Mobile Communications Chapter 8: Routing Protocols

Mobile Communications Chapter 8: Routing Protocols Mobile Communications Chapter 8: Routing Protocols Ad-hoc networks Routing protocols Prof. Dr.-Ing. Jochen Schiller, http://www.jochenschiller.de/ MC SS05 8.1 Mobile ad hoc networks Standard Mobile IP

More information

Computer Networks. Wireless LANs

Computer Networks. Wireless LANs Computer Networks Wireless LANs Mobile Communication Technology according to IEEE (examples) Local wireless networks WLAN 802.11 Personal wireless nw WPAN 802.15 WiFi 802.11a 802.11b 802.11h 802.11i/e/

More information

Local Area Networks NETW 901

Local Area Networks NETW 901 Local Area Networks NETW 901 Lecture 4 Wireless LAN Course Instructor: Dr.-Ing. Maggie Mashaly maggie.ezzat@guc.edu.eg C3.220 1 Contents What is a Wireless LAN? Applications and Requirements Transmission

More information

4.3 IEEE Physical Layer IEEE IEEE b IEEE a IEEE g IEEE n IEEE 802.

4.3 IEEE Physical Layer IEEE IEEE b IEEE a IEEE g IEEE n IEEE 802. 4.3 IEEE 802.11 Physical Layer 4.3.1 IEEE 802.11 4.3.2 IEEE 802.11b 4.3.3 IEEE 802.11a 4.3.4 IEEE 802.11g 4.3.5 IEEE 802.11n 4.3.6 IEEE 802.11ac,ad Andreas Könsgen Summer Term 2012 4.3.3 IEEE 802.11a Data

More information

Mobile Ad-hoc Networks. Computer Networks

Mobile Ad-hoc Networks. Computer Networks Mobile Ad-hoc Networks Computer Networks Mobile ad hoc networks Standard Mobile IP needs an infrastructure Home Agent/Foreign Agent in the fixed network DNS, routing etc. are not designed for mobility

More information

Mobile Communications Chapter 7: Wireless LANs

Mobile Communications Chapter 7: Wireless LANs Mobile Communications Chapter 7: Wireless LANs Characteristics IEEE 802.11 (PHY, MAC, Roaming,.11a, b, g, h, i, n z) Bluetooth / IEEE 802.15.x IEEE 802.16/.20/.21/.22 RFID Comparison Prof. Jó Ueyama courtesy

More information

Mobile & Wireless Networking. Lecture 7: Wireless LAN

Mobile & Wireless Networking. Lecture 7: Wireless LAN 192620010 Mobile & Wireless Networking Lecture 7: Wireless LAN [Schiller, Section 7.3] [Reader, Part 6] [Optional: "IEEE 802.11n Development: History, Process, and Technology", Perahia, IEEE Communications

More information

ICE 1332/0715 Mobile Computing (Summer, 2008)

ICE 1332/0715 Mobile Computing (Summer, 2008) ICE 1332/0715 Mobile Computing (Summer, 2008) IEEE 802.11 Prof. Chansu Yu http://academic.csuohio.edu/yuc/ Contents Overview of IEEE 802.11 Frame formats MAC frame PHY frame IEEE 802.11 IEEE 802.11b IEEE

More information

Lecture 16: QoS and "

Lecture 16: QoS and Lecture 16: QoS and 802.11" CSE 123: Computer Networks Alex C. Snoeren HW 4 due now! Lecture 16 Overview" Network-wide QoS IntServ DifServ 802.11 Wireless CSMA/CA Hidden Terminals RTS/CTS CSE 123 Lecture

More information

Mohamed Khedr.

Mohamed Khedr. Mohamed Khedr http://webmail.aast.edu/~khedr Tentatively Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7 Week 8 Week 9 Week 10 Week 11 Week 12 Week 13 Week 14 Week 15 Overview Packet Switching IP addressing

More information

Mobile Communications Chapter 7: Wireless LANs

Mobile Communications Chapter 7: Wireless LANs Characteristics IEEE 802.11 PHY MAC Roaming IEEE 802.11a, b, g, e HIPERLAN Bluetooth Comparisons Prof. Dr.-Ing. Jochen Schiller, http://www.jochenschiller.de/ MC SS02 7.1 Comparison: infrastructure vs.

More information

CS 348: Computer Networks. - WiFi (contd.); 16 th Aug Instructor: Sridhar Iyer IIT Bombay

CS 348: Computer Networks. - WiFi (contd.); 16 th Aug Instructor: Sridhar Iyer IIT Bombay CS 348: Computer Networks - WiFi (contd.); 16 th Aug 2012 Instructor: Sridhar Iyer IIT Bombay Clicker-1: Wireless v/s wired Which of the following differences between Wireless and Wired affect a CSMA-based

More information

Introduction to IEEE

Introduction to IEEE Introduction to IEEE 802.11 Characteristics of wireless LANs Advantages very flexible within the reception area Ad hoc networks without previous planning possible (almost) no wiring difficulties more robust

More information

IEEE WLANs (WiFi) Part II/III System Overview and MAC Layer

IEEE WLANs (WiFi) Part II/III System Overview and MAC Layer IEEE 802.11 WLANs (WiFi) Part II/III System Overview and MAC Layer Design goals for wireless LANs (WLANs) Global, seamless operation Low power for battery use No special permissions or licenses needed

More information

Wireless LANs. ITS 413 Internet Technologies and Applications

Wireless LANs. ITS 413 Internet Technologies and Applications Wireless LANs ITS 413 Internet Technologies and Applications Aim: Aim and Contents Understand how IEEE 802.11 wireless LANs work Understand what influences the performance of wireless LANs Contents: IEEE

More information

Data and Computer Communications. Chapter 13 Wireless LANs

Data and Computer Communications. Chapter 13 Wireless LANs Data and Computer Communications Chapter 13 Wireless LANs Wireless LAN Topology Infrastructure LAN Connect to stations on wired LAN and in other cells May do automatic handoff Ad hoc LAN No hub Peer-to-peer

More information

15-441: Computer Networking. Wireless Networking

15-441: Computer Networking. Wireless Networking 15-441: Computer Networking Wireless Networking Outline Wireless Challenges 802.11 Overview Link Layer Ad-hoc Networks 2 Assumptions made in Internet Host are (mostly) stationary Address assignment, routing

More information

04/11/2011. Wireless LANs. CSE 3213 Fall November Overview

04/11/2011. Wireless LANs. CSE 3213 Fall November Overview Wireless LANs CSE 3213 Fall 2011 4 November 2011 Overview 2 1 Infrastructure Wireless LAN 3 Applications of Wireless LANs Key application areas: LAN extension cross-building interconnect nomadic access

More information

MAC in /20/06

MAC in /20/06 MAC in 802.11 2/20/06 MAC Multiple users share common medium. Important issues: Collision detection Delay Fairness Hidden terminals Synchronization Power management Roaming Use 802.11 as an example to

More information

Advanced Computer Networks WLAN

Advanced Computer Networks WLAN Advanced Computer Networks 263 3501 00 WLAN Patrick Stuedi Spring Semester 2014 1 Oriana Riva, Department of Computer Science ETH Zürich Last week Outlook Medium Access COPE Short Range Wireless Networks:

More information

Internet Protocol Stack

Internet Protocol Stack Internet Protocol Stack Application: supporting network applications FTP, SMTP, HTTP Transport: data transfer between processes TCP, UDP Network: routing of datagrams from source to destination IP, routing

More information

Chapter 7: Wireless LANs

Chapter 7: Wireless LANs Mobile Communications Chapter 7: Wireless LANs Characteristics IEEE 802.11 (PHY, MAC, Roaming,.11a, b, g, h, i, n z) Bluetooth / IEEE 802.15.x IEEE 802.16/.20/.21/.22 RFID Comparison Prof. Jó Ueyama courtesy

More information

Wireless & Mobile Networking

Wireless & Mobile Networking Wireless & Mobile Networking CS 752/852 - Spring 2011 Lec #3: Medium Access Control - I Tamer Nadeem Dept. of Computer Science Data Link Layer (DLL) Main Task of the data link layer: Provide error-free

More information

Chapter 7: Wireless LANs

Chapter 7: Wireless LANs Mobile Communications Chapter 7: Wireless LANs Characteristics IEEE 802.11 (PHY, MAC, Roaming,.11a, b, g, h, i, n z) Bluetooth / IEEE 802.15.x IEEE 802.16/.20/.21/.22 RFID Comparison Prof. Jó Ueyama courtesy

More information

Multiple Access Links and Protocols

Multiple Access Links and Protocols Multiple Access Links and Protocols Two types of links : point-to-point PPP for dial-up access point-to-point link between Ethernet switch and host broadcast (shared wire or medium) old-fashioned Ethernet

More information

CSE 461: Wireless Networks

CSE 461: Wireless Networks CSE 461: Wireless Networks Wireless IEEE 802.11 A physical and multiple access layer standard for wireless local area networks (WLAN) Ad Hoc Network: no servers or access points Infrastructure Network

More information

Overview : Computer Networking. Spectrum Use Comments. Spectrum Allocation in US Link layer challenges and WiFi WiFi

Overview : Computer Networking. Spectrum Use Comments. Spectrum Allocation in US Link layer challenges and WiFi WiFi Overview 15-441 15-441: Computer Networking 15-641 Lecture 21: Wireless Justine Sherry Peter Steenkiste Fall 2017 www.cs.cmu.edu/~prs/15-441-f17 Link layer challenges and WiFi WiFi Basic WiFi design Some

More information

Mohammad Hossein Manshaei 1393

Mohammad Hossein Manshaei 1393 Mohammad Hossein Manshaei manshaei@gmail.com 1393 1 802.11 History and Standardization 802.11 Architectures and Layers 802.11 Frame Format and Addressing 802.11 Mac Layer (CSMA/CA) 2 Wifi 3 twisted pair

More information

Topics for Today. More on Ethernet. Wireless LANs Readings. Topology and Wiring Switched Ethernet Fast Ethernet Gigabit Ethernet. 4.3 to 4.

Topics for Today. More on Ethernet. Wireless LANs Readings. Topology and Wiring Switched Ethernet Fast Ethernet Gigabit Ethernet. 4.3 to 4. Topics for Today More on Ethernet Topology and Wiring Switched Ethernet Fast Ethernet Gigabit Ethernet Wireless LANs Readings 4.3 to 4.4 1 Original Ethernet Wiring Heavy coaxial cable, called thicknet,

More information

Medium Access Control. MAC protocols: design goals, challenges, contention-based and contention-free protocols

Medium Access Control. MAC protocols: design goals, challenges, contention-based and contention-free protocols Medium Access Control MAC protocols: design goals, challenges, contention-based and contention-free protocols 1 Why do we need MAC protocols? Wireless medium is shared Many nodes may need to access the

More information

Wireless Communication Session 4 Wi-Fi IEEE standard

Wireless Communication Session 4 Wi-Fi IEEE standard Wireless Communication Session 4 Wi-Fi IEEE802.11 standard M. Daneshvar Farzanegan Soourosh.blogfa.com smdanesh@yahoo.com 1 Reminder on frequencies and wavelenghts twisted pair coax cable optical transmission

More information

Multiple Access in Cellular and Systems

Multiple Access in Cellular and Systems Multiple Access in Cellular and 802.11 Systems 1 GSM The total bandwidth is divided into many narrowband channels. (200 khz in GSM) Users are given time slots in a narrowband channel (8 users) A channel

More information

Chapter 6 Wireless and Mobile Networks. Csci 4211 David H.C. Du

Chapter 6 Wireless and Mobile Networks. Csci 4211 David H.C. Du Chapter 6 Wireless and Mobile Networks Csci 4211 David H.C. Du Wireless LAN IEEE 802.11 a, b, g IEEE 802.15 Buletooth Hidden Terminal Effect Hidden Terminal Problem Hidden terminals A, C cannot hear each

More information

Chapter 6 Medium Access Control Protocols and Local Area Networks

Chapter 6 Medium Access Control Protocols and Local Area Networks Chapter 6 Medium Access Control Protocols and Local Area Networks 802.11 Wireless LAN CSE 3213, Winter 2010 Instructor: Foroohar Foroozan Wireless Data Communications Wireless communications compelling

More information

CMPE 257: Wireless and Mobile Networking

CMPE 257: Wireless and Mobile Networking CMPE 257: Wireless and Mobile Networking Katia Obraczka Computer Engineering UCSC Baskin Engineering Lecture 3 CMPE 257 Winter'11 1 Announcements Accessing secure part of the class Web page: User id: cmpe257.

More information

IEEE MAC Sublayer (Based on IEEE )

IEEE MAC Sublayer (Based on IEEE ) IEEE 802.11 MAC Sublayer (Based on IEEE 802.11-1999) Wireless Networking Sunghyun Choi, Associate Professor Multimedia & Wireless Networking Lab. (MWNL) School of Electrical Engineering Seoul National

More information

Wireless Local Area Networks (WLANs) and Wireless Sensor Networks (WSNs) Primer. Computer Networks: Wireless LANs

Wireless Local Area Networks (WLANs) and Wireless Sensor Networks (WSNs) Primer. Computer Networks: Wireless LANs Wireless Local Area Networks (WLANs) and Wireless Sensor Networks (WSNs) Primer 1 Wireless Local Area Networks (WLANs) The proliferation of laptop computers and other mobile devices (PDAs and cell phones)

More information

Getting Connected (Chapter 2 Part 4) Networking CS 3470, Section 1 Sarah Diesburg

Getting Connected (Chapter 2 Part 4) Networking CS 3470, Section 1 Sarah Diesburg Getting Connected (Chapter 2 Part 4) Networking CS 3470, Section 1 Sarah Diesburg Five Problems Encoding/decoding Framing Error Detection Error Correction Media Access Five Problems Encoding/decoding Framing

More information

Nomadic Communications WLAN MAC Fundamentals

Nomadic Communications WLAN MAC Fundamentals Nomadic Communications WLAN 802.11 MAC Fundamentals Renato Lo Cigno ANS Group locigno@disi.unitn.it http://disi.unitn.it/locigno/index.php/teaching-duties/nomadic-communications Copyright Quest opera è

More information

Review. Error Detection: CRC Multiple access protocols. LAN addresses and ARP Ethernet. Slotted ALOHA CSMA/CD

Review. Error Detection: CRC Multiple access protocols. LAN addresses and ARP Ethernet. Slotted ALOHA CSMA/CD Review Error Detection: CRC Multiple access protocols Slotted ALOHA CSMA/CD LAN addresses and ARP Ethernet Some slides are in courtesy of J. Kurose and K. Ross Overview Ethernet Hubs, bridges, and switches

More information

Wireless Networking & Mobile Computing

Wireless Networking & Mobile Computing Wireless Networking & Mobile Computing CS 752/852 - Spring 2012 Lec #4: Medium Access Control - II Tamer Nadeem Dept. of Computer Science IEEE 802.11 Standards Page 2 Spring 2012 CS 752/852 - Wireless

More information

CSC344 Wireless and Mobile Computing. Department of Computer Science COMSATS Institute of Information Technology

CSC344 Wireless and Mobile Computing. Department of Computer Science COMSATS Institute of Information Technology CSC344 Wireless and Mobile Computing Department of Computer Science COMSATS Institute of Information Technology Wireless Local Area Networks (WLANs) Part I Almost all wireless LANs now are IEEE 802.11

More information

Wireless Local Area Networks. Networks: Wireless LANs 1

Wireless Local Area Networks. Networks: Wireless LANs 1 Wireless Local Area Networks Networks: Wireless LANs 1 Wireless Local Area Networks The proliferation of laptop computers and other mobile devices (PDAs and cell phones) created an obvious application

More information

Mobile & Wireless Networking. Lecture 10: Mobile Transport Layer & Ad Hoc Networks. [Schiller, Section 8.3 & Section 9] [Reader, Part 8]

Mobile & Wireless Networking. Lecture 10: Mobile Transport Layer & Ad Hoc Networks. [Schiller, Section 8.3 & Section 9] [Reader, Part 8] 192620010 Mobile & Wireless Networking Lecture 10: Mobile Transport Layer & Ad Hoc Networks [Schiller, Section 8.3 & Section 9] [Reader, Part 8] Geert Heijenk Outline of Lecture 10 Mobile transport layer

More information

Wireless Local Area Networks (WLANs)) and Wireless Sensor Networks (WSNs) Computer Networks: Wireless Networks 1

Wireless Local Area Networks (WLANs)) and Wireless Sensor Networks (WSNs) Computer Networks: Wireless Networks 1 Wireless Local Area Networks (WLANs)) and Wireless Sensor Networks (WSNs) Computer Networks: Wireless Networks 1 Wireless Local Area Networks The proliferation of laptop computers and other mobile devices

More information

MSIT 413: Wireless Technologies Week 8

MSIT 413: Wireless Technologies Week 8 MSIT 413: Wireless Technologies Week 8 Michael L. Honig Department of EECS Northwestern University November 2017 The Multiple Access Problem How can multiple mobiles access (communicate with) the same

More information

Wireless Challenges : Computer Networking. Overview. Routing to Mobile Nodes. Lecture 25: Wireless Networking

Wireless Challenges : Computer Networking. Overview. Routing to Mobile Nodes. Lecture 25: Wireless Networking Wireless Challenges 15-441: Computer Networking Lecture 25: Wireless Networking Force us to rethink many assumptions Need to share airwaves rather than wire Don t know what hosts are involved Host may

More information

Introduction to Wireless Networking CS 490WN/ECE 401WN Winter Lecture 4: Wireless LANs and IEEE Part II

Introduction to Wireless Networking CS 490WN/ECE 401WN Winter Lecture 4: Wireless LANs and IEEE Part II Introduction to Wireless Networking CS 490WN/ECE 401WN Winter 2007 Lecture 4: Wireless LANs and IEEE 802.11 Part II This lecture continues the study of wireless LANs by looking at IEEE 802.11. I. 802.11

More information

CSMC 417. Computer Networks Prof. Ashok K Agrawala Ashok Agrawala. Fall 2018 CMSC417 Set 1 1

CSMC 417. Computer Networks Prof. Ashok K Agrawala Ashok Agrawala. Fall 2018 CMSC417 Set 1 1 CSMC 417 Computer Networks Prof. Ashok K Agrawala 2018 Ashok Agrawala Fall 2018 CMSC417 Set 1 1 The Medium Access Control Sublayer November 18 Nov 6, 2018 2 Wireless Networking Technologies November 18

More information

CSE 461: Multiple Access Networks. This Lecture

CSE 461: Multiple Access Networks. This Lecture CSE 461: Multiple Access Networks This Lecture Key Focus: How do multiple parties share a wire? This is the Medium Access Control (MAC) portion of the Link Layer Randomized access protocols: 1. Aloha 2.

More information

Internet Structure. network edge:

Internet Structure. network edge: Midterm Review Internet Structure network edge: Hosts: clients and servers Server often in data centers access networks, physical media:wired, wireless communication links network core: interconnected

More information

Overview. Wireless networks basics IEEE (Wi-Fi) a/b/g/n ad Hoc MAC protocols ad Hoc routing DSR AODV

Overview. Wireless networks basics IEEE (Wi-Fi) a/b/g/n ad Hoc MAC protocols ad Hoc routing DSR AODV Wireless networks 1 Overview Wireless networks basics IEEE 802.11 (Wi-Fi) a/b/g/n ad Hoc MAC protocols ad Hoc routing DSR AODV 2 Wireless Networks Autonomous systems of mobile hosts connected by wireless

More information

CSCD 433 Network Programming Fall Lecture 7 Ethernet and Wireless

CSCD 433 Network Programming Fall Lecture 7 Ethernet and Wireless CSCD 433 Network Programming Fall 2016 Lecture 7 Ethernet and Wireless 802.11 1 Topics 802 Standard MAC and LLC Sublayers Review of MAC in Ethernet MAC in 802.11 Wireless 2 IEEE Standards In 1985, Computer

More information

3.1. Introduction to WLAN IEEE

3.1. Introduction to WLAN IEEE 3.1. Introduction to WLAN IEEE 802.11 WCOM, WLAN, 1 References [1] J. Schiller, Mobile Communications, 2nd Ed., Pearson, 2003. [2] Martin Sauter, "From GSM to LTE", chapter 6, Wiley, 2011. [3] wiki to

More information

Wireless and Mobile Networks 7-2

Wireless and Mobile Networks 7-2 Wireless and Mobile Networks EECS3214 2018-03-26 7-1 Ch. 6: Wireless and Mobile Networks Background: # wireless (mobile) phone subscribers now exceeds # wired phone subscribers (5-to-1)! # wireless Internet-connected

More information

Wireless Networks. CSE 3461: Introduction to Computer Networking Reading: , Kurose and Ross

Wireless Networks. CSE 3461: Introduction to Computer Networking Reading: , Kurose and Ross Wireless Networks CSE 3461: Introduction to Computer Networking Reading: 6.1 6.3, Kurose and Ross 1 Wireless Networks Background: Number of wireless (mobile) phone subscribers now exceeds number of wired

More information

Wireless MACs: MACAW/802.11

Wireless MACs: MACAW/802.11 Wireless MACs: MACAW/802.11 Mark Handley UCL Computer Science CS 3035/GZ01 Fundamentals: Spectrum and Capacity A particular radio transmits over some range of frequencies; its bandwidth, in the physical

More information

Topic 2b Wireless MAC. Chapter 7. Wireless and Mobile Networks. Computer Networking: A Top Down Approach

Topic 2b Wireless MAC. Chapter 7. Wireless and Mobile Networks. Computer Networking: A Top Down Approach Topic 2b Wireless MAC Chapter 7 Wireless and Mobile Networks Computer Networking: A Top Down Approach 7 th edition Jim Kurose, Keith Ross Pearson/Addison Wesley April 2016 7-1 Ch. 7: Background: # wireless

More information

Wireless Communications

Wireless Communications 4. Medium Access Control Sublayer DIN/CTC/UEM 2018 Why do we need MAC for? Medium Access Control (MAC) Shared medium instead of point-to-point link MAC sublayer controls access to shared medium Examples:

More information

Last Lecture: Data Link Layer

Last Lecture: Data Link Layer Last Lecture: Data Link Layer 1. Design goals and issues 2. (More on) Error Control and Detection 3. Multiple Access Control (MAC) 4. Ethernet, LAN Addresses and ARP 5. Hubs, Bridges, Switches 6. Wireless

More information

Wireless Local Area Networks (WLANs) Part I

Wireless Local Area Networks (WLANs) Part I Wireless Local Area Networks (WLANs) Part I Raj Jain Professor of CSE Washington University in Saint Louis Saint Louis, MO 63130 Jain@cse.wustl.edu These slides are available on-line at: http://www.cse.wustl.edu/~jain/cse574-08/

More information

Computer Communication III

Computer Communication III Computer Communication III Wireless Media Access IEEE 802.11 Wireless LAN Advantages of Wireless LANs Using the license free ISM band at 2.4 GHz no complicated or expensive licenses necessary very cost

More information

6.9 Summary. 11/20/2013 Wireless and Mobile Networks (SSL) 6-1. Characteristics of selected wireless link standards a, g point-to-point

6.9 Summary. 11/20/2013 Wireless and Mobile Networks (SSL) 6-1. Characteristics of selected wireless link standards a, g point-to-point Chapter 6 outline 6.1 Introduction Wireless 6.2 Wireless links, characteristics CDMA 6.3 IEEE 802.11 wireless LANs ( wi-fi ) 6.4 Cellular Internet Access architecture standards (e.g., GSM) Mobility 6.5

More information

Wireless Local Area Network (IEEE )

Wireless Local Area Network (IEEE ) Wireless Local Area Network (IEEE 802.11) -IEEE 802.11 Specifies a single Medium Access Control (MAC) sublayer and 3 Physical Layer Specifications. Stations can operate in two configurations : Ad-hoc mode

More information

Page 1. Wireless LANs: Design Requirements. Evolution. EEC173B/ECS152C, Winter Wireless LANs

Page 1. Wireless LANs: Design Requirements. Evolution. EEC173B/ECS152C, Winter Wireless LANs EEC173B/ECS152C, Winter 2006 Wireless LANs Evolution of Technology & Standards IEEE 802.11 Design Choices Architecture & Protocols PHY layer MAC layer design Acknowledgment: Selected slides from Prof.

More information

original standard a transmission at 5 GHz bit rate 54 Mbit/s b support for 5.5 and 11 Mbit/s e QoS

original standard a transmission at 5 GHz bit rate 54 Mbit/s b support for 5.5 and 11 Mbit/s e QoS IEEE 802.11 The standard defines a wireless physical interface and the MAC layer while LLC layer is defined in 802.2. The standardization process, started in 1990, is still going on; some versions are:

More information

Link Layer: Retransmissions

Link Layer: Retransmissions Link Layer: Retransmissions Context on Reliability Where in the stack should we place reliability functions? Application Transport Network Link Physical CSE 461 University of Washington 2 Context on Reliability

More information

Mobile Communications Chapter 7: Wireless LANs

Mobile Communications Chapter 7: Wireless LANs Mobile Communications Chapter 7: Wireless LANs Characteristics IEEE 802.11 PHY MAC Roaming IEEE 802.11a, b, g, e HIPERLAN Bluetooth Comparisons Prof. Dr.-Ing. Jochen Schiller, http://www.jochenschiller.de/

More information

Wireless Network Security Spring 2014

Wireless Network Security Spring 2014 Wireless Network Security 14-814 Spring 2014 Patrick Tague Class #12 MAC Misbehavior 1 IEEE 802.11 Infrastructure mode Many stations share an AP connected to Internet Distributed coordination function

More information

Figure.2. Hidden & Exposed node problem

Figure.2. Hidden & Exposed node problem Efficient Throughput MAC Protocol in Ad-hoc Network s Rahul Mukherjee, HOD and Assistant Professor, Electronics & Communication Department, St. Aloysius Institute of Technology (SAIT), Jabalpur, Rajiv

More information

Chapter 6 Wireless and Mobile Networks

Chapter 6 Wireless and Mobile Networks Chapter 6 Wireless and Mobile Networks Computer Networking: A Top Down Approach Featuring the Internet, 3 rd edition. Jim Kurose, Keith Ross Addison-Wesley, July 2004. 6: Wireless and Mobile Networks 6

More information

Outline. CS5984 Mobile Computing. IEEE 802 Architecture 1/7. IEEE 802 Architecture 2/7. IEEE 802 Architecture 3/7. Dr. Ayman Abdel-Hamid, CS5984

Outline. CS5984 Mobile Computing. IEEE 802 Architecture 1/7. IEEE 802 Architecture 2/7. IEEE 802 Architecture 3/7. Dr. Ayman Abdel-Hamid, CS5984 CS5984 Mobile Computing Dr. Ayman Abdel-Hamid Computer Science Department Virginia Tech Outline IEEE 82 Architecture IEEE 82. Wireless LANs Based on Chapter 4 in Wireless Communications and Networks, William

More information

WLAN 1 IEEE Manuel Ricardo. Faculdade de Engenharia da Universidade do Porto

WLAN 1 IEEE Manuel Ricardo. Faculdade de Engenharia da Universidade do Porto WLAN 1 IEEE 802.11 Basic Connectivity Manuel Ricardo Faculdade de Engenharia da Universidade do Porto WLAN 2 Acknowledgements Based on Jochen Schiller slides Supporting text» Jochen Schiller, Mobile Comunications,

More information

IEEE Medium Access Control. Medium Access Control

IEEE Medium Access Control. Medium Access Control IEEE 802.11 Medium Access Control EECS3214 3 April 2018 Medium Access Control reliable data delivery access control MAC layer covers three functional areas: security 2 1 MAC Requirements To avoid interference

More information

WLAN (802.11) Nomadic Communications. Renato Lo Cigno - Tel: Dipartimento di Ingegneria e Scienza dell Informazione

WLAN (802.11) Nomadic Communications. Renato Lo Cigno - Tel: Dipartimento di Ingegneria e Scienza dell Informazione Nomadic Communications WLAN (802.11) Renato Lo Cigno LoCigno@disi.unitn.it - Tel: 2026 Dipartimento di Ingegneria e Scienza dell Informazione Home Page: http://isi.unitn.it/locigno/index.php/teaching-duties/nomadic-communications

More information

Lesson 2-3: The IEEE x MAC Layer

Lesson 2-3: The IEEE x MAC Layer Module 2: Establishing Wireless Connectivity Lesson 2-3: The IEEE 802.11x MAC Layer Lesson Overview This lesson describes basic IEEE 802.11x MAC operation, beginning with an explanation of contention schemes

More information

Wireless Network Security Spring 2015

Wireless Network Security Spring 2015 Wireless Network Security Spring 2015 Patrick Tague Class #9 MAC Misbehavior; OMNET++ Tutorial II 1 Reminder: Assignments Assignment #2 is due today 11:59pm PST Assignment #3 is posted, due March 5 It's

More information

IEEE Technical Tutorial. Introduction. IEEE Architecture

IEEE Technical Tutorial. Introduction. IEEE Architecture IEEE 802.11 Technical Tutorial Introduction The purpose of this document is to give technical readers a basic overview of the new 802.11 Standard, enabling them to understand the basic concepts, principle

More information

WiFi Networks: IEEE b Wireless LANs. Carey Williamson Department of Computer Science University of Calgary Winter 2018

WiFi Networks: IEEE b Wireless LANs. Carey Williamson Department of Computer Science University of Calgary Winter 2018 WiFi Networks: IEEE 802.11b Wireless LANs Carey Williamson Department of Computer Science University of Calgary Winter 2018 Background (1 of 2) In many respects, the IEEE 802.11b wireless LAN (WLAN) standard

More information

Wireless and Mobile Networks

Wireless and Mobile Networks Wireless and Mobile Networks Raj Jain Washington University in Saint Louis Saint Louis, MO 63130 Jain@wustl.edu Audio/Video recordings of this lecture are available on-line at: http://www.cse.wustl.edu/~jain/cse473-11/

More information

WLAN 1 IEEE Basic Connectivity. Manuel Ricardo. Faculdade de Engenharia da Universidade do Porto

WLAN 1 IEEE Basic Connectivity. Manuel Ricardo. Faculdade de Engenharia da Universidade do Porto WLAN 1 IEEE 802.11 Basic Connectivity Manuel Ricardo Faculdade de Engenharia da Universidade do Porto WLAN 2 Acknowledgements Based on Jochen Schiller slides Supporting text» Jochen Schiller, Mobile Comunications,

More information

The MAC layer in wireless networks

The MAC layer in wireless networks The MAC layer in wireless networks The wireless MAC layer roles Access control to shared channel(s) Natural broadcast of wireless transmission Collision of signal: a /space problem Who transmits when?

More information

ECE442 Communications Lecture 3. Wireless Local Area Networks

ECE442 Communications Lecture 3. Wireless Local Area Networks ECE442 Communications Lecture 3. Wireless Local Area Networks Husheng Li Dept. of Electrical Engineering and Computer Science Spring, 2014 Wireless Local Networks 1 A WLAN links two or more devices using

More information

CSC 4900 Computer Networks: Wireless Networks

CSC 4900 Computer Networks: Wireless Networks CSC 4900 Computer Networks: Wireless Networks Professor Henry Carter Fall 2017 Last Time Mobile applications are taking off! What about current platforms is fueling this? How are an application s permission

More information

Rahman 1. Application

Rahman 1. Application Data Link layer Overview of IEEE 802.11 Application Presentation Session Transport LLC: On transmission, assemble data into a frame with address and CRC fields. On reception, disassemble frame, perform

More information

IEEE WLAN (802.11) Copyright. Nomadic Communications

IEEE WLAN (802.11) Copyright. Nomadic Communications Nomadic Communications WLAN (802.11) Renato Lo Cigno LoCigno@disi.unitn.it - Tel: 2026 Dipartimento di Ingegneria e Scienza dell Informazione Home Page: http://isi.unitn.it/locigno/index.php/teaching-duties/nomadic-communications

More information

Unit 7 Media Access Control (MAC)

Unit 7 Media Access Control (MAC) Unit 7 Media Access Control (MAC) 1 Internet Model 2 Sublayers of Data Link Layer Logical link control (LLC) Flow control Error control Media access control (MAC) access control 3 Categorization of MAC

More information

CMPE 257: Wireless and Mobile Networking

CMPE 257: Wireless and Mobile Networking CMPE 257: Wireless and Mobile Networking Katia Obraczka Computer Engineering UCSC Baskin Engineering Lecture 3 CMPE 257 Spring'15 1 Next week Announcements April 14: ICN (Spencer Sevilla) April 16: DTN

More information

CS/ECE 439: Wireless Networking. MAC Layer Road to Wireless

CS/ECE 439: Wireless Networking. MAC Layer Road to Wireless CS/ECE 439: Wireless Networking MAC Layer Road to Wireless Multiple Access Media Media access Controlling which frame should be sent over the link next Easy for point-to-point links; half versus full duplex

More information

IEEE Wireless LANs

IEEE Wireless LANs Unit 11 IEEE 802.11 Wireless LANs Shyam Parekh IEEE 802.11 Wireless LANs References Standards Basics Physical Layer 802.11b 802.11a MAC Framing Details Management PCF QoS (802.11e) Security Take Away Points

More information

IEEE , Token Rings. 10/11/06 CS/ECE UIUC, Fall

IEEE , Token Rings. 10/11/06 CS/ECE UIUC, Fall IEEE 802.11, Token Rings 10/11/06 CS/ECE 438 - UIUC, Fall 2006 1 Medium Access Control Wireless channel is a shared medium Need access control mechanism to avoid interference Why not CSMA/CD? 10/11/06

More information

Outline / Wireless Networks and Applications Lecture 9: Wireless LANs Aloha and 802 Wireless. Regular Ethernet CSMA/CD

Outline / Wireless Networks and Applications Lecture 9: Wireless LANs Aloha and 802 Wireless. Regular Ethernet CSMA/CD Page 1 Outline 18-452/18-750 Wireless Networks and Applications Lecture 9: Wireless LANs Aloha and 802 Wireless Peter Steenkiste Data link fundamentals» And what changes in wireless Aloha Ethernet Wireless-specific

More information

Page 1. Outline : Wireless Networks Lecture 11: MAC. Standardization of Wireless Networks. History. Frequency Bands

Page 1. Outline : Wireless Networks Lecture 11: MAC. Standardization of Wireless Networks. History. Frequency Bands Outline 18-759 : Wireless s Lecture 11: 80.11 Peter Steenkiste Dina Papagiannaki Spring Semester 009 http://www.cs.cmu.edu/~prs/wireless09/ Peter A. Steenkiste, CMU 1 80 protocol overview Wireless LANs

More information

Mobile Communications Chapter 7: Wireless LANs

Mobile Communications Chapter 7: Wireless LANs Characteristics IEEE 802.11 PHY MAC Roaming IEEE 802.11a, b, g, e HIPERLAN Bluetooth Comparisons Prof. Dr.-Ing. Jochen Schiller, http://www.jochenschiller.de/ MC SS02 7.1 Characteristics of Wireless LANs

More information

Logical Link Control (LLC) Medium Access Control (MAC)

Logical Link Control (LLC) Medium Access Control (MAC) Overview of IEEE 802.11 Data Link layer Application Presentation Session Transport LLC: On transmission, assemble data into a frame with address and CRC fields. On reception, disassemble frame, perform

More information

Efficient Power MAC Protocol in Ad-hoc Network s

Efficient Power MAC Protocol in Ad-hoc Network s Efficient Power MAC Protocol in Ad-hoc Network s Rahul Mukherjee HOD and Assistant Professor, Electronics & Communication Department, St. Aloysius Institute of Technology (SAIT), Jabalpur, Rajiv Gandhi

More information

ICE 1332/0715 Mobile Computing (Summer, 2008)

ICE 1332/0715 Mobile Computing (Summer, 2008) ICE 1332/0715 Mobile Computing (Summer, 2008) Medium Access Control Prof. Chansu Yu http://academic.csuohio.edu/yuc/ Simplified Reference Model Application layer Transport layer Network layer Data link

More information