CHAPTER 4 CROSS LAYER INTERACTION

Size: px
Start display at page:

Download "CHAPTER 4 CROSS LAYER INTERACTION"

Transcription

1 38 CHAPTER 4 CROSS LAYER INTERACTION The cross layer interaction techniques used in the lower layers of the protocol stack, solve the hidden and exposed terminal problems of wireless and ad hoc networks. All these techniques used in the lower layers improve not only the lower layer functionalities, but also the TCP congestion control mechanisms in wireless networks. The cross layer interaction i.e. the combination of TCP-AL with IEEE PHY and MAC is known to be TCP-WPAL. 4.1 IEEE PHY The IEEE PHY provides two services: the PHY data service and the PHY management service, interfacing the physical layer management entity (PLME). The PHY data service enables the transmission and reception of the PHY protocol data units (PPDU) across the physical radio channel. The functions of the PHY are the activation and deactivation of the radio transceiver energy detection (ED), link quality indication (LQI), channel selection, clear channel assessment (CCA) and transmitting as well as receiving packets across the physical medium. The receiver energy detection (ED) measurement is intended for use by a network layer, as part of the channel selection algorithm. It is an estimate of the received signal power within the bandwidth of an IEEE channel. No attempt is made to identify or decode signals on the channel. The ED time should be equal to 8 symbol periods. Upon reception

2 39 of a packet, the PHY sends the PSDU length, the PSDU itself, and the link quality (LQ) in the PD-DATA indication primitive. The LQI measurement is a characterization of the strength and/or quality of a received packet. The measurement may be implemented using the receiver ED, a signal-to-noise estimation or a combination of these methods. The use of the LQI result is up to the network or application layers. A clear channel assessment (CCA) is performed according to at least one of the following three methods: Energy above threshold: the CCA shall report a busy medium upon detecting any energy above the ED threshold. Carrier sense only: the CCA shall report a busy medium only upon the detection of a signal with the modulation and spreading characteristics of the IEEE This signal may be above or below the ED threshold. Carrier sense with energy above threshold: the CCA shall report a busy medium only upon the detection of a signal with the modulation and spreading characteristics of the IEEE , with energy above the ED threshold. Each PPDU packet consists of the following basic components: the SHR, which allows a receiving device to synchronize and lock into the bit stream the PHR, which contains frame length information a variable length payload, which carries the MAC sublayer frame.

3 IEEE MAC The IEEE MAC sublayer provides two services: the MAC data service and the MAC management service interfacing to the MAC sublayer management entity (MLME) service access point (SAP) (MLMESAP). The MAC data service enables the transmission and reception of the MAC protocol data units (MPDU) across the PHY data service. The features of the MAC sublayer are beacon management, channel access, GTS management, frame validation, acknowledged frame delivery, association and disassociation. Figure 4.1 Superframe Structure The IEEE allows the optional use of a superframe structure, which is shown in Figure 4.1. The format of the superframe is defined by the coordinator. The superframe is bounded by the network beacons and is divided into 16 equally sized slots. The beacon frame is sent to the first slot of each superframe. If a coordinator does not want to use the superframe structure, it may turn off the beacon transmissions. The beacons are used to synchronize the attached devices, to identify the PAN and to describe the structure of the superframes.

4 41 The superframe can have an active and an inactive portion. During the inactive portion, the coordinator shall not interact with its PAN and may enter a low-power mode. The active portion consists of a contention access period (CAP) and a contention free period (CFP). Any device wishing to communicate during the CAP shall compete with other devices using a slotted CSMA/CA mechanism. On the other hand, the CFP contains guaranteed time slots (GTSs). The GTSs always appear at the end of the active superframe, starting at a slot boundary immediately following the CAP. The PAN coordinator may allocate up to seven of these GTSs, and a GTS can occupy more than one slot period. The CFP, if present, shall start on a slot boundary immediately following the CAP, and extend to the end of the active portion of the superframe. The length of the CFP is determined by the total length of all the combined GTSs. No transmissions within the CFP shall use a CSMA-CA mechanism. A device transmitting in the CFP shall ensure that its transmissions complete one IFS period before the end of its GTS. IFS time is the amount of time necessary to process the received packet by the PHY. Transmitted frames shall be followed by an IFS period. The length of the IFS depends on the size of the frame that has just been transmitted. Frames of up to amaxsifsframesize in length shall be followed by a short interframe space (SIFS), whereas frames of greater length shall be followed by a Long interframe space (LIFS). The duration of different portions of the superframe are described by the values of macbeaconorder and macsuperframeorder. macbeaconorder describes the interval at which the coordinator shall transmit its beacon frames. The beacon interval, BI, is related to the macbeaconorder, BO, as follows:

5 42 abasesuperframeduration, BI=2 BO, 0 BO 14 (4.1) The superframe is ignored if BO = 15. The value of macsuperframeorder describes the length of the active portion of the superframe. The superframe duration, SD, is related to macsuperframeorder, SO, as follows: ABaseSuperFrameDuration, SD=2 SO, 0 SO 14 (4.2) If SO = 15, the superframe should not remain active after the beacon. The PANs that do not wish to use the superframe in a nonbeaconenabled shall set both macbeaconorder and macsuperframeorder to 15. In this kind of network, a coordinator shall not transmit any beacons, all transmissions except the acknowledgement frame shall use the unslotted CSMA-CA to access the channel. GTSs shall not be permitted. 4.3 CROSS LAYER INTERACTION Cross layer interaction means that the TCP-AP which is the concentrating the link layer and, LRED which is the concentrating data link layer techniques, are combined with the IEEE PHY and IEEE MAC. Cross layer interaction exploits the dependencies and interactions between layers to increase the performance in certain scenarios of wireless networks. Cross layer interaction does the sharing of knowledge about the layer state and conditions, which are a promising paradigm for performance optimization in wireless systems. It also provides knowledge about the channel conditions of PHY and MAC to routing, transport and application layers, which allow to design more sophisticated allocation and optimization algorithms.

6 43 The proposed work combines the concepts of the TCP-AP, LRED with the IEEE WPAN. Here, the Cross layer interaction is achieved as the TCP-AP which is the concentrating link layer, and LRED which is the concentrating data link layer techniques are combined with the IEEE PHY and IEEE MAC. In the Data link layer, the Link Random Early Discard (LRED) technique seeks to react earlier to link overload, and it solves the hidden terminal problem. The LRED algorithm is developed based on the observation that the TCP can potentially benefit from the built-in dropping mechanism of the MAC. The main idea is to further tune up the wireless link s drop probability, based on the perceived link drops. While the wired RED provides a linearly increasing drop curve as the queue exceeds a minimum value min_th, the LRED does so as the link drop probability exceeds a minimum threshold. In the link layer, the adaptive pacing technique seeks to improve spatial reuse and it solves the exposed terminal problem. In the current protocol, a node is constrained from contending for the channel, by a random backoff period, plus a single packet transmission time, that is announced by its immediate downstream node. However, the exposed receiver problem persists, due to lack of coordination between nodes that are two hops away from each other. Adaptive pacing solves this problem, without requiring nontrivial modifications to the , or a second wireless channel. The basic idea is to let a node further back-off, an additional packet transmission time when necessary, in addition to its current deferral period (i.e., the random backoff, plus one packet transmission time). This extra backoff interval helps in reducing contention drops caused by exposed receivers, and extends the range of the link-layer coordination from one hop to two hops, along the packet forwarding path.

7 44 In the Physical layer and MAC layer, the WPAN physical layer (IEEE PHY) and MAC enhancement (IEEE MAC) had been employed to interact with the network layer and application layer. The main features of IEEE are network flexibility, low cost, very low power consumption, and low data rate in an adhoc self-organizing network, among inexpensive fixed, portable and moving devices. It is developed for applications with relaxed throughput requirements which cannot handle the power consumption of heavy protocol stacks. The routing algorithm can be thought of as a hierarchical routing strategy with table-driven optimizations applied where possible. The routing layer is said to start with the well-studied public domain algorithm Ad hoc On Demand Distance Vector (AODV) and Motorola s Cluster-Tree algorithm. Here, the data link layer, Network layer, MAC layer, Application layer and Physical layer are modified, to improve the performance of the transport layer protocol. Because of the concentration in various interlinked layers improves the performance of the TCP in wireless networks, is improved. 4.4 ANALYSIS OF CROSS LAYER INTERACTION Normally, the TCP timer management maintains a variable RTT (Round Trip Time) by R = R TT new TTold + (1- ) M (4.3) where M is the time taken for receiving the acknowledgement and typical value of = 7/8.

8 45 Whenever the acknowledgement comes in, the difference between the expected and observed values R TT -M is computed and the deviation, D is calculated as Difference, D = D + (1- ) R TT -M (4.4) and the Timeout = R TT + 4 * D (4.5) whereas in LRED that works in link layer, by monitoring a single parameter, the average number of retries in the packet transmissions at the link-layer, accomplishes the above said three goals. Retry values are computed by the function GetMacRetries and the average retry value is computed as: avg_retry new = 7/8 avg_retry old + 1/8 retry (4.6) With the use of avg_retry, the mark probability value is changed by using mark_prob = min { avg _ retry min_ th, max_p} (4.7) max_ th min_ th In a multihop wireless network, it is the link-layer contention induced packet loss, that offers the first sign of network overload. The drop probability will decide the average TCP window size at which TCP stabilizes eventually. Network overload actually has different implications in the multihop wireless context. Because of the nature of wireless networks, the consideration of the drop probability and counting the retries will improve the performance of TCP. Not only considering the RTT which is done in traditional TCP, avg_retry and mark_probability are considered to improve the performance of

9 46 TCP in wireless networks since in wireless networks packets can be received by the destination by retransmitting the packets whenever the nodes are having hidden terminal and exposed terminal problem. Also pacing is provided when avg_retry < min_th. Pacing means providing extra time than the normal wait time to receive ACK as shown below. This change in time interval reduces the packet loss when the nodes are in mobile nature. When pacing ON, extra Backoff = TX Time(DATA) + overhead (4.8) backoff random Backoff + extra Backoff (4.9) In IEEE , a frame transmitted with the acknowledgement request field set to 1 shall be acknowledged by the recipient. If the intended recipient correctly receives the frame, it shall generate and send an acknowledgement frame containing the same Sequence Number from the data or MAC command frame that is being acknowledged. The transmission of the ACK shall commence between RTT and RTT + aunitbackoffperiod symbols after the reception of the last symbol of the data or MAC command frame. Because of the increase in the time interval for symbols improves the performance of TCP by PDR gets increased and delay gets decreased. Because these new parameters are included in calculation, the time complexity will be increased. This can be minimized by applying the concept of the IEEE , especially in the MAC and Physical layer. The main features of this standard are network flexibility, low cost, very low power consumption, and low data rate in an adhoc self-organizing network, among inexpensive fixed, portable and moving devices. Large size packets are divided into some number of smaller size packets that are transmitted to the destination, so that the Packet Delivery Ratio (PDR) is increased. It is developed for applications with relaxed throughput requirements, which

10 47 cannot handle the power consumption of heavy protocol stacks. This is the motivation for the Cross Layer Interaction. In this work, cross layer interaction improves the performance of the TCP by the modification on the traditional TCP by the various parameters min_th, avg_retry, mark_probability, extra backoff and backoff period per symbol. Those parameters are considered in various layers, i.e., data link layer, link layer, network layer, MAC layer and physical layer, and prove that the cross layer interaction improves the performance of the TCP in wireless networks. 4.5 CONCLUSION The cross layer interaction in the TCP improves its performance considerably in wireless networks. The concentration is given in various lower layers, with the use of a minimum number of parameters. The complexity involved in the inclusion of these parameters does not affect the TCP performance. All the lower layers support the transport layer to work efficiently. Even though the cross layer interaction minimizes the TCP congestion control, it has some limitations, i.e., reducing the throughput of the transmission. The next chapter deals the performance of TCP-AL and TCP-WPAL analytically.

CHAPTER 3 ENHANCEMENTS IN DATA LINK LAYER

CHAPTER 3 ENHANCEMENTS IN DATA LINK LAYER 32 CHAPTER 3 ENHANCEMENTS IN DATA LINK LAYER This proposed work describes the techniques used in the data link layer to improve the performance of the TCP in wireless networks and MANETs. In the data link

More information

Principles of Wireless Sensor Networks

Principles of Wireless Sensor Networks Principles of Wireless Sensor Networks https://www.kth.se/social/course/el2745/ Lecture 5 January 31, 2013 Carlo Fischione Associate Professor of Sensor Networks e-mail: carlofi@kth.se http://www.ee.kth.se/~carlofi/

More information

EL2745 Principles of Wireless Sensor Networks

EL2745 Principles of Wireless Sensor Networks EL2745 Principles of Wireless Sensor Networks www.kth.se/student/program-kurser/kurshemsidor/kurshemsidor/control/el2745 Lecture 5 Stockholm, February 2, 2012 Carlo Fischione Royal Institute of Technology

More information

Principles of Wireless Sensor Networks. Medium Access Control and IEEE

Principles of Wireless Sensor Networks. Medium Access Control and IEEE http://www.ee.kth.se/~carlofi/teaching/pwsn-2011/wsn_course.shtml Lecture 7 Stockholm, November 8, 2011 Medium Access Control and IEEE 802.15.4 Royal Institute of Technology - KTH Stockholm, Sweden e-mail:

More information

standards like IEEE [37], IEEE [38] or IEEE [39] do not consider

standards like IEEE [37], IEEE [38] or IEEE [39] do not consider Chapter 5 IEEE 802.15.4 5.1 Introduction Wireless Sensor Network(WSN) is resource constrained network developed specially targeting applications having unattended network for long time. Such a network

More information

Communication In Smart Grid -Part3

Communication In Smart Grid -Part3 Communication In Smart Grid -Part3 Dr.-Ing. Abdalkarim Awad 09.12.2015 Informatik 7 Rechnernetze und Kommunikationssysteme Zigbee General characteristics Data rates of 250 kbps, 20 kbps and 40kpbs. Star

More information

Wireless Sensor Networks

Wireless Sensor Networks Wireless Sensor Networks c.buratti@unibo.it +39 051 20 93147 Office Hours: Tuesday 3 5 pm @ Main Building, second floor Credits: 6 The IEEE 802.15.4 Protocol Stack Time Synchronization Energy Management

More information

Wireless Sensor Networks

Wireless Sensor Networks Wireless Sensor Networks 1 Ch. Steup / J. Kaiser, IVS-EOS Ubiquitous Sensing 2 Ch. Steup / J. Kaiser, IVS-EOS IEEE 802.x Wireless Communication 3 Ch. Steup / J. Kaiser, IVS-EOS Wireless Technology Comparision

More information

Unit 7 Media Access Control (MAC)

Unit 7 Media Access Control (MAC) Unit 7 Media Access Control (MAC) 1 Internet Model 2 Sublayers of Data Link Layer Logical link control (LLC) Flow control Error control Media access control (MAC) access control 3 Categorization of MAC

More information

Introduction to IEEE

Introduction to IEEE Introduction to IEEE 802.15.4 Marcos Rubinstein IEEE 802.15.4 Short range, low bit rate, low power consumption Home Automotive Industrial applications Games Metering 1 PHY speeds 250 kbps 40 kbps 20 kbps.

More information

Medium Access Control in Wireless Networks

Medium Access Control in Wireless Networks Medium Access Control in Wireless Networks Prof. Congduc Pham http://www.univ-pau.fr/~cpham Université de Pau, France MAC layer Routing protocols Medium Acces Control IEEE 802.X MAC GSM (2G) Channels Downlink

More information

5. MAC protocol specification

5. MAC protocol specification IEEE Draft P0../D 0. MAC protocol specification This clause specifies the MAC sublayer of this standard. The MAC sublayer handles all access to the physical layer and is responsible for the following tasks:

More information

Topic 02: IEEE

Topic 02: IEEE Topic 02: IEEE 802.15.4 Tuesday 20 Feb 2007 ICTP-ITU School on Wireless Networking for Scientific Applications in Developing Countries Bhaskaran Raman Department of CSE, IIT Kanpur http://www.cse.iitk.ac.in/users/braman/

More information

ZigBee/ David Sanchez Sanchez.

ZigBee/ David Sanchez Sanchez. ZigBee/802.15.4 David Sanchez Sanchez david.sanchezs@upf.edu Lecture Overview 1. Introduction and motivation to ZigBee 2. ZigBee/802.15.4 specification 1. Definitions 2. MAC communication modes 3. Network

More information

Mobile Communications

Mobile Communications Mobile Communications Wireless Personal Area Networks Manuel P. Ricardo Faculdade de Engenharia da Universidade do Porto 1 IEEE Standards 2 IEEE 802.15.4 Wireless PAN (Sensor Networks) 3 Information Current

More information

Research Article The Synchronized Peer-to-Peer Framework and Distributed Contention-Free Medium Access for Multihop Wireless Sensor Networks

Research Article The Synchronized Peer-to-Peer Framework and Distributed Contention-Free Medium Access for Multihop Wireless Sensor Networks Journal of Sensors Volume 28, Article ID 728415, 28 pages doi:1.1155/28/728415 Research Article The Synchronized Peer-to-Peer Framework and Distributed Contention-Free Medium Access for Multihop Wireless

More information

Volume 1, Number 1, 2015 Pages Jordan Journal of Electrical Engineering ISSN (Print): , ISSN (Online):

Volume 1, Number 1, 2015 Pages Jordan Journal of Electrical Engineering ISSN (Print): , ISSN (Online): JJEE Volume 1, Number 1, 2015 Pages 45-54 Jordan Journal of Electrical Engineering ISSN (Print): 2409-9600, ISSN (Online): 2409-9619 Performance Evaluation for Large Scale Star Topology IEEE 802.15.4 Based

More information

Performance Analysis of Beacon Enabled IEEE Using GTS in Zigbee

Performance Analysis of Beacon Enabled IEEE Using GTS in Zigbee Performance Analysis of Beacon Enabled IEEE 802.15.4 Using GTS in Zigbee Rajashri Wavage PG Student Computer Science and Engineering Baddi University of Emerging Science and Technology Aman Kaushik. Asst.

More information

Improving IEEE for Low-latency Energy-efficient Industrial Applications

Improving IEEE for Low-latency Energy-efficient Industrial Applications Improving IEEE 802.15.4 for Low-latency Energy-efficient Industrial Applications Feng Chen Computer Networks and Communication Systems University of Erlangen-Nuremberg, 91058 Erlangen feng.chen@informatik.uni-erlangen.de

More information

Fig. 1. Superframe structure in IEEE

Fig. 1. Superframe structure in IEEE Analyzing the Performance of GTS Allocation Using Markov Model in IEEE 802.15.4 Alladi Ramesh 1,Dr.P.Sumithabhashini 2 1 Dept.of CSE, PETW, Hyderabad 2 Dept.of ECE, PETW, Hyderabad Abstract-In this paper,

More information

Computer Communication III

Computer Communication III Computer Communication III Wireless Media Access IEEE 802.11 Wireless LAN Advantages of Wireless LANs Using the license free ISM band at 2.4 GHz no complicated or expensive licenses necessary very cost

More information

Multiple Access Links and Protocols

Multiple Access Links and Protocols Multiple Access Links and Protocols Two types of links : point-to-point PPP for dial-up access point-to-point link between Ethernet switch and host broadcast (shared wire or medium) old-fashioned Ethernet

More information

Fuzzy Duty Cycle Adaption Algorithm for IEEE Star Topology Networks

Fuzzy Duty Cycle Adaption Algorithm for IEEE Star Topology Networks Computer Systems Department, Technical Institute / Qurna, Basra, Iraq email: hayderaam@gmail.com Received: 4/1 /212 Accepted: 22/7 /213 Abstract IEEE 82.15.4 is a standard designed for low data rate, low

More information

CSE 461: Wireless Networks

CSE 461: Wireless Networks CSE 461: Wireless Networks Wireless IEEE 802.11 A physical and multiple access layer standard for wireless local area networks (WLAN) Ad Hoc Network: no servers or access points Infrastructure Network

More information

Design and Implementation of a Multi-hop Zigbee Network

Design and Implementation of a Multi-hop Zigbee Network Design and Implementation of a Multi-hop Zigbee Network Chi-Wen Deng, Li-chun Ko, Yung-chih Liu, Hua-wei Fang Networks and Multimedia Institute Institute for Information Industry, ROC {cwdeng, lcko, ulysses,

More information

Performance Evaluation of IEEE for Low-Rate Wireless Personal Area Networks

Performance Evaluation of IEEE for Low-Rate Wireless Personal Area Networks 742 IEEE Transactions on Consumer Electronics, Vol. 52, No. 3, AUGUST 26 Performance Evaluation of IEEE 82.15.4 for Low-Rate Wireless Personal Area Networks Jin-Shyan Lee Abstract IEEE 82.15.4 is an emerging

More information

Mohamed Khedr.

Mohamed Khedr. Mohamed Khedr http://webmail.aast.edu/~khedr Tentatively Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7 Week 8 Week 9 Week 10 Week 11 Week 12 Week 13 Week 14 Week 15 Overview Packet Switching IP addressing

More information

MAC. Fall Data Communications II 1

MAC. Fall Data Communications II 1 802.11 MAC Fall 2005 91.564 Data Communications II 1 RF Quality (ACK) Fall 2005 91.564 Data Communications II 2 Hidden Terminal (RTS/CTS) Fall 2005 91.564 Data Communications II 3 MAC Coordination Functions

More information

Data Communications. Data Link Layer Protocols Wireless LANs

Data Communications. Data Link Layer Protocols Wireless LANs Data Communications Data Link Layer Protocols Wireless LANs Wireless Networks Several different types of communications networks are using unguided media. These networks are generally referred to as wireless

More information

Energy Efficient Clear Channel Assessment for LR-WPAN

Energy Efficient Clear Channel Assessment for LR-WPAN www.ijcsi.org 387 Energy Efficient Clear Channel Assessment for LR-WPAN Praveen Kaushik 1, Nilesh kumar R. Patel 2, Jyoti Singhai 3 1 Department of CSE, MANIT Bhopal, M.P., India 2 Department of CSE, MANIT

More information

Data and Computer Communications. Chapter 13 Wireless LANs

Data and Computer Communications. Chapter 13 Wireless LANs Data and Computer Communications Chapter 13 Wireless LANs Wireless LAN Topology Infrastructure LAN Connect to stations on wired LAN and in other cells May do automatic handoff Ad hoc LAN No hub Peer-to-peer

More information

CHAPTER 1 INTRODUCTION

CHAPTER 1 INTRODUCTION 1 CHAPTER 1 INTRODUCTION 1.1 OVERVIEW For accessing computer networks and its services without cables, wireless communications is a fast-growing technology which gives certain advantages over wired network

More information

MAC in /20/06

MAC in /20/06 MAC in 802.11 2/20/06 MAC Multiple users share common medium. Important issues: Collision detection Delay Fairness Hidden terminals Synchronization Power management Roaming Use 802.11 as an example to

More information

4.3 IEEE Physical Layer IEEE IEEE b IEEE a IEEE g IEEE n IEEE 802.

4.3 IEEE Physical Layer IEEE IEEE b IEEE a IEEE g IEEE n IEEE 802. 4.3 IEEE 802.11 Physical Layer 4.3.1 IEEE 802.11 4.3.2 IEEE 802.11b 4.3.3 IEEE 802.11a 4.3.4 IEEE 802.11g 4.3.5 IEEE 802.11n 4.3.6 IEEE 802.11ac,ad Andreas Könsgen Summer Term 2012 4.3.3 IEEE 802.11a Data

More information

Performance Analysis of Guaranteed Time Slots Allocation in IEEE Protocol over Radio

Performance Analysis of Guaranteed Time Slots Allocation in IEEE Protocol over Radio Middle-East Journal of Scientific Research 13 (9): 1137-1143, 2013 ISSN 1990-9233 IDOSI Publications, 2013 DOI: 10.5829/idosi.mejsr.2013.13.9.739 Performance Analysis of Guaranteed Time Slots Allocation

More information

Standard for wireless sensor networks. Developed and promoted by the ZigBee alliance

Standard for wireless sensor networks. Developed and promoted by the ZigBee alliance Stefano Chessa Zigbee Standard for wireless sensor networks Developed and promoted by the ZigBee alliance Applications: Home automation (domotics, ambient assisted living,...) Health care Consumer electronics

More information

Random Assignment Protocols

Random Assignment Protocols Random Assignment Protocols Random assignment strategies attempt to reduce problem occur in fixed assignment strategy by eliminating pre allocation of bandwidth to communicating nodes. Random assignment

More information

IEEE MAC Sublayer (Based on IEEE )

IEEE MAC Sublayer (Based on IEEE ) IEEE 802.11 MAC Sublayer (Based on IEEE 802.11-1999) Wireless Networking Sunghyun Choi, Associate Professor Multimedia & Wireless Networking Lab. (MWNL) School of Electrical Engineering Seoul National

More information

CS 348: Computer Networks. - WiFi (contd.); 16 th Aug Instructor: Sridhar Iyer IIT Bombay

CS 348: Computer Networks. - WiFi (contd.); 16 th Aug Instructor: Sridhar Iyer IIT Bombay CS 348: Computer Networks - WiFi (contd.); 16 th Aug 2012 Instructor: Sridhar Iyer IIT Bombay Clicker-1: Wireless v/s wired Which of the following differences between Wireless and Wired affect a CSMA-based

More information

Lesson 2-3: The IEEE x MAC Layer

Lesson 2-3: The IEEE x MAC Layer Module 2: Establishing Wireless Connectivity Lesson 2-3: The IEEE 802.11x MAC Layer Lesson Overview This lesson describes basic IEEE 802.11x MAC operation, beginning with an explanation of contention schemes

More information

Computer Networks (Fall 2011) Homework 2

Computer Networks (Fall 2011) Homework 2 5-744 Computer Networks (Fall 20) Homework 2 Name: Due: Oct. 2th, 20, 3:00PM (in class) Andrew ID: October 2, 20 A Short Questions. Which of the following is true about modern high-speed routers? A. A

More information

The MAC layer in wireless networks

The MAC layer in wireless networks The MAC layer in wireless networks The wireless MAC layer roles Access control to shared channel(s) Natural broadcast of wireless transmission Collision of signal: a /space problem Who transmits when?

More information

Technical Report. On the Performance Limits of Slotted CSMA/CA in IEEE for Broadcast Transmissions in Wireless Sensor Networks

Technical Report. On the Performance Limits of Slotted CSMA/CA in IEEE for Broadcast Transmissions in Wireless Sensor Networks www.hurray.isep.ipp.pt Technical Report On the Performance Limits of Slotted CSMA/CA in IEEE 802.15.4 for Broadcast Transmissions in Wireless Sensor Networks Anis Koubaa Mário Alves Eduardo Tovar Ye-Qiong

More information

Modeling a Beacon Enabled Cluster with Bidirectional Traffic

Modeling a Beacon Enabled Cluster with Bidirectional Traffic Modeling a Beacon Enabled 802..4 Cluster with Bidirectional Traffic Jelena Mišić, Shairmina Shafi, and Vojislav B. Mišić Department of Computer Science, University of Manitoba, Winnipeg, Canada Abstract.

More information

Simulation Analysis of IEEE Non-beacon Mode at Varying Data Rates

Simulation Analysis of IEEE Non-beacon Mode at Varying Data Rates Simulation Analysis of IEEE 802.15.4 Non-beacon Mode at Varying Data Rates Z. Abbas, N. Javaid, M. A. Khan, S. Ahmed, U. Qasim, Z. A. Khan COMSATS Institute of IT, Islamabad, Pakistan. Mirpur University

More information

Outline. TWR Module. Different Wireless Protocols. Section 7. Wireless Communication. Wireless Communication with

Outline. TWR Module. Different Wireless Protocols. Section 7. Wireless Communication. Wireless Communication with Section 7. Wireless Communication Outline Wireless Communication with 802.15.4/Zigbee Protocol Introduction to Freescale MC12311 802.15.4/Zigbee Protocol TWR-12311 Module TWR-MC12311 Smart Radio Features

More information

A Comprehensive Simulation Study of Slotted CSMA/CA for IEEE Wireless Sensor Networks

A Comprehensive Simulation Study of Slotted CSMA/CA for IEEE Wireless Sensor Networks A Comprehensive Simulation Study of Slotted CSMA/CA for IEEE 802.15.4 Wireless Sensor Networks Anis KOUBAA, Mário ALVES, Eduardo TOVAR IPP-HURRAY! Research Group, Polytechnic Institute of Porto Rua Dr.

More information

Medium Access Control. IEEE , Token Rings. CSMA/CD in WLANs? Ethernet MAC Algorithm. MACA Solution for Hidden Terminal Problem

Medium Access Control. IEEE , Token Rings. CSMA/CD in WLANs? Ethernet MAC Algorithm. MACA Solution for Hidden Terminal Problem Medium Access Control IEEE 802.11, Token Rings Wireless channel is a shared medium Need access control mechanism to avoid interference Why not CSMA/CD? 9/15/06 CS/ECE 438 - UIUC, Fall 2006 1 9/15/06 CS/ECE

More information

IEEE P Wireless Personal Area Networks

IEEE P Wireless Personal Area Networks Project Title IEEE P802.15 Wireless Personal Area Networks IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANs) JCS Proposed Changes Date Submitted Source Re: [28 April, 2004] [John C.

More information

Wireless Communications

Wireless Communications 4. Medium Access Control Sublayer DIN/CTC/UEM 2018 Why do we need MAC for? Medium Access Control (MAC) Shared medium instead of point-to-point link MAC sublayer controls access to shared medium Examples:

More information

Technical Report. On the use of the ZigBee protocol for Wireless Sensor Networks. Anneleen Van Nieuwenhuyse Mário Alves Anis Koubâa

Technical Report. On the use of the ZigBee protocol for Wireless Sensor Networks. Anneleen Van Nieuwenhuyse Mário Alves Anis Koubâa www.hurray.isep.ipp.pt Technical Report On the use of the ZigBee protocol for Wireless Sensor Networks Anneleen Van Nieuwenhuyse Mário Alves Anis Koubâa HURRAY-TR-060603 Version: final Date: 26/JUN/2006

More information

IEEE , Token Rings. 10/11/06 CS/ECE UIUC, Fall

IEEE , Token Rings. 10/11/06 CS/ECE UIUC, Fall IEEE 802.11, Token Rings 10/11/06 CS/ECE 438 - UIUC, Fall 2006 1 Medium Access Control Wireless channel is a shared medium Need access control mechanism to avoid interference Why not CSMA/CD? 10/11/06

More information

Performance Investigation and Optimization of IEEE for Industrial Wireless Sensor Networks. Presented By: Aniket Shah

Performance Investigation and Optimization of IEEE for Industrial Wireless Sensor Networks. Presented By: Aniket Shah Performance Investigation and Optimization of IEEE802.15.4 for Industrial Wireless Sensor Networks MOHSIN HAMEED, HENNING TRSEK, OLAF GRAESER AND JUERGEN JASPERNEITE Presented By: Aniket Shah 1 Outline

More information

Impact of IEEE n Operation on IEEE Operation

Impact of IEEE n Operation on IEEE Operation 2009 International Conference on Advanced Information Networking and Applications Workshops Impact of IEEE 802.11n Operation on IEEE 802.15.4 Operation B Polepalli, W Xie, D Thangaraja, M Goyal, H Hosseini

More information

SENSOR-MAC CASE STUDY

SENSOR-MAC CASE STUDY SENSOR-MAC CASE STUDY Periodic Listen and Sleep Operations One of the S-MAC design objectives is to reduce energy consumption by avoiding idle listening. This is achieved by establishing low-duty-cycle

More information

Energy and delay trade-off of the GTS allocation mechanism in IEEE for wireless sensor networks

Energy and delay trade-off of the GTS allocation mechanism in IEEE for wireless sensor networks Energy and delay trade-off of the GTS allocation mechanism in IEEE 802.15.4 for wireless sensor networks Anis Koubaa, Mário Alves and Eduardo Tovar SUMMARY The IEEE 802.15.4 protocol proposes a flexible

More information

Medium Access Control. MAC protocols: design goals, challenges, contention-based and contention-free protocols

Medium Access Control. MAC protocols: design goals, challenges, contention-based and contention-free protocols Medium Access Control MAC protocols: design goals, challenges, contention-based and contention-free protocols 1 Why do we need MAC protocols? Wireless medium is shared Many nodes may need to access the

More information

Wireless LAN -Architecture

Wireless LAN -Architecture Wireless LAN -Architecture IEEE has defined the specifications for a wireless LAN, called IEEE 802.11, which covers the physical and data link layers. Basic Service Set (BSS) Access Point (AP) Distribution

More information

Clustered Coordinator SABTS (CC-SABTS) for Beacon Transmission in IEEE LR-WPAN

Clustered Coordinator SABTS (CC-SABTS) for Beacon Transmission in IEEE LR-WPAN Clustered Coordinator SABTS (CC-SABTS) for Beacon Transmission in IEEE802.15.4 LR-WPAN Dyg Khayrunsalihaty Bariyyah bt Abang Othman 1, Hushairi bin Zen 2, Al Khalid Hj. Othman 2, Khairuddin Ab Hamid 2

More information

Lecture 16: QoS and "

Lecture 16: QoS and Lecture 16: QoS and 802.11" CSE 123: Computer Networks Alex C. Snoeren HW 4 due now! Lecture 16 Overview" Network-wide QoS IntServ DifServ 802.11 Wireless CSMA/CA Hidden Terminals RTS/CTS CSE 123 Lecture

More information

Real-time Communication over Cluster-tree Wireless Sensor Networks

Real-time Communication over Cluster-tree Wireless Sensor Networks Department of Control Engineering Faculty of Electrical Engineering Czech Technical University in Prague, Czech Republic Real-time Communication over Cluster-tree Wireless Sensor Networks a doctoral thesis

More information

Wireless Local Area Networks (WLANs) Part I

Wireless Local Area Networks (WLANs) Part I Wireless Local Area Networks (WLANs) Part I Raj Jain Professor of CSE Washington University in Saint Louis Saint Louis, MO 63130 Jain@cse.wustl.edu These slides are available on-line at: http://www.cse.wustl.edu/~jain/cse574-08/

More information

An Analytical Model for IEEE with Sleep Mode Based on Time-varying Queue

An Analytical Model for IEEE with Sleep Mode Based on Time-varying Queue This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE ICC 2 proceedings An Analytical Model for IEEE 82.5.4 with Sleep

More information

MAC LAYER. Murat Demirbas SUNY Buffalo

MAC LAYER. Murat Demirbas SUNY Buffalo MAC LAYER Murat Demirbas SUNY Buffalo MAC categories Fixed assignment TDMA (Time Division), CDMA (Code division), FDMA (Frequency division) Unsuitable for dynamic, bursty traffic in wireless networks Random

More information

04/11/2011. Wireless LANs. CSE 3213 Fall November Overview

04/11/2011. Wireless LANs. CSE 3213 Fall November Overview Wireless LANs CSE 3213 Fall 2011 4 November 2011 Overview 2 1 Infrastructure Wireless LAN 3 Applications of Wireless LANs Key application areas: LAN extension cross-building interconnect nomadic access

More information

Local Area Networks NETW 901

Local Area Networks NETW 901 Local Area Networks NETW 901 Lecture 4 Wireless LAN Course Instructor: Dr.-Ing. Maggie Mashaly maggie.ezzat@guc.edu.eg C3.220 1 Contents What is a Wireless LAN? Applications and Requirements Transmission

More information

original standard a transmission at 5 GHz bit rate 54 Mbit/s b support for 5.5 and 11 Mbit/s e QoS

original standard a transmission at 5 GHz bit rate 54 Mbit/s b support for 5.5 and 11 Mbit/s e QoS IEEE 802.11 The standard defines a wireless physical interface and the MAC layer while LLC layer is defined in 802.2. The standardization process, started in 1990, is still going on; some versions are:

More information

Wireless Inverted Pendulum using IEEE Protocol

Wireless Inverted Pendulum using IEEE Protocol Wireless Inverted Pendulum using IEEE 802.15.4 Protocol AITOR HERNÁNDEZ Master s Degree Project Stockholm, Sweden April 4, 2011 XR-EE-RT 2010:020 Wireless Inverted Penduluml using IEEE 802.15.4 Protocol

More information

ICE 1332/0715 Mobile Computing (Summer, 2008)

ICE 1332/0715 Mobile Computing (Summer, 2008) ICE 1332/0715 Mobile Computing (Summer, 2008) Medium Access Control Prof. Chansu Yu http://academic.csuohio.edu/yuc/ Simplified Reference Model Application layer Transport layer Network layer Data link

More information

Chapter 6 Medium Access Control Protocols and Local Area Networks

Chapter 6 Medium Access Control Protocols and Local Area Networks Chapter 6 Medium Access Control Protocols and Local Area Networks 802.11 Wireless LAN CSE 3213, Winter 2010 Instructor: Foroohar Foroozan Wireless Data Communications Wireless communications compelling

More information

CMPE 257: Wireless and Mobile Networking

CMPE 257: Wireless and Mobile Networking CMPE 257: Wireless and Mobile Networking Katia Obraczka Computer Engineering UCSC Baskin Engineering Lecture 3 CMPE 257 Winter'11 1 Announcements Accessing secure part of the class Web page: User id: cmpe257.

More information

Computer Networks. Wireless LANs

Computer Networks. Wireless LANs Computer Networks Wireless LANs Mobile Communication Technology according to IEEE (examples) Local wireless networks WLAN 802.11 Personal wireless nw WPAN 802.15 WiFi 802.11a 802.11b 802.11h 802.11i/e/

More information

Computer Networks 52 (2008) Contents lists available at ScienceDirect. Computer Networks. journal homepage:

Computer Networks 52 (2008) Contents lists available at ScienceDirect. Computer Networks. journal homepage: Computer Networks 52 (28) 2568 2581 Contents lists available at ScienceDirect Computer Networks journal homepage: www.elsevier.com/locate/comnet Design and implementation of enhanced IEEE 82.15.4 for supporting

More information

Computer Network Fundamentals Spring Week 3 MAC Layer Andreas Terzis

Computer Network Fundamentals Spring Week 3 MAC Layer Andreas Terzis Computer Network Fundamentals Spring 2008 Week 3 MAC Layer Andreas Terzis Outline MAC Protocols MAC Protocol Examples Channel Partitioning TDMA/FDMA Token Ring Random Access Protocols Aloha and Slotted

More information

Improving the IEEE Slotted CSMA/CA MAC for Time-Critical Events in Wireless Sensor Networks

Improving the IEEE Slotted CSMA/CA MAC for Time-Critical Events in Wireless Sensor Networks Improving the IEEE 802.15.4 Slotted CSMA/CA MAC for Time-Critical Events in Wireless Sensor Networks Anis KOUBAA 1, Mário ALVES 1, Bilel NEFZI 2, Ye-Qiong SONG 2 1 IPP-HURRAY! Research Group, Polytechnic

More information

Ethernet. Introduction. CSE 3213 Fall 2011

Ethernet. Introduction. CSE 3213 Fall 2011 Ethernet CSE 3213 Fall 2011 19 October 2011 1 Introduction Rapid changes in technology designs Broader use of LANs New schemes for high-speed LANs High-speed LAN technologies: Fast and gigabit Ethernet

More information

The MAC layer in wireless networks

The MAC layer in wireless networks The MAC layer in wireless networks The wireless MAC layer roles Access control to shared channel(s) Natural broadcast of wireless transmission Collision of signal: a time/space problem Who transmits when?

More information

Wireless Communication and Networking CMPT 371

Wireless Communication and Networking CMPT 371 Wireless Communication and Networking CMPT 371 Wireless Systems: AM, FM Radio TV Broadcast Satellite Broadcast 2-way Radios Cordless Phones Satellite Links Mobile Telephony Systems Wireless Local Loop

More information

Availability and End-to-end Reliability in Low Duty Cycle Multihop Wireless Sensor Networks

Availability and End-to-end Reliability in Low Duty Cycle Multihop Wireless Sensor Networks Sensors 2009, 9, 2088-2116; doi:10.3390/s90302088 Article OPEN ACCESS sensors ISSN 1424-8220 www.mdpi.com/journal/sensors Availability and End-to-end Reliability in Low Duty Cycle Multihop Wireless Sensor

More information

IEEE MAC Protocol Study and Improvement

IEEE MAC Protocol Study and Improvement Georgia State University ScholarWorks @ Georgia State University Computer Science Dissertations Department of Computer Science 11-27-2007 IEEE 802.15.4 MAC Protocol Study and Improvement Liang Cheng Follow

More information

Medium Access Control in Wireless Sensor Networks & challenges!

Medium Access Control in Wireless Sensor Networks & challenges! Medium Access Control in Wireless Sensor Networks & challenges! Summer school! Sensor Networks: impacts and challenges for society! University of Béjaia, Algeria! July 3 rd, 2013! Prof. Congduc Pham! http://www.univ-pau.fr/~cpham!

More information

Chapter 4. The Medium Access Control Sublayer. Points and Questions to Consider. Multiple Access Protocols. The Channel Allocation Problem.

Chapter 4. The Medium Access Control Sublayer. Points and Questions to Consider. Multiple Access Protocols. The Channel Allocation Problem. Dynamic Channel Allocation in LANs and MANs Chapter 4 The Medium Access Control Sublayer 1. Station Model. 2. Single Channel Assumption. 3. Collision Assumption. 4. (a) Continuous Time. (b) Slotted Time.

More information

Wireless LANs. ITS 413 Internet Technologies and Applications

Wireless LANs. ITS 413 Internet Technologies and Applications Wireless LANs ITS 413 Internet Technologies and Applications Aim: Aim and Contents Understand how IEEE 802.11 wireless LANs work Understand what influences the performance of wireless LANs Contents: IEEE

More information

Certified Wireless Network Administrator (CWNA) PW Chapter Medium Access. Chapter 8 Overview

Certified Wireless Network Administrator (CWNA) PW Chapter Medium Access. Chapter 8 Overview Certified Wireless Network Administrator (CWNA) PW0-105 Chapter 8 802.11 Medium Access Chapter 8 Overview CSMA/CA vs. CSMA/CD Distributed Coordination Function (DCF) Point Coordination Function (PCF) Hybrid

More information

Department of Electrical and Computer Systems Engineering

Department of Electrical and Computer Systems Engineering Department of Electrical and Computer Systems Engineering Technical Report MECSE-6-2006 Medium Access Control (MAC) Schemes for Quality of Service (QoS) provision of Voice over Internet Protocol (VoIP)

More information

1508 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 29, NO. 8, SEPTEMBER 2011

1508 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 29, NO. 8, SEPTEMBER 2011 1508 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 29, NO. 8, SEPTEMBER 2011 Reliability and Energy-Efficiency in IEEE 802.15.4/ZigBee Sensor Networks: An Adaptive and Cross-Layer Approach Mario

More information

Technical Report. Implementation Details of the Time Division Beacon Scheduling Approach for ZigBee Cluster-Tree Networks

Technical Report. Implementation Details of the Time Division Beacon Scheduling Approach for ZigBee Cluster-Tree Networks Technical Report Implementation Details of the Time Division Beacon Scheduling Approach for ZigBee Cluster-Tree Networks André CUNHA Mário ALVES Anis KOUBAA TR-070102 Version: 1.0 Date: 20-07-2007 Approach

More information

Strengthening Unlicensed Band Wireless Backhaul

Strengthening Unlicensed Band Wireless Backhaul be in charge Strengthening Unlicensed Band Wireless Backhaul Use TDD/TDMA Based Channel Access Mechanism WHITE PAPER Strengthening Unlicensed Band Wireless Backhaul: Use TDD/TDMA Based Channel Access Mechanism

More information

CSC344 Wireless and Mobile Computing. Department of Computer Science COMSATS Institute of Information Technology

CSC344 Wireless and Mobile Computing. Department of Computer Science COMSATS Institute of Information Technology CSC344 Wireless and Mobile Computing Department of Computer Science COMSATS Institute of Information Technology Wireless Local Area Networks (WLANs) Part I Almost all wireless LANs now are IEEE 802.11

More information

Wireless Local Area Network (IEEE )

Wireless Local Area Network (IEEE ) Wireless Local Area Network (IEEE 802.11) -IEEE 802.11 Specifies a single Medium Access Control (MAC) sublayer and 3 Physical Layer Specifications. Stations can operate in two configurations : Ad-hoc mode

More information

Wireless Networking & Mobile Computing

Wireless Networking & Mobile Computing Wireless Networking & Mobile Computing CS 752/852 - Spring 2012 Lec #4: Medium Access Control - II Tamer Nadeem Dept. of Computer Science IEEE 802.11 Standards Page 2 Spring 2012 CS 752/852 - Wireless

More information

THE IEEE standard was created in 2003, and its

THE IEEE standard was created in 2003, and its ADVANCES IN ELECTRONICS AND TELECOMMUNICATIONS, VOL. 1, NO. 2, NOVEMBER 2010 7 Simulation Study of the IEEE 802.15.4 Standard Low Rate Wireless Personal Area Networks Dariusz Kościelnik and Jacek Stępień

More information

Introduction to Wireless Networking CS 490WN/ECE 401WN Winter Lecture 4: Wireless LANs and IEEE Part II

Introduction to Wireless Networking CS 490WN/ECE 401WN Winter Lecture 4: Wireless LANs and IEEE Part II Introduction to Wireless Networking CS 490WN/ECE 401WN Winter 2007 Lecture 4: Wireless LANs and IEEE 802.11 Part II This lecture continues the study of wireless LANs by looking at IEEE 802.11. I. 802.11

More information

CSMC 417. Computer Networks Prof. Ashok K Agrawala Ashok Agrawala. Fall 2018 CMSC417 Set 1 1

CSMC 417. Computer Networks Prof. Ashok K Agrawala Ashok Agrawala. Fall 2018 CMSC417 Set 1 1 CSMC 417 Computer Networks Prof. Ashok K Agrawala 2018 Ashok Agrawala Fall 2018 CMSC417 Set 1 1 The Medium Access Control Sublayer November 18 Nov 6, 2018 2 Wireless Networking Technologies November 18

More information

Mobile & Wireless Networking. Lecture 7: Wireless LAN

Mobile & Wireless Networking. Lecture 7: Wireless LAN 192620010 Mobile & Wireless Networking Lecture 7: Wireless LAN [Schiller, Section 7.3] [Reader, Part 6] [Optional: "IEEE 802.11n Development: History, Process, and Technology", Perahia, IEEE Communications

More information

IEEE : a Federating Communication Protocol for Time-Sensitive Wireless Sensor Networks Anis Koubaa Mário Alves Eduardo Tovar

IEEE : a Federating Communication Protocol for Time-Sensitive Wireless Sensor Networks Anis Koubaa Mário Alves Eduardo Tovar Technical Report IEEE 802.15.4: a Federating Communication Protocol for Time-Sensitive Wireless Sensor Networks Anis Koubaa Mário Alves Eduardo Tovar CISTER-TR-131110 Version: Date: 11/18/2013 Technical

More information

INVESTIGATION ON DELAY AND POWER MINIMIZATION IN IEEE PROTOCOL USING CSMA-CA ALGORITHM

INVESTIGATION ON DELAY AND POWER MINIMIZATION IN IEEE PROTOCOL USING CSMA-CA ALGORITHM INVESTIGATION ON DELAY AND POWER MINIMIZATION IN IEEE 802.15.4 PROTOCOL USING CSMA-CA ALGORITHM DHARA K V 1, RAJAN S 2 1ME-Applied Electronics, Department of ECE, Velalar College of Engineering and Technology,

More information

Wireless Communication and Networking CMPT 371

Wireless Communication and Networking CMPT 371 Wireless Communication and Networking CMPT 371 Wireless Systems: AM, FM Radio TV Broadcast Satellite Broadcast 2-way Radios Cordless Phones Satellite Links Mobile Telephony Systems Wireless Local Loop

More information

Impact of IEEE MAC Packet Size on Performance of Wireless Sensor Networks

Impact of IEEE MAC Packet Size on Performance of Wireless Sensor Networks IOSR Journal of Electronics and Communication Engineering (IOSR-JECE) e-issn: 2278-2834,p- ISSN: 2278-8735.Volume 10, Issue 3, Ver. IV (May - Jun.2015), PP 06-11 www.iosrjournals.org Impact of IEEE 802.11

More information

Analysis and Comparison of DSDV and NACRP Protocol in Wireless Sensor Network

Analysis and Comparison of DSDV and NACRP Protocol in Wireless Sensor Network Analysis and Comparison of and Protocol in Wireless Sensor Network C.K.Brindha PG Scholar, Department of ECE, Rajalakshmi Engineering College, Chennai, Tamilnadu, India, brindhack@gmail.com. ABSTRACT Wireless

More information