Chapter 1. Social Media and Social Computing. October 2012 Youn-Hee Han

Size: px
Start display at page:

Download "Chapter 1. Social Media and Social Computing. October 2012 Youn-Hee Han"

Transcription

1 Chapter 1. Social Media and Social Computing October 2012 Youn-Hee Han

2 1.1 Social Media A rapid development and change of the Web and the Internet Participatory web application and social networking sites Empowering them with new forms of collaboration Communication Wikipedia Much numbers of online volunteers collaboratively write encyclopedia articles Amazon (Online Market) and Social Commerce They recommend products by tapping on crowd wisdom via user shopping and reviewing interactions; Twitter Political movements benefit from new forms of engagement and collective actions Facebook Connecting Peaple

3 1.1 Social Media Facebook Big Change of Our Life 901 million monthly active users at the end of March More than 125 billion friend connections on Facebook at the end of March 2012.

4 1.1 Social Media Classical web and traditional media 1 : N Present social media N : M

5 1.1 Social Media A user of social media can be both a consumer and a producer. This new type of mass publication enables the production of timely news and grassroots ( 일반인들에의한 ) information and leads to mountains of user-generated contents, forming the wisdom of crowds. (Collective Intelligence) Distinctive characteristic of social media Participation Sharing Rich user interaction

6 1.2 Concepts and Definitions Social Networks A social network is a social structure made of nodes (individuals or organizations) and edges that connect nodes in various relationships (or interdependencies) like friendship, kinship, etc. Why Social Network in Research Community? All entities (e.g., people, devices, or systems) in this world are related to each other in one way or another It can be used in the context of information and communication technologies to provide efficient data exchange, sharing, and delivery services By using a social network, we can use the knowledge about the relationship to improve efficiency and effectiveness of network services

7 1.2 Concepts and Definitions Networks and Representations Graphical representation, Matrix representation Figure 1.1 In a weighted network, edges are associated with numerical values. In a signed network, some edges are associated with positive relationships, some others might be negative. Directed networks have directions associated with edges. In our example in Figure 1.1, the network is undirected.

8 1.2 Concepts and Definitions Networks and Representations Example of Directed Social Networks: Twitter one user x follows another user y, but user y does not necessarily follow user x. In this case, the follower-followee network is directed and asymmetrical

9 1.2 Concepts and Definitions Nomenclature ( 용어체계 ) Figure 1.1 The number of nodes adjacent to a node v i is called its degree d 1 = 3, d 4 = 4. Geodesic & Geodesic Distance g(2, 8) = 4 as there is a geodesic ( ). The length of the longest geodesic in the network is its diameter The diameter of the network in Figure 1.1 is 5 g(2, 9) = 4

10 1.2 Concepts and Definitions Properties of large-scale networks Networks in social media are often very huge, with millions of actors and connections. These large-scale networks share some common patterns scale-free distributions small-world effect strong community structure. Simple Networks a lattice graph or random graphs. Complex Networks Networks with non-trivial topological features are called complex networks to differentiate them from simple networks

11 1.2 Concepts and Definitions Power law distribution Node degrees in a large-scale network often follow a power law distribution Most nodes have a low degree, while few have an extremely high degree (say, degree > 10 4 ) Low degree Long tail

12 1.2 Concepts and Definitions Scale-free distribution Such a pattern is also called scale-free distribution the shape of the distribution does not change with scale. if we zoom into the tail (say, examine those nodes with degree > 100), we will still see a power law distribution This self-similarity is independent of scales. Networks with a power law distribution for node degrees are called scale-free networks

13 1.2 Concepts and Definitions Small-world effect Travers and Milgram (1969) conducted an experiment to examine the average path length for social networks of people in the United States six degrees of separation Leskovec and Horvitz (Microsoft, 2008) This result is also confirmed recently in a planetary-scale instant messaging network of more than 180 million people, in which the average path length of any two people is 6.6 Washington Post Article Most real-world large-scale networks observe a small diameter

14 1.2 Concepts and Definitions Strong Community Structure People in a group tend to interact with each other more than with those outside the group. friends of a friend are likely to be friends Clustering coefficient of a node v i Number of connections between v i s friends over the total number of possible connections among them where k i = the number of edges among v i s neighbors

15 1.3 Challenges Flood of data allows for an unprecedented large-scale social network (complex networks) analysis millions of actors or even more in one network. communication networks, instant messaging networks, mobile call networks, friendship networks, co-authorship or citation networks, biological networks, metabolic pathways, genetic regulatory networks and food web. These large-scale networks present novel challenges for mining social media. Some examples are given below:

16 1.3 Challenges Scalability. Networks of this astronomical size! Heterogeneity. Two persons can be friends and colleagues at the same time. Evolution. Social media emphasizes timeliness. Collective Intelligence. Wisdom of crowds. Evaluation A research barrier concerning mining social media is evaluation.

17 1.4 Social Computing Tasks Network Modeling Since the seminal work by Watts and Strogatz (1998), and Barabási and Albert (1999), network modeling has gained some significant momentum. Researchers have observed that large-scale networks across different domains follow similar patterns, such as scale-free distributions, the small-world effect and strong community structures as we discussed in Section Youtube Flickr

18 1.4 Social Computing Tasks Network Modeling When networks scale to over millions and more nodes, it becomes a challenge to compute some network statistics such as the diameter and average clustering coefficient. One way to approach the problem is sampling. Others explore I/O efficient computation. Recently, techniques of harnessing the power of distributed computing are attracting increasing attention.

19 1.4 Social Computing Tasks Centrality analysis It identifies the most important nodes in a network (Wasserman and Faust, 1994). degree centrality betweenness centrality closeness centrality eigenvector centrality equivalent to Pagerank scores (Page et al., 1999) Influence modeling It aims to understand the process of influence or information diffusion. Researchers study how information is propagated (Kempe et al.,2003) and how to find a subset of nodes that maximize influence in a population.

20 1.4 Social Computing Tasks Community Detection Community Groups, clusters, cohesive subgroups, modules in different contexts. It is one of the fundamental tasks in social network analysis. The founders of sociology claimed that the causes of social phenomena were to be found by studying groups rather than individuals (Hechter (1988), Chapter 2, Page 15).

21 1.4 Social Computing Tasks Recent Community Detection Research Scaling up community detection methods to handle networks of colossal sizes. Deals with networks of heterogeneous entities and interactions Youtube Entities (nodes): users, videos, tags Edges: connecting to a friend, leaving a comment, sending a message Considers the temporal development of social media networks. Facebook has grown from 14 million in 2005 to 500 million as in As a network evolves, we can study how communities are kept abreast with its growth and evolution, what temporal interaction patterns are there, and how these patterns can help identify communities.

22 1.4 Social Computing Tasks Classification and Recommendation A successful social media site often requires a sufficiently large population. Personalized recommendations can help enhance user experience. Classification can help recommendation. E.g., in Facebook

23 1.4 Social Computing Tasks Classification and Recommendation For instance, given a social network and some user information (interests, preferences, or behaviors), we can infer the information of other users within the same network. The classification task here is to know whether an actor is a smoker or a non-smoker (indicated by + and, respectively).

24 1.4 Social Computing Tasks Privacy, Spam and Security Privacy Many social media sites (e.g., Facebook, Google Buzz) often find themselves as the subjects in heated debates about user privacy. Spam and Attacks Another issue that causes grave concerns in social media In blogosphere, spam blogs (a.k.a., splogs) (Kolari et al., 2006a,b) and spam comments have cropped up. These spams typically contain links to other sites that are often disputable or otherwise irrelevant to the indicated content or context. Some spammers use fake identifiers to obtain other user s private information on social networking sites. Research is needed for secure social computing platform it is critical in turning social media sites into a successful marketplace

25 1.5 Summary Social media mining is a young and vibrant field with many promises. Social media has kept surprising us with its novel forms and variety. Social media is increasingly blended into the physical world with recent mobile technologies and smart phones.

26 Appendix

27 Networks Regular Networks ( 출처 ) ; 1. Rings A ring is a connected graph in which each vertex is connected to exactly two other vertices. 2. Lattices A lattice is a graph in which the vertices are placed on a grid and the neighboring vertices are connected by an edge. A one dimensional lattice is like a ring, only it is not circular, the circle is not closed. A two dimensional lattice can be seen in the following picture: Ring Lattice

28 Regular Graph 란각 vertices 들을연결하는 edge 들의모양 (structure, topology) 이전체그래프에걸쳐계속하여반복적으로나타나는형태의그래프 3. Trees A tree is a connected graph which contains no circles (cycles). A tree graph is usually plotted tree-like with its root on the top and then its branches going downward. (Hence its name.) The top vertex is called the root and the vertices at the next lower level are called the children of the root. In general the neighbors of a vertex at a lower level are called the children of that vertex. 4. Stars A star graph is a special tree, where every vertex is connected to the root. 5. Full graph In a full graph every possible edge is realized, ie. there is an edge between every pair of vertices. Edge 개수 : v (v-1) 2 v ; vertices 개수 Tree Full Graph

29 Erdõs-Rényi random graphs G(n,p) graphs are generated this way: the graph contains n vertices. Then for every pair of vertices with probability p an edge is drawn connecting them. Below is a G(n,p) graph with n=100 and p=2/100.

30 Small world phenomenon: Milgram s experiment NE: Nebraska 주 MA: Massachusetts 주 MA NE [Instructions] Given a target individual (stockbroker in Boston), pass the message to a person you correspond with who is closest to the target. [Outcome] 20% of initiated chains reached target average chain length = 6.5 Six degrees of separation

31 Collective dynamics of small-world networks Duncan J. Watts & Steven H. Strogatz ( 규칙적제멋대로, 무작위

32 Structural metrics: Average path length

33 Structural Metrics: Degree distribution(connectivity)

34 Structural Metrics: Clustering coefficient

35 Regular networks fully connected

36 Regular networks Lattice

37 Regular networks Lattice: ring world

38 Random Networks k=3

39 Random Networks

40 Small-world networks

41 Small-world networks

42 Small-world networks

43 Small-world networks

44 Scale-free networks

45 Scale-free networks

46 Scale-free networks

47 Scale-free networks

48 Scale-free networks

49 Scale-free networks

50 Case studies - Internet

51 Case studies - Internet

52 Case studies - Internet

53 Case studies - World Wide Web

54 Case studies - World Wide Web

55 Case studies - World Wide Web

56 Case studies - Actors

M.E.J. Newman: Models of the Small World

M.E.J. Newman: Models of the Small World A Review Adaptive Informatics Research Centre Helsinki University of Technology November 7, 2007 Vocabulary N number of nodes of the graph l average distance between nodes D diameter of the graph d is

More information

An Exploratory Journey Into Network Analysis A Gentle Introduction to Network Science and Graph Visualization

An Exploratory Journey Into Network Analysis A Gentle Introduction to Network Science and Graph Visualization An Exploratory Journey Into Network Analysis A Gentle Introduction to Network Science and Graph Visualization Pedro Ribeiro (DCC/FCUP & CRACS/INESC-TEC) Part 1 Motivation and emergence of Network Science

More information

Network Thinking. Complexity: A Guided Tour, Chapters 15-16

Network Thinking. Complexity: A Guided Tour, Chapters 15-16 Network Thinking Complexity: A Guided Tour, Chapters 15-16 Neural Network (C. Elegans) http://gephi.org/wp-content/uploads/2008/12/screenshot-celegans.png Food Web http://1.bp.blogspot.com/_vifbm3t8bou/sbhzqbchiei/aaaaaaaaaxk/rsc-pj45avc/

More information

Introduction to Networks and Business Intelligence

Introduction to Networks and Business Intelligence Introduction to Networks and Business Intelligence Prof. Dr. Daning Hu Department of Informatics University of Zurich Sep 16th, 2014 Outline n Network Science A Random History n Network Analysis Network

More information

Algorithms and Applications in Social Networks. 2017/2018, Semester B Slava Novgorodov

Algorithms and Applications in Social Networks. 2017/2018, Semester B Slava Novgorodov Algorithms and Applications in Social Networks 2017/2018, Semester B Slava Novgorodov 1 Lesson #1 Administrative questions Course overview Introduction to Social Networks Basic definitions Network properties

More information

CS249: SPECIAL TOPICS MINING INFORMATION/SOCIAL NETWORKS

CS249: SPECIAL TOPICS MINING INFORMATION/SOCIAL NETWORKS CS249: SPECIAL TOPICS MINING INFORMATION/SOCIAL NETWORKS Overview of Networks Instructor: Yizhou Sun yzsun@cs.ucla.edu January 10, 2017 Overview of Information Network Analysis Network Representation Network

More information

RANDOM-REAL NETWORKS

RANDOM-REAL NETWORKS RANDOM-REAL NETWORKS 1 Random networks: model A random graph is a graph of N nodes where each pair of nodes is connected by probability p: G(N,p) Random networks: model p=1/6 N=12 L=8 L=10 L=7 The number

More information

TELCOM2125: Network Science and Analysis

TELCOM2125: Network Science and Analysis School of Information Sciences University of Pittsburgh TELCOM2125: Network Science and Analysis Konstantinos Pelechrinis Spring 2015 Figures are taken from: M.E.J. Newman, Networks: An Introduction 2

More information

Extracting Information from Complex Networks

Extracting Information from Complex Networks Extracting Information from Complex Networks 1 Complex Networks Networks that arise from modeling complex systems: relationships Social networks Biological networks Distinguish from random networks uniform

More information

Introduction Types of Social Network Analysis Social Networks in the Online Age Data Mining for Social Network Analysis Applications Conclusion

Introduction Types of Social Network Analysis Social Networks in the Online Age Data Mining for Social Network Analysis Applications Conclusion Introduction Types of Social Network Analysis Social Networks in the Online Age Data Mining for Social Network Analysis Applications Conclusion References Social Network Social Network Analysis Sociocentric

More information

Overlay (and P2P) Networks

Overlay (and P2P) Networks Overlay (and P2P) Networks Part II Recap (Small World, Erdös Rényi model, Duncan Watts Model) Graph Properties Scale Free Networks Preferential Attachment Evolving Copying Navigation in Small World Samu

More information

THE KNOWLEDGE MANAGEMENT STRATEGY IN ORGANIZATIONS. Summer semester, 2016/2017

THE KNOWLEDGE MANAGEMENT STRATEGY IN ORGANIZATIONS. Summer semester, 2016/2017 THE KNOWLEDGE MANAGEMENT STRATEGY IN ORGANIZATIONS Summer semester, 2016/2017 SOCIAL NETWORK ANALYSIS: THEORY AND APPLICATIONS 1. A FEW THINGS ABOUT NETWORKS NETWORKS IN THE REAL WORLD There are four categories

More information

Case Studies in Complex Networks

Case Studies in Complex Networks Case Studies in Complex Networks Introduction to Scientific Modeling CS 365 George Bezerra 08/27/2012 The origin of graph theory Königsberg bridge problem Leonard Euler (1707-1783) The Königsberg Bridge

More information

Overview of the Stateof-the-Art. Networks. Evolution of social network studies

Overview of the Stateof-the-Art. Networks. Evolution of social network studies Overview of the Stateof-the-Art in Social Networks INF5370 spring 2014 Evolution of social network studies 1950-1970: mathematical studies of networks formed by the actual human interactions Pandemics,

More information

How Do Real Networks Look? Networked Life NETS 112 Fall 2014 Prof. Michael Kearns

How Do Real Networks Look? Networked Life NETS 112 Fall 2014 Prof. Michael Kearns How Do Real Networks Look? Networked Life NETS 112 Fall 2014 Prof. Michael Kearns Roadmap Next several lectures: universal structural properties of networks Each large-scale network is unique microscopically,

More information

CAIM: Cerca i Anàlisi d Informació Massiva

CAIM: Cerca i Anàlisi d Informació Massiva 1 / 72 CAIM: Cerca i Anàlisi d Informació Massiva FIB, Grau en Enginyeria Informàtica Slides by Marta Arias, José Balcázar, Ricard Gavaldá Department of Computer Science, UPC Fall 2016 http://www.cs.upc.edu/~caim

More information

Examples of Complex Networks

Examples of Complex Networks Examples of Complex Networks Neural Network (C. Elegans) http://gephi.org/wp-content/uploads/2008/12/screenshot-celegans.png Food Web http://1.bp.blogspot.com/_vifbm3t8bou/sbhzqbchiei/aaaaaaaaaxk/rsc-

More information

Characteristics of Preferentially Attached Network Grown from. Small World

Characteristics of Preferentially Attached Network Grown from. Small World Characteristics of Preferentially Attached Network Grown from Small World Seungyoung Lee Graduate School of Innovation and Technology Management, Korea Advanced Institute of Science and Technology, Daejeon

More information

Network Mathematics - Why is it a Small World? Oskar Sandberg

Network Mathematics - Why is it a Small World? Oskar Sandberg Network Mathematics - Why is it a Small World? Oskar Sandberg 1 Networks Formally, a network is a collection of points and connections between them. 2 Networks Formally, a network is a collection of points

More information

Complex Networks. Structure and Dynamics

Complex Networks. Structure and Dynamics Complex Networks Structure and Dynamics Ying-Cheng Lai Department of Mathematics and Statistics Department of Electrical Engineering Arizona State University Collaborators! Adilson E. Motter, now at Max-Planck

More information

Random Generation of the Social Network with Several Communities

Random Generation of the Social Network with Several Communities Communications of the Korean Statistical Society 2011, Vol. 18, No. 5, 595 601 DOI: http://dx.doi.org/10.5351/ckss.2011.18.5.595 Random Generation of the Social Network with Several Communities Myung-Hoe

More information

CS224W: Social and Information Network Analysis Jure Leskovec, Stanford University

CS224W: Social and Information Network Analysis Jure Leskovec, Stanford University CS224W: Social and Information Network Analysis Jure Leskovec, Stanford University http://cs224w.stanford.edu 10/4/2011 Jure Leskovec, Stanford CS224W: Social and Information Network Analysis, http://cs224w.stanford.edu

More information

(Social) Networks Analysis III. Prof. Dr. Daning Hu Department of Informatics University of Zurich

(Social) Networks Analysis III. Prof. Dr. Daning Hu Department of Informatics University of Zurich (Social) Networks Analysis III Prof. Dr. Daning Hu Department of Informatics University of Zurich Outline Network Topological Analysis Network Models Random Networks Small-World Networks Scale-Free Networks

More information

CSE 158 Lecture 11. Web Mining and Recommender Systems. Triadic closure; strong & weak ties

CSE 158 Lecture 11. Web Mining and Recommender Systems. Triadic closure; strong & weak ties CSE 158 Lecture 11 Web Mining and Recommender Systems Triadic closure; strong & weak ties Triangles So far we ve seen (a little about) how networks can be characterized by their connectivity patterns What

More information

Introduction to the Special Issue on AI & Networks

Introduction to the Special Issue on AI & Networks Introduction to the Special Issue on AI & Networks Marie desjardins, Matthew E. Gaston, and Dragomir Radev March 16, 2008 As networks have permeated our world, the economy has come to resemble an ecology

More information

Networks and stability

Networks and stability Networks and stability Part 1A. Network topology www.weaklink.sote.hu csermelypeter@yahoo.com Peter Csermely 1. network topology 2. network dynamics 3. examples for networks 4. synthesis (complex equilibria,

More information

Web 2.0 Social Data Analysis

Web 2.0 Social Data Analysis Web 2.0 Social Data Analysis Ing. Jaroslav Kuchař jaroslav.kuchar@fit.cvut.cz Structure(1) Czech Technical University in Prague, Faculty of Information Technologies Software and Web Engineering 2 Contents

More information

Summary: What We Have Learned So Far

Summary: What We Have Learned So Far Summary: What We Have Learned So Far small-world phenomenon Real-world networks: { Short path lengths High clustering Broad degree distributions, often power laws P (k) k γ Erdös-Renyi model: Short path

More information

Machine Learning and Modeling for Social Networks

Machine Learning and Modeling for Social Networks Machine Learning and Modeling for Social Networks Olivia Woolley Meza, Izabela Moise, Nino Antulov-Fatulin, Lloyd Sanders 1 Introduction to Networks Computational Social Science D-GESS Olivia Woolley Meza

More information

Social, Information, and Routing Networks: Models, Algorithms, and Strategic Behavior

Social, Information, and Routing Networks: Models, Algorithms, and Strategic Behavior Social, Information, and Routing Networks: Models, Algorithms, and Strategic Behavior Who? Prof. Aris Anagnostopoulos Prof. Luciana S. Buriol Prof. Guido Schäfer What will We Cover? Topics: Network properties

More information

CSE 255 Lecture 13. Data Mining and Predictive Analytics. Triadic closure; strong & weak ties

CSE 255 Lecture 13. Data Mining and Predictive Analytics. Triadic closure; strong & weak ties CSE 255 Lecture 13 Data Mining and Predictive Analytics Triadic closure; strong & weak ties Monday Random models of networks: Erdos Renyi random graphs (picture from Wikipedia http://en.wikipedia.org/wiki/erd%c5%91s%e2%80%93r%c3%a9nyi_model)

More information

Graph theoretic concepts. Devika Subramanian Comp 140 Fall 2008

Graph theoretic concepts. Devika Subramanian Comp 140 Fall 2008 Graph theoretic concepts Devika Subramanian Comp 140 Fall 2008 The small world phenomenon The phenomenon is surprising because Size of graph is very large (> 6 billion for the planet). Graph is sparse

More information

CSE 158 Lecture 13. Web Mining and Recommender Systems. Triadic closure; strong & weak ties

CSE 158 Lecture 13. Web Mining and Recommender Systems. Triadic closure; strong & weak ties CSE 158 Lecture 13 Web Mining and Recommender Systems Triadic closure; strong & weak ties Monday Random models of networks: Erdos Renyi random graphs (picture from Wikipedia http://en.wikipedia.org/wiki/erd%c5%91s%e2%80%93r%c3%a9nyi_model)

More information

The Role of Homophily and Popularity in Informed Decentralized Search

The Role of Homophily and Popularity in Informed Decentralized Search The Role of Homophily and Popularity in Informed Decentralized Search Florian Geigl and Denis Helic Knowledge Technologies Institute In eldgasse 13/5. floor, 8010 Graz, Austria {florian.geigl,dhelic}@tugraz.at

More information

MAE 298, Lecture 9 April 30, Web search and decentralized search on small-worlds

MAE 298, Lecture 9 April 30, Web search and decentralized search on small-worlds MAE 298, Lecture 9 April 30, 2007 Web search and decentralized search on small-worlds Search for information Assume some resource of interest is stored at the vertices of a network: Web pages Files in

More information

CSE 190 Lecture 16. Data Mining and Predictive Analytics. Small-world phenomena

CSE 190 Lecture 16. Data Mining and Predictive Analytics. Small-world phenomena CSE 190 Lecture 16 Data Mining and Predictive Analytics Small-world phenomena Another famous study Stanley Milgram wanted to test the (already popular) hypothesis that people in social networks are separated

More information

How to explore big networks? Question: Perform a random walk on G. What is the average node degree among visited nodes, if avg degree in G is 200?

How to explore big networks? Question: Perform a random walk on G. What is the average node degree among visited nodes, if avg degree in G is 200? How to explore big networks? Question: Perform a random walk on G. What is the average node degree among visited nodes, if avg degree in G is 200? Questions from last time Avg. FB degree is 200 (suppose).

More information

Math 443/543 Graph Theory Notes 10: Small world phenomenon and decentralized search

Math 443/543 Graph Theory Notes 10: Small world phenomenon and decentralized search Math 443/543 Graph Theory Notes 0: Small world phenomenon and decentralized search David Glickenstein November 0, 008 Small world phenomenon The small world phenomenon is the principle that all people

More information

CSE 258 Lecture 12. Web Mining and Recommender Systems. Social networks

CSE 258 Lecture 12. Web Mining and Recommender Systems. Social networks CSE 258 Lecture 12 Web Mining and Recommender Systems Social networks Social networks We ve already seen networks (a little bit) in week 3 i.e., we ve studied inference problems defined on graphs, and

More information

Graph Mining and Social Network Analysis

Graph Mining and Social Network Analysis Graph Mining and Social Network Analysis Data Mining and Text Mining (UIC 583 @ Politecnico di Milano) References q Jiawei Han and Micheline Kamber, "Data Mining: Concepts and Techniques", The Morgan Kaufmann

More information

Graph-theoretic Properties of Networks

Graph-theoretic Properties of Networks Graph-theoretic Properties of Networks Bioinformatics: Sequence Analysis COMP 571 - Spring 2015 Luay Nakhleh, Rice University Graphs A graph is a set of vertices, or nodes, and edges that connect pairs

More information

Networks in economics and finance. Lecture 1 - Measuring networks

Networks in economics and finance. Lecture 1 - Measuring networks Networks in economics and finance Lecture 1 - Measuring networks What are networks and why study them? A network is a set of items (nodes) connected by edges or links. Units (nodes) Individuals Firms Banks

More information

Community Detection and Mining in Social Media

Community Detection and Mining in Social Media Community Detection and Mining in Social Media Synthesis Lectures on Data Mining and Knowledge Discovery Editor Jiawei Han, University of Illinois at Urbana-Champaign Lise Getoor, University of Maryland

More information

MODELS FOR EVOLUTION AND JOINING OF SMALL WORLD NETWORKS

MODELS FOR EVOLUTION AND JOINING OF SMALL WORLD NETWORKS MODELS FOR EVOLUTION AND JOINING OF SMALL WORLD NETWORKS By SURESH BABU THIPIREDDY Bachelor of Technology in Computer Science Jawaharlal Nehru Technological University Hyderabad, Andhra Pradesh, India

More information

Models of Network Formation. Networked Life NETS 112 Fall 2017 Prof. Michael Kearns

Models of Network Formation. Networked Life NETS 112 Fall 2017 Prof. Michael Kearns Models of Network Formation Networked Life NETS 112 Fall 2017 Prof. Michael Kearns Roadmap Recently: typical large-scale social and other networks exhibit: giant component with small diameter sparsity

More information

UNIVERSITA DEGLI STUDI DI CATANIA FACOLTA DI INGEGNERIA

UNIVERSITA DEGLI STUDI DI CATANIA FACOLTA DI INGEGNERIA UNIVERSITA DEGLI STUDI DI CATANIA FACOLTA DI INGEGNERIA PhD course in Electronics, Automation and Complex Systems Control-XXIV Cycle DIPARTIMENTO DI INGEGNERIA ELETTRICA ELETTRONICA E DEI SISTEMI ing.

More information

CSE 316: SOCIAL NETWORK ANALYSIS INTRODUCTION. Fall 2017 Marion Neumann

CSE 316: SOCIAL NETWORK ANALYSIS INTRODUCTION. Fall 2017 Marion Neumann CSE 316: SOCIAL NETWORK ANALYSIS Fall 2017 Marion Neumann INTRODUCTION Contents in these slides may be subject to copyright. Some materials are adopted from: http://www.cs.cornell.edu/home /kleinber/ networks-book,

More information

CSCI5070 Advanced Topics in Social Computing

CSCI5070 Advanced Topics in Social Computing CSCI5070 Advanced Topics in Social Computing Irwin King The Chinese University of Hong Kong king@cse.cuhk.edu.hk!! 2012 All Rights Reserved. Outline Graphs Origins Definition Spectral Properties Type of

More information

Mining and Analyzing Online Social Networks

Mining and Analyzing Online Social Networks The 5th EuroSys Doctoral Workshop (EuroDW 2011) Salzburg, Austria, Sunday 10 April 2011 Mining and Analyzing Online Social Networks Emilio Ferrara eferrara@unime.it Advisor: Prof. Giacomo Fiumara PhD School

More information

Small-World Models and Network Growth Models. Anastassia Semjonova Roman Tekhov

Small-World Models and Network Growth Models. Anastassia Semjonova Roman Tekhov Small-World Models and Network Growth Models Anastassia Semjonova Roman Tekhov Small world 6 billion small world? 1960s Stanley Milgram Six degree of separation Small world effect Motivation Not only friends:

More information

Navigation in Networks. Networked Life NETS 112 Fall 2017 Prof. Michael Kearns

Navigation in Networks. Networked Life NETS 112 Fall 2017 Prof. Michael Kearns Navigation in Networks Networked Life NETS 112 Fall 2017 Prof. Michael Kearns The Navigation Problem You are an individual (vertex) in a very large social network You want to find a (short) chain of friendships

More information

1 Degree Distributions

1 Degree Distributions Lecture Notes: Social Networks: Models, Algorithms, and Applications Lecture 3: Jan 24, 2012 Scribes: Geoffrey Fairchild and Jason Fries 1 Degree Distributions Last time, we discussed some graph-theoretic

More information

Structure of Social Networks

Structure of Social Networks Structure of Social Networks Outline Structure of social networks Applications of structural analysis Social *networks* Twitter Facebook Linked-in IMs Email Real life Address books... Who Twitter #numbers

More information

Wednesday, March 8, Complex Networks. Presenter: Jirakhom Ruttanavakul. CS 790R, University of Nevada, Reno

Wednesday, March 8, Complex Networks. Presenter: Jirakhom Ruttanavakul. CS 790R, University of Nevada, Reno Wednesday, March 8, 2006 Complex Networks Presenter: Jirakhom Ruttanavakul CS 790R, University of Nevada, Reno Presented Papers Emergence of scaling in random networks, Barabási & Bonabeau (2003) Scale-free

More information

CSE 158 Lecture 11. Web Mining and Recommender Systems. Social networks

CSE 158 Lecture 11. Web Mining and Recommender Systems. Social networks CSE 158 Lecture 11 Web Mining and Recommender Systems Social networks Assignment 1 Due 5pm next Monday! (Kaggle shows UTC time, but the due date is 5pm, Monday, PST) Assignment 1 Assignment 1 Social networks

More information

Complex-Network Modelling and Inference

Complex-Network Modelling and Inference Complex-Network Modelling and Inference Lecture 8: Graph features (2) Matthew Roughan http://www.maths.adelaide.edu.au/matthew.roughan/notes/ Network_Modelling/ School

More information

Signal Processing for Big Data

Signal Processing for Big Data Signal Processing for Big Data Sergio Barbarossa 1 Summary 1. Networks 2.Algebraic graph theory 3. Random graph models 4. OperaGons on graphs 2 Networks The simplest way to represent the interaction between

More information

Critical Phenomena in Complex Networks

Critical Phenomena in Complex Networks Critical Phenomena in Complex Networks Term essay for Physics 563: Phase Transitions and the Renormalization Group University of Illinois at Urbana-Champaign Vikyath Deviprasad Rao 11 May 2012 Abstract

More information

Degree Distribution: The case of Citation Networks

Degree Distribution: The case of Citation Networks Network Analysis Degree Distribution: The case of Citation Networks Papers (in almost all fields) refer to works done earlier on same/related topics Citations A network can be defined as Each node is a

More information

1 Comparing networks, and why social networks are different

1 Comparing networks, and why social networks are different 1 Comparing networks, and why social networks are different The various measures of network structure that we have encountered so far allow us mainly to understand the structure of a single particular

More information

Properties of Biological Networks

Properties of Biological Networks Properties of Biological Networks presented by: Ola Hamud June 12, 2013 Supervisor: Prof. Ron Pinter Based on: NETWORK BIOLOGY: UNDERSTANDING THE CELL S FUNCTIONAL ORGANIZATION By Albert-László Barabási

More information

Lesson 4. Random graphs. Sergio Barbarossa. UPC - Barcelona - July 2008

Lesson 4. Random graphs. Sergio Barbarossa. UPC - Barcelona - July 2008 Lesson 4 Random graphs Sergio Barbarossa Graph models 1. Uncorrelated random graph (Erdős, Rényi) N nodes are connected through n edges which are chosen randomly from the possible configurations 2. Binomial

More information

Erdős-Rényi Model for network formation

Erdős-Rényi Model for network formation Network Science: Erdős-Rényi Model for network formation Ozalp Babaoglu Dipartimento di Informatica Scienza e Ingegneria Università di Bologna www.cs.unibo.it/babaoglu/ Why model? Simpler representation

More information

Graph Theory. Graph Theory. COURSE: Introduction to Biological Networks. Euler s Solution LECTURE 1: INTRODUCTION TO NETWORKS.

Graph Theory. Graph Theory. COURSE: Introduction to Biological Networks. Euler s Solution LECTURE 1: INTRODUCTION TO NETWORKS. Graph Theory COURSE: Introduction to Biological Networks LECTURE 1: INTRODUCTION TO NETWORKS Arun Krishnan Koenigsberg, Russia Is it possible to walk with a route that crosses each bridge exactly once,

More information

An Investigation into the Free/Open Source Software Phenomenon using Data Mining, Social Network Theory, and Agent-Based

An Investigation into the Free/Open Source Software Phenomenon using Data Mining, Social Network Theory, and Agent-Based An Investigation into the Free/Open Source Software Phenomenon using Data Mining, Social Network Theory, and Agent-Based Greg Madey Computer Science & Engineering University of Notre Dame UIUC - NSF Workshop

More information

Package fastnet. September 11, 2018

Package fastnet. September 11, 2018 Type Package Title Large-Scale Social Network Analysis Version 0.1.6 Package fastnet September 11, 2018 We present an implementation of the algorithms required to simulate largescale social networks and

More information

The importance of networks permeates

The importance of networks permeates Introduction to the Special Issue on AI and Networks Marie desjardins, Matthew E. Gaston, and Dragomir Radev This introduction to AI Magazine s special issue on networks and AI summarizes the seven articles

More information

A Generating Function Approach to Analyze Random Graphs

A Generating Function Approach to Analyze Random Graphs A Generating Function Approach to Analyze Random Graphs Presented by - Vilas Veeraraghavan Advisor - Dr. Steven Weber Department of Electrical and Computer Engineering Drexel University April 8, 2005 Presentation

More information

Girls Talk Math Summer Camp

Girls Talk Math Summer Camp From Brains and Friendships to the Stock Market and the Internet -Sanjukta Krishnagopal 10 July 2018 Girls Talk Math Summer Camp Some real networks Social Networks Networks of acquaintances Collaboration

More information

Package fastnet. February 12, 2018

Package fastnet. February 12, 2018 Type Package Title Large-Scale Social Network Analysis Version 0.1.4 Package fastnet February 12, 2018 We present an implementation of the algorithms required to simulate largescale social networks and

More information

Volume 2, Issue 11, November 2014 International Journal of Advance Research in Computer Science and Management Studies

Volume 2, Issue 11, November 2014 International Journal of Advance Research in Computer Science and Management Studies Volume 2, Issue 11, November 2014 International Journal of Advance Research in Computer Science and Management Studies Research Article / Survey Paper / Case Study Available online at: www.ijarcsms.com

More information

Introduction to Complex Networks Analysis

Introduction to Complex Networks Analysis Introduction to Complex Networks Analysis Miloš Savić Department of Mathematics and Informatics, Faculty of Sciences, University of Novi Sad, Serbia Complex systems and networks System - a set of interrelated

More information

Networks and Discrete Mathematics

Networks and Discrete Mathematics Aristotle University, School of Mathematics Master in Web Science Networks and Discrete Mathematics Small Words-Scale-Free- Model Chronis Moyssiadis Vassilis Karagiannis 7/12/2012 WS.04 Webscience: lecture

More information

Complex networks Phys 682 / CIS 629: Computational Methods for Nonlinear Systems

Complex networks Phys 682 / CIS 629: Computational Methods for Nonlinear Systems Complex networks Phys 682 / CIS 629: Computational Methods for Nonlinear Systems networks are everywhere (and always have been) - relationships (edges) among entities (nodes) explosion of interest in network

More information

Detecting and Analyzing Communities in Social Network Graphs for Targeted Marketing

Detecting and Analyzing Communities in Social Network Graphs for Targeted Marketing Detecting and Analyzing Communities in Social Network Graphs for Targeted Marketing Gautam Bhat, Rajeev Kumar Singh Department of Computer Science and Engineering Shiv Nadar University Gautam Buddh Nagar,

More information

1 Homophily and assortative mixing

1 Homophily and assortative mixing 1 Homophily and assortative mixing Networks, and particularly social networks, often exhibit a property called homophily or assortative mixing, which simply means that the attributes of vertices correlate

More information

Alessandro Del Ponte, Weijia Ran PAD 637 Week 3 Summary January 31, Wasserman and Faust, Chapter 3: Notation for Social Network Data

Alessandro Del Ponte, Weijia Ran PAD 637 Week 3 Summary January 31, Wasserman and Faust, Chapter 3: Notation for Social Network Data Wasserman and Faust, Chapter 3: Notation for Social Network Data Three different network notational schemes Graph theoretic: the most useful for centrality and prestige methods, cohesive subgroup ideas,

More information

Basics of Network Analysis

Basics of Network Analysis Basics of Network Analysis Hiroki Sayama sayama@binghamton.edu Graph = Network G(V, E): graph (network) V: vertices (nodes), E: edges (links) 1 Nodes = 1, 2, 3, 4, 5 2 3 Links = 12, 13, 15, 23,

More information

E6885 Network Science Lecture 5: Network Estimation and Modeling

E6885 Network Science Lecture 5: Network Estimation and Modeling E 6885 Topics in Signal Processing -- Network Science E6885 Network Science Lecture 5: Network Estimation and Modeling Ching-Yung Lin, Dept. of Electrical Engineering, Columbia University October 7th,

More information

Heuristics for the Critical Node Detection Problem in Large Complex Networks

Heuristics for the Critical Node Detection Problem in Large Complex Networks Heuristics for the Critical Node Detection Problem in Large Complex Networks Mahmood Edalatmanesh Department of Computer Science Submitted in partial fulfilment of the requirements for the degree of Master

More information

CS-E5740. Complex Networks. Scale-free networks

CS-E5740. Complex Networks. Scale-free networks CS-E5740 Complex Networks Scale-free networks Course outline 1. Introduction (motivation, definitions, etc. ) 2. Static network models: random and small-world networks 3. Growing network models: scale-free

More information

ECS 253 / MAE 253, Lecture 8 April 21, Web search and decentralized search on small-world networks

ECS 253 / MAE 253, Lecture 8 April 21, Web search and decentralized search on small-world networks ECS 253 / MAE 253, Lecture 8 April 21, 2016 Web search and decentralized search on small-world networks Search for information Assume some resource of interest is stored at the vertices of a network: Web

More information

Jure Leskovec, Cornell/Stanford University. Joint work with Kevin Lang, Anirban Dasgupta and Michael Mahoney, Yahoo! Research

Jure Leskovec, Cornell/Stanford University. Joint work with Kevin Lang, Anirban Dasgupta and Michael Mahoney, Yahoo! Research Jure Leskovec, Cornell/Stanford University Joint work with Kevin Lang, Anirban Dasgupta and Michael Mahoney, Yahoo! Research Network: an interaction graph: Nodes represent entities Edges represent interaction

More information

Introduction to network metrics

Introduction to network metrics Universitat Politècnica de Catalunya Version 0.5 Complex and Social Networks (2018-2019) Master in Innovation and Research in Informatics (MIRI) Instructors Argimiro Arratia, argimiro@cs.upc.edu, http://www.cs.upc.edu/~argimiro/

More information

6. Overview. L3S Research Center, University of Hannover. 6.1 Section Motivation. Investigation of structural aspects of peer-to-peer networks

6. Overview. L3S Research Center, University of Hannover. 6.1 Section Motivation. Investigation of structural aspects of peer-to-peer networks , University of Hannover Random Graphs, Small-Worlds, and Scale-Free Networks Wolf-Tilo Balke and Wolf Siberski 05.12.07 * Original slides provided by K.A. Lehmann (University Tübingen, Germany) 6. Overview

More information

Social Network Mining An Introduction

Social Network Mining An Introduction Social Network Mining An Introduction Jiawei Zhang Assistant Professor Florida State University Big Data A Questionnaire Please raise your hands, if you (1) use Facebook (2) use Instagram (3) use Snapchat

More information

Algorithmic and Economic Aspects of Networks. Nicole Immorlica

Algorithmic and Economic Aspects of Networks. Nicole Immorlica Algorithmic and Economic Aspects of Networks Nicole Immorlica Syllabus 1. Jan. 8 th (today): Graph theory, network structure 2. Jan. 15 th : Random graphs, probabilistic network formation 3. Jan. 20 th

More information

Nick Hamilton Institute for Molecular Bioscience. Essential Graph Theory for Biologists. Image: Matt Moores, The Visible Cell

Nick Hamilton Institute for Molecular Bioscience. Essential Graph Theory for Biologists. Image: Matt Moores, The Visible Cell Nick Hamilton Institute for Molecular Bioscience Essential Graph Theory for Biologists Image: Matt Moores, The Visible Cell Outline Core definitions Which are the most important bits? What happens when

More information

modern database systems lecture 10 : large-scale graph processing

modern database systems lecture 10 : large-scale graph processing modern database systems lecture 1 : large-scale graph processing Aristides Gionis spring 18 timeline today : homework is due march 6 : homework out april 5, 9-1 : final exam april : homework due graphs

More information

The Structure of Information Networks. Jon Kleinberg. Cornell University

The Structure of Information Networks. Jon Kleinberg. Cornell University The Structure of Information Networks Jon Kleinberg Cornell University 1 TB 1 GB 1 MB How much information is there? Wal-Mart s transaction database Library of Congress (text) World Wide Web (large snapshot,

More information

Know your neighbours: Machine Learning on Graphs

Know your neighbours: Machine Learning on Graphs Know your neighbours: Machine Learning on Graphs Andrew Docherty Senior Research Engineer andrew.docherty@data61.csiro.au www.data61.csiro.au 2 Graphs are Everywhere Online Social Networks Transportation

More information

CS224W: Analysis of Networks Jure Leskovec, Stanford University

CS224W: Analysis of Networks Jure Leskovec, Stanford University CS224W: Analysis of Networks Jure Leskovec, Stanford University http://cs224w.stanford.edu 11/13/17 Jure Leskovec, Stanford CS224W: Analysis of Networks, http://cs224w.stanford.edu 2 Observations Models

More information

CS224W Project Write-up Static Crawling on Social Graph Chantat Eksombatchai Norases Vesdapunt Phumchanit Watanaprakornkul

CS224W Project Write-up Static Crawling on Social Graph Chantat Eksombatchai Norases Vesdapunt Phumchanit Watanaprakornkul 1 CS224W Project Write-up Static Crawling on Social Graph Chantat Eksombatchai Norases Vesdapunt Phumchanit Watanaprakornkul Introduction Our problem is crawling a static social graph (snapshot). Given

More information

Lecture 9: I: Web Retrieval II: Webology. Johan Bollen Old Dominion University Department of Computer Science

Lecture 9: I: Web Retrieval II: Webology. Johan Bollen Old Dominion University Department of Computer Science Lecture 9: I: Web Retrieval II: Webology Johan Bollen Old Dominion University Department of Computer Science jbollen@cs.odu.edu http://www.cs.odu.edu/ jbollen April 10, 2003 Page 1 WWW retrieval Two approaches

More information

Network Analysis. 1. Large and Complex Networks. Scale-free Networks Albert Barabasi Society

Network Analysis. 1. Large and Complex Networks. Scale-free Networks Albert Barabasi  Society COMP4048 Information Visualisation 2011 2 nd semester 1. Large and Complex Networks Network Analysis Scale-free Networks Albert Barabasi http://www.nd.edu/~networks/ Seokhee Hong Austin Powers: The spy

More information

beyond social networks

beyond social networks beyond social networks Small world phenomenon: high clustering C network >> C random graph low average shortest path l network ln( N)! neural network of C. elegans,! semantic networks of languages,! actor

More information

Topology Enhancement in Wireless Multihop Networks: A Top-down Approach

Topology Enhancement in Wireless Multihop Networks: A Top-down Approach Topology Enhancement in Wireless Multihop Networks: A Top-down Approach Symeon Papavassiliou (joint work with Eleni Stai and Vasileios Karyotis) National Technical University of Athens (NTUA) School of

More information

TELCOM2125: Network Science and Analysis

TELCOM2125: Network Science and Analysis School of Information Sciences University of Pittsburgh TELCOM2125: Network Science and Analysis Konstantinos Pelechrinis Spring 2015 Figures are taken from: M.E.J. Newman, Networks: An Introduction 2

More information

ROBERTO BATTITI, MAURO BRUNATO. The LION Way: Machine Learning plus Intelligent Optimization. LIONlab, University of Trento, Italy, Apr 2015

ROBERTO BATTITI, MAURO BRUNATO. The LION Way: Machine Learning plus Intelligent Optimization. LIONlab, University of Trento, Italy, Apr 2015 ROBERTO BATTITI, MAURO BRUNATO. The LION Way: Machine Learning plus Intelligent Optimization. LIONlab, University of Trento, Italy, Apr 2015 http://intelligentoptimization.org/lionbook Roberto Battiti

More information

γ : constant Goett 2 P(k) = k γ k : degree

γ : constant Goett 2 P(k) = k γ k : degree Goett 1 Jeffrey Goett Final Research Paper, Fall 2003 Professor Madey 19 December 2003 Abstract: Recent observations by physicists have lead to new theories about the mechanisms controlling the growth

More information