Network Coding for Distributed Storage Systems* Presented by Jayant Apte ASPITRG 7/9/13 & 7/11/13

Size: px
Start display at page:

Download "Network Coding for Distributed Storage Systems* Presented by Jayant Apte ASPITRG 7/9/13 & 7/11/13"

Transcription

1 Network Coding for Distributed Storage Systems* Presented by Jayant Apte ASPITRG 7/9/13 & 7/11/13 *Dimakis, A.G.; Godfrey, P.B.; Wu, Y.; Wainwright, M.J.; Ramchandran, K. "Network Coding for Distributed Storage Systems", Information Theory, IEEE Transactions on, On page(s): Volume: 56, Issue: 9, Sept. 2010

2 Outline Part 1 Single Source Multi-cast Linear Network Coding Part 2 The repair problem Reduction of repair problem to single source multicast network Family of single source multi-cast networks arising from the reduction A lower bound on min-cuts(i.e. An upper bound on max-flow and hence coding capacity of network) Minimization of storage bandwidth subject to this lower bound

3 Some background on single source multi-cast network coding *Koetter, R.; Medard, M., "An algebraic approach to network coding," Networking, IEEE/ACM Transactions on, vol.11, no.5, pp.782,795, Oct. 2003

4 Some background on single source multi-cast network coding *Koetter, R.; Medard, M., "An algebraic approach to network coding," Networking, IEEE/ACM Transactions on, vol.11, no.5, pp.782,795, Oct. 2003

5 Max-Flow-Min-Cut Theorem

6 Max-Flow-Min-Cut Theorem

7 Max-Flow-Min-Cut Theorem

8 Some background on single source multi-cast network coding *Koetter, R.; Medard, M., "An algebraic approach to network coding," Networking, IEEE/ACM Transactions on, vol.11, no.5, pp.782,795, Oct. 2003

9 Basic Network Model

10 Basic Network Model

11 Local coding coefficients

12 Global coding coefficients

13 Matrix formulation

14 The transfer matrix

15 Proof of Theorem 2

16

17

18 Proof of Theorem 3

19 Some background on single source multi-cast network coding *Koetter, R.; Medard, M., "An algebraic approach to network coding," Networking, IEEE/ACM Transactions on, vol.11, no.5, pp.782,795, Oct. 2003

20 Extension to multicast

21 Part 2- Outline Introduction The repair problem Reduction of repair problem to single source multicast network Family of single source multi-cast networks arising from the reduction A lower bound on min-cuts(i.e. An upper bound on max-flow and hence coding capacity of network) Minimization of storage bandwidth subject to this lower bound

22 Distributed storage We are living in an internet age Demand for large scale data storage has increased significantly Social networks, file and video sharing require seamless storage, access and security for massive amounts of data Storage mediums(viz. hard-drives) are individually unreliable Hence we introduce redundancy via the use of erasure codes to improve reliability

23 A storage code((4,2) MDS) A1 Fragment 1 A2 Disk 1 A1 Kwefgws Jwehfwg SjfJHFJ jhfefog Sikytrd sdjhvkjd A2 B1 B2 B1 B2 Disk 2 A1+B1 A2+B2 Disk 3 Fragment 2 A2+B1 A1+ A2+B2 Disk 4

24 A storage code((4,2) MDS) A1 Fragment 1 A2 Disk 1 A1 Kwefgws Jwehfwg SjfJHFJ jhfefog Sikytrd sdjhvkjd A2 B1 B2 B1 B2 Disk 2 A1+B1 A2+B2 Disk 3 Fragment 2 A2+B1 A1+ A2+B2 Disk 4

25 Part 2- Outline Introduction The repair problem Reduction of repair problem to single source multicast network Family of single source multi-cast networks arising from the reduction A lower bound on min-cuts(i.e. An upper bound on max-flow and hence coding capacity of network) Minimization of storage bandwidth subject to this lower bound

26 Problem Definition Storage nodes are distributed and connected in a network Together they represent some storage code(mds or approximate MDS like LDPC) The issue of repairing a node arises when a storage node of the system fails The still functioning nodes are called active nodes A newcomer node called repair node must connect to a subset of active nodes, obtain information from them and reconstruct the storage code i.e, repair the code The objective is to minimize amount of information transferred in this process

27 Notation

28 The repair problem x1 y1 x2 y2 x3 x5 x4 ( Example: A (4,2) MDS code = repair bandwidth per node )

29 The repair problem Data object (2Mb) is divided into two fragments: y1,y2 (1 Mb each) 4 encoded fragments generated: x1,x2,x3,x4 (1 Mb each) x4 fails, x5, the newcomer needs to communicate with existing nodes and create a new encoded packet Any two out of x1,x2,x3,x5 must suffice to recover original data object

30 The repair problem What(and how much) should x1,x2,x3 communicate to x5 such that are minimized? x1 y1 x2 y2 x3 x5 x4 Example 1: A (4,2) MDS code

31 Variants of the repair problem Exact Repair: Failed blocks are exactly regenerated i.e. newcomer node must reconstruct exact replica of encoded block in the failed node Functional Repair: Newly generated data block need not be exact replica of encoded block on the failed node Exact repair of the systematic part: Only repair the systematic part exactly so there is always a uncoded copy of original file available

32 Variants of the repair problem Exact Repair: Failed blocks are exactly regenerated i.e. newcomer node must reconstruct exact replica of encoded block in the failed node Functional Repair: Newly generated data block need not be exact replica of encoded block on the failed node Exact repair of the systematic part: Only repair the systematic part exactly so there is always a uncoded copy of original file available

33 Functional repair example (Using RLNC) a1 1 b1 2 a1 a2 2 b1 b2 1 a2 a1+b1+a2+b2 b2 File fragments p1=a1+2b1 p2=2a2+b a1+2b1+a2+2b2 1 a1+2b1+3a2+b2 2 1 p1=4a1+5b1+4a2+5b2 1 Encoded repair packets 3a1+2b1+2a2+3b2 Encoded data blocks 1 5a1+7b1+8a2+7b2 6a1+9b1+6a2+6b2 Repair node (Each box is 0.5Mb)

34 Functional repair example (Using RLNC) Flow across this Cut is repair b/w a1 1 b1 2 a1 a2 2 b1 b2 1 a2 a1+b1+a2+b2 b2 File fragments p1=a1+2b1 p2=2a2+b a1+2b1+a2+2b2 1 a1+2b1+3a2+b2 2 1 p1=4a1+5b1+4a2+5b2 1 Encoded repair packets 3a1+2b1+2a2+3b2 Encoded data blocks 1 5a1+7b1+8a2+7b2 6a1+9b1+6a2+6b2 Repair node (Each box is 0.5Mb)

35 An attempt at solution x1 y1 x2 y2 x3 x4 Example 1: A (4,2) MDS code x5

36 An attempt at solution x1 y1 x2 y2 x3 x4 Example 1: A (4,2) MDS code x5 x5 Recovers original data object and creates a new independent linear combination

37 Can we do better than this?

38 Can we do better than this? YES!

39 Part 2- Outline Introduction The repair problem Reduction of repair problem to single source multicast network Family of single source multi-cast networks arising from the reduction A lower bound on min-cuts(i.e. An upper bound on max-flow and hence coding capacity of network) Minimization of storage bandwidth subject to this lower bound

40 Reduction to information flow graph

41 Example x1in S x2in x3in x4in x1out DC x2out x3out x4out x5in x5out Information flow graph corresponding to Example 1: A (4,2) MDS code Node 4 has failed

42 Dynamic nature of information flow graph due to given failure pattern x1in S x2in x3in x4in x1out DC x2out x3out x4out x5in x5out Information flow graph corresponding to Example 1: A (4,2) MDS code Node 4 has failed

43 Family of information flow graphs S x1in x1out x2in x2out x3in x3out x4in x4out x6in x6out DC x5in x5out Information flow graph corresponding to Example 1: A (4,2) MDS code Node 3 also failed say a few minutes later

44 Lemma 1

45 Outline The repair problem Reduction of repair problem to single source multicast network Family of single source multi-cast networks arising from the reduction A lower bound on min-cuts(i.e. An upper bound on max-flow and hence coding capacity of network) Minimization of storage bandwidth subject to this lower bound

46

47 Information flow graph S

48 Information flow graph S

49 Information flow graph S

50 Information flow graph S

51 Information flow graph S

52 Information flow graph S

53 Proof

54

55

56 WLOG

57 Outline The repair problem Reduction of repair problem to single source multicast network Family of single source multi-cast networks arising from the reduction A lower bound on min-cuts(i.e. An upper bound on max-flow and hence coding capacity of network) Minimization of storage bandwidth subject to this lower bound

58 Minimize subject to the lower bound

59 Nature of constraint

60 LHS of constraint as function of

61 LHS of constraint as function of

62 Solution to the optimization

63 Simplification of solution

64 Simplification of solution

65 Solution

66 Minimum repair bandwidth

67 Storage-Bandwidth Tradeoff Relationship between and [1]

68 References [1]Alexandros G. Dimakis, P. Brighten Godfrey, Yunnan Wu, Martin J. Wainwright, and Kannan Ramchandran Network coding for distributed storage systems. IEEE Trans. Inf. Theor. 56, 9 (September 2010), [2]Koetter, R.; Medard, M., "An algebraic approach to network coding," Networking, IEEE/ACM Transactions on, vol.11, no.5, pp.782,795, Oct [3]Tracey Ho and Desmond Lun Network Coding: An Introduction. Cambridge University Press, New York, NY, USA. [4]Dimakis, A.G.; Ramchandran, K.; Wu, Y.; Changho Suh, "A Survey on Network Codes for Distributed Storage," Proceedings of the IEEE, vol.99, no.3, pp.476,489, March 2011

SCALING UP OF E-MSR CODES BASED DISTRIBUTED STORAGE SYSTEMS WITH FIXED NUMBER OF REDUNDANCY NODES

SCALING UP OF E-MSR CODES BASED DISTRIBUTED STORAGE SYSTEMS WITH FIXED NUMBER OF REDUNDANCY NODES SCALING UP OF E-MSR CODES BASED DISTRIBUTED STORAGE SYSTEMS WITH FIXED NUMBER OF REDUNDANCY NODES Haotian Zhao, Yinlong Xu and Liping Xiang School of Computer Science and Technology, University of Science

More information

Exact Optimized-cost Repair in Multi-hop Distributed Storage Networks

Exact Optimized-cost Repair in Multi-hop Distributed Storage Networks Exact Optimized-cost Repair in Multi-hop Distributed Storage Networks Majid Gerami, Ming Xiao Communication Theory Lab, Royal Institute of Technology, KTH, Sweden, E-mail: {gerami, mingx@kthse arxiv:14012774v1

More information

An Improvement of Quasi-cyclic Minimum Storage Regenerating Codes for Distributed Storage

An Improvement of Quasi-cyclic Minimum Storage Regenerating Codes for Distributed Storage An Improvement of Quasi-cyclic Minimum Storage Regenerating Codes for Distributed Storage Chenhui LI*, Songtao LIANG* * Shanghai Key Laboratory of Intelligent Information Processing, Fudan University,

More information

Minimization of Storage Cost in Distributed Storage Systems with Repair Consideration

Minimization of Storage Cost in Distributed Storage Systems with Repair Consideration Minimization of Storage Cost in Distributed Storage Systems with Repair Consideration Quan Yu Department of Electronic Engineering City University of Hong Kong Email: quanyu2@student.cityu.edu.hk Kenneth

More information

On Secret Sharing Schemes based on Regenerating Codes

On Secret Sharing Schemes based on Regenerating Codes On Secret Sharing Schemes base on Regenerating Coes Masazumi Kurihara (University of Electro-Communications) 0 IEICE General Conference Okayama Japan 0- March 0. (Proc. of 0 IEICE General Conference AS--

More information

Coding Techniques for Distributed Storage Systems

Coding Techniques for Distributed Storage Systems Coding Techniques for Distributed Storage Systems Jung-Hyun Kim, {jh.kim06}@yonsei.ac.kr, Hong-Yeop Song Yonsei Univ. Seoul, KORE 3 rd CITW, Oct. 25. 1, 2013 Contents Introduction Codes for Distributed

More information

The Encoding Complexity of Network Coding

The Encoding Complexity of Network Coding The Encoding Complexity of Network Coding Michael Langberg Alexander Sprintson Jehoshua Bruck California Institute of Technology Email: mikel,spalex,bruck @caltech.edu Abstract In the multicast network

More information

Enabling Node Repair in Any Erasure Code for Distributed Storage

Enabling Node Repair in Any Erasure Code for Distributed Storage Enabling Node Repair in Any Erasure Code for Distributed Storage K. V. Rashmi, Nihar B. Shah, and P. Vijay Kumar, Fellow, IEEE Abstract Erasure codes are an efficient means of storing data across a network

More information

Modern Erasure Codes for Distributed Storage Systems

Modern Erasure Codes for Distributed Storage Systems Modern Erasure Codes for Distributed Storage Systems Storage Developer Conference, SNIA, Bangalore Srinivasan Narayanamurthy Advanced Technology Group, NetApp May 27 th 2016 1 Everything around us is changing!

More information

On Coding Techniques for Networked Distributed Storage Systems

On Coding Techniques for Networked Distributed Storage Systems On Coding Techniques for Networked Distributed Storage Systems Frédérique Oggier frederique@ntu.edu.sg Nanyang Technological University, Singapore First European Training School on Network Coding, Barcelona,

More information

Network Codes for Next-Generation Distributed Storage:! Opportunities & Challenges. Kannan Ramchandran

Network Codes for Next-Generation Distributed Storage:! Opportunities & Challenges. Kannan Ramchandran Network Codes for Next-Generation Distributed Storage:! Opportunities & Challenges Kannan Ramchandran University of California, Berkeley Joint work with: Salim El Rouayheb (UCB), Hao Zhang (UCB), Sameer

More information

Optimal Exact-Regenerating Codes for Distributed Storage at the MSR and MBR Points via a Product-Matrix Construction

Optimal Exact-Regenerating Codes for Distributed Storage at the MSR and MBR Points via a Product-Matrix Construction IEEE TRANSACTIONS ON INFORMATION THEORY, VOL 57, NO 8, AUGUST 2011 5227 Optimal Exact-Regenerating Codes for Distributed Storage at the MSR and MBR Points via a Product-Matrix Construction K V Rashmi,

More information

2386 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 52, NO. 6, JUNE 2006

2386 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 52, NO. 6, JUNE 2006 2386 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 52, NO. 6, JUNE 2006 The Encoding Complexity of Network Coding Michael Langberg, Member, IEEE, Alexander Sprintson, Member, IEEE, and Jehoshua Bruck,

More information

NECO: Network Coding Simulator

NECO: Network Coding Simulator NECO: Network Coding Simulator Diogo Ferreira 1, Luísa Lima 2, João Barros 1 1 Instituto de Telecomunicações Faculdade de Engenharia da Universidade do Porto 2 Instituto de Telecomunicações Faculdade de

More information

Cooperative Pipelined Regeneration in Distributed Storage Systems

Cooperative Pipelined Regeneration in Distributed Storage Systems Cooperative ipelined Regeneration in Distributed Storage Systems Jun Li, in Wang School of Computer Science Fudan University, China Baochun Li Department of Electrical and Computer Engineering University

More information

Information-theoretically Secure Regenerating Codes for Distributed Storage

Information-theoretically Secure Regenerating Codes for Distributed Storage Information-theoretically Secure Regenerating Codes for Distributed Storage Nihar B. Shah, K. V. Rashmi and P. Vijay Kumar Abstract Regenerating codes are a class of codes for distributed storage networks

More information

Modern Erasure Codes for Distributed Storage Systems

Modern Erasure Codes for Distributed Storage Systems Modern Erasure Codes for Distributed Storage Systems Srinivasan Narayanamurthy (Srini) NetApp Everything around us is changing! r The Data Deluge r Disk capacities and densities are increasing faster than

More information

EECS 121: Coding for Digital Communication & Beyond Fall Lecture 22 December 3. Introduction

EECS 121: Coding for Digital Communication & Beyond Fall Lecture 22 December 3. Introduction EECS 121: Coding for Digital Communication & Beyond Fall 2013 Lecture 22 December 3 Lecturer: K. V. Rashmi Scribe: Ajay Shanker Tripathi 22.1 Context Introduction Distributed storage is a deeply relevant

More information

Codes for distributed storage from 3 regular graphs

Codes for distributed storage from 3 regular graphs Codes for distributed storage from 3 regular graphs Shuhong Gao, Fiona Knoll, Felice Manganiello, and Gretchen Matthews Clemson University arxiv:1610.00043v1 [cs.it] 30 Sep 2016 October 4, 2016 Abstract

More information

Data Integrity Protection scheme for Minimum Storage Regenerating Codes in Multiple Cloud Environment

Data Integrity Protection scheme for Minimum Storage Regenerating Codes in Multiple Cloud Environment International Journal of Advanced Research in Computer Engineering & Technology (IJARCET) Data Integrity Protection scheme for Minimum Storage Regenerating Codes in Multiple Cloud Environment Saravana

More information

The Encoding Complexity of Network Coding

The Encoding Complexity of Network Coding The Encoding Complexity of Network Coding Michael Langberg Alexander Sprintson Jehoshua Bruck California Institute of Technology Email mikel,spalex,bruck @caltech.edu Abstract In the multicast network

More information

AVALANCHE: A NETWORK CODING ANALYSIS

AVALANCHE: A NETWORK CODING ANALYSIS COMMUNICATIONS IN INFORMATION AND SYSTEMS c 2007 International Press Vol. 7, No. 4, pp. 353-358, 2007 003 AVALANCHE: A NETWORK CODING ANALYSIS RAYMOND W. YEUNG Abstract. In this paper, we study the application

More information

BATS: Achieving the Capacity of Networks with Packet Loss

BATS: Achieving the Capacity of Networks with Packet Loss BATS: Achieving the Capacity of Networks with Packet Loss Raymond W. Yeung Institute of Network Coding The Chinese University of Hong Kong Joint work with Shenghao Yang (IIIS, Tsinghua U) R.W. Yeung (INC@CUHK)

More information

Resume Maintaining System for Referral Using Cloud Computing

Resume Maintaining System for Referral Using Cloud Computing Resume Maintaining System for Referral Using Cloud Computing Pranjali A. Pali 1, N.D. Kale 2 P.G. Student, Department of Computer Engineering, TSSM S PVPIT, Bavdhan, Pune, Maharashtra India 1 Associate

More information

Interference Alignment in Regenerating Codes for Distributed Storage: Necessity and Code Constructions

Interference Alignment in Regenerating Codes for Distributed Storage: Necessity and Code Constructions 2134 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL 58, NO 4, APRIL 2012 Interference Alignment in Regenerating Codes for Distributed Storage: Necessity and Code Constructions Nihar B Shah, K V Rashmi, P

More information

Graph based codes for distributed storage systems

Graph based codes for distributed storage systems /23 Graph based codes for distributed storage systems July 2, 25 Christine Kelley University of Nebraska-Lincoln Joint work with Allison Beemer and Carolyn Mayer Combinatorics and Computer Algebra, COCOA

More information

Regenerating Codes for Errors and Erasures in Distributed Storage

Regenerating Codes for Errors and Erasures in Distributed Storage Regenerating Codes or Errors and Erasures in Distributed Storage K V Rashmi, Nihar B Shah, Kannan Ramchandran, Fellow, IEEE, and P Vijay Kumar, Fellow, IEEE arxiv:0050v csit] 3 May 0 Abstract Regenerating

More information

Your Data is in the Cloud: Who Exactly is Looking After It?

Your Data is in the Cloud: Who Exactly is Looking After It? Your Data is in the Cloud: Who Exactly is Looking After It? P Vijay Kumar Dept of Electrical Communication Engineering Indian Institute of Science IISc Open Day March 4, 2017 1/33 Your Data is in the Cloud:

More information

DRESS Code For The Storage Cloud

DRESS Code For The Storage Cloud DRESS Code For The Storage Cloud Distributed Replication-based Exact Simple Storage Salim El Rouayheb EECS Department University of California, Berkeley Joint work with: Sameer Pawar Nima Noorshams Prof.

More information

PRESENTED BY SARAH KWAN NETWORK CODING

PRESENTED BY SARAH KWAN NETWORK CODING PRESENTED BY SARAH KWAN NETWORK CODING NETWORK CODING PRESENTATION OUTLINE What is Network Coding? Motivation and Approach Network Coding with Lossless Networks Challenges in Developing Coding Algorithms

More information

Network Coding for Distributed Storage Systems

Network Coding for Distributed Storage Systems Network Coding for Distributed Storage Systems Alexandros G. Dimakis, P. Brighten Godfrey, Martin J. Wainwright and Kannan Ramchandran Department of Electrical Engineering and Computer Science, University

More information

Fractional Repetition Codes for Repair in Distributed Storage Systems

Fractional Repetition Codes for Repair in Distributed Storage Systems Fractional Repetition Codes for Repair in Distributed Storage Systems Salim El Rouayheb and Kannan Ramchandran Department of Electrical Engineering and Computer Sciences University of California, Bereley

More information

Cost-Bandwidth Tradeoff In Distributed Storage Systems

Cost-Bandwidth Tradeoff In Distributed Storage Systems Cost-Bandwidth Tradeoff In Distributed Storage Systems Soroush Ahlaghi, Abbas Kiani and ohammad Reza Ghanavati Department of Electrical Engineering Shahed University Tehran, Iran Email: {ahlaghi,aiani,ghanavati}@shahedacir

More information

Broadcast Repair for Wireless Distributed Storage Systems

Broadcast Repair for Wireless Distributed Storage Systems Broadcast Repair for Wireless Distributed Storage Systems Ping Hu Department of Electronic Engineering City University of Hong Kong Email: ping.hu@my.cityu.edu.hk Chi Wan Sung Department of Electronic

More information

A Systematic Approach to Network Coding Problems using Conflict Graphs

A Systematic Approach to Network Coding Problems using Conflict Graphs A Systematic Approach to Network Coding Problems using Conflict Graphs Jay Kumar Sundararajan Laboratory for Information and Decision Systems Massachusetts Institute of Technology Cambridge, MA 02139,

More information

When Locally Repairable Codes Meet Regenerating Codes What If Some Helpers Are Unavailable

When Locally Repairable Codes Meet Regenerating Codes What If Some Helpers Are Unavailable When Locally Repairable Codes Meet Regenerating Codes What If Some Helpers Are Unavailable Imad Ahmad, Chih-Chun Wang; {ahmadi,chihw}@purdue.edu School of Electrical and Computer Engineering, Purdue University,

More information

Codes for Modern Applications

Codes for Modern Applications Codes for Modern Applications Current Research Topics in the Code and Signal Design Group P. Vijay Kumar Indian Institute of Science, Bangalore, India Nov. 16, 2018 1/28 Codes for Modern Applications:

More information

Coded Caching for Hierarchical Networks with a Different Number of Layers

Coded Caching for Hierarchical Networks with a Different Number of Layers Coded Caching for Hierarchical Networks with a Different Number of Layers Makoto Takita, Masanori Hirotomo, Masakatu Morii Kobe University, Saga University November 20, 2017 ASON 17@Aomori Outline 1 1.

More information

x = 12 x = 12 1x = 16

x = 12 x = 12 1x = 16 2.2 - The Inverse of a Matrix We've seen how to add matrices, multiply them by scalars, subtract them, and multiply one matrix by another. The question naturally arises: Can we divide one matrix by another?

More information

A survey on regenerating codes

A survey on regenerating codes International Journal of Scientific and Research Publications, Volume 4, Issue 11, November 2014 1 A survey on regenerating codes V. Anto Vins *, S.Umamageswari **, P.Saranya ** * P.G Scholar, Department

More information

BASIC Regenerating Code: Binary Addition and Shift for Exact Repair

BASIC Regenerating Code: Binary Addition and Shift for Exact Repair BASIC Regenerating Code: Binary Addition and Shift for Exact Repair Hanxu Hou, Kenneth W. Shum, Minghua Chen and Hui Li Shenzhen Eng. Lab of Converged Networks Technology, Shenzhen Key Lab of Cloud Computing

More information

On the Multiple Unicast Network Coding Conjecture

On the Multiple Unicast Network Coding Conjecture On the Multiple Unicast Networ Coding Conjecture Michael Langberg Computer Science Division Open University of Israel Raanana 43107, Israel miel@openu.ac.il Muriel Médard Research Laboratory of Electronics

More information

Hybrid Network-Erasure Coding Protection of Multi- Source, Multi-Sink Multicast Sessions in WSNs

Hybrid Network-Erasure Coding Protection of Multi- Source, Multi-Sink Multicast Sessions in WSNs Hybrid Network-Erasure Coding Protection of Multi- Source, Multi-Sink Multicast Sessions in WSNs Suhas Shetty Ahmed E. Kamal Department of Electrical and Computer Engineering, Iowa State University, Ames,

More information

A Connection between Network Coding and. Convolutional Codes

A Connection between Network Coding and. Convolutional Codes A Connection between Network Coding and 1 Convolutional Codes Christina Fragouli, Emina Soljanin christina.fragouli@epfl.ch, emina@lucent.com Abstract The min-cut, max-flow theorem states that a source

More information

Symmetric Private Information Retrieval For MDS Coded Distributed Storage

Symmetric Private Information Retrieval For MDS Coded Distributed Storage Symmetric Private Information Retrieval For DS Coded Distributed Storage Qiwen Wang, and ikael Skoglund School of Electrical Engineering, KTH Royal Institute of Technology Email: {qiwenw, skoglund}@kthse

More information

On the multiple unicast network coding conjecture

On the multiple unicast network coding conjecture On the multiple unicast networ coding conjecture The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation As Published Publisher Langberg,

More information

arxiv: v1 [cs.it] 9 Oct 2012

arxiv: v1 [cs.it] 9 Oct 2012 Coding for Fast Content Download Gauri Joshi EECS Dept., MIT Cambridge, MA 0239, USA Email: gauri@mit.edu Yanpei Liu ECE Dept., Univ. Wisconsin Madison Madison, WI, 53705, USA Email: yliu73@wisc.edu Emina

More information

A Unified Coding Framework for Distributed Computing with Straggling Servers

A Unified Coding Framework for Distributed Computing with Straggling Servers A Unified Coding Framewor for Distributed Computing with Straggling Servers Songze Li, Mohammad Ali Maddah-Ali, and A. Salman Avestimehr Department of Electrical Engineering, University of Southern California,

More information

Near Optimal Broadcast with Network Coding in Large Sensor Networks

Near Optimal Broadcast with Network Coding in Large Sensor Networks in Large Sensor Networks Cédric Adjih, Song Yean Cho, Philippe Jacquet INRIA/École Polytechnique - Hipercom Team 1 st Intl. Workshop on Information Theory for Sensor Networks (WITS 07) - Santa Fe - USA

More information

Performance Models of Access Latency in Cloud Storage Systems

Performance Models of Access Latency in Cloud Storage Systems Performance Models of Access Latency in Cloud Storage Systems Qiqi Shuai Email: qqshuai@eee.hku.hk Victor O.K. Li, Fellow, IEEE Email: vli@eee.hku.hk Yixuan Zhu Email: yxzhu@eee.hku.hk Abstract Access

More information

J. Parallel Distrib. Comput. Sporadic decentralized resource maintenance for P2P distributed storage networks

J. Parallel Distrib. Comput. Sporadic decentralized resource maintenance for P2P distributed storage networks J. Parallel Distrib. Comput. 74 (2014) 2029 2038 Contents lists available at ScienceDirect J. Parallel Distrib. Comput. journal homepage: www.elsevier.com/locate/jpdc Sporadic decentralized resource maintenance

More information

Efficient Synchronization of Multiple Databases over Broadcast Networks

Efficient Synchronization of Multiple Databases over Broadcast Networks Efficient Synchronization of Multiple Databases over Broadcast Networks Muhammad Muhammad, Stefan Erl, and Matteo Berioli German Aerospace Center (DLR) Institute of Communications and Navigation 82234,

More information

Minimizing Energy Consumption for Cooperative Network and Diversity Coded Sensor Networks

Minimizing Energy Consumption for Cooperative Network and Diversity Coded Sensor Networks Minimizing Energy Consumption for Cooperative Network and Diversity Coded Sensor Networks WTS 2014 April 9-11, 2014 Washington, DC Gabriel E. Arrobo and Richard D. Gitlin Department of Electrical Engineering

More information

Coding for Improved Throughput Performance in Network Switches

Coding for Improved Throughput Performance in Network Switches Coding for Improved Throughput Performance in Network Switches Rami Cohen, Graduate Student Member, IEEE, and Yuval Cassuto, Senior Member, IEEE 1 arxiv:1605.04510v1 [cs.ni] 15 May 2016 Abstract Network

More information

Implementation and performance evaluation of distributed cloud storage solutions using random linear network coding

Implementation and performance evaluation of distributed cloud storage solutions using random linear network coding Implementation and performance evaluation of distributed cloud storage solutions using random linear network coding The MIT Faculty has made this article openly available. lease share how this access benefits

More information

Benefits of Coded Placement for Networks with Heterogeneous Cache Sizes

Benefits of Coded Placement for Networks with Heterogeneous Cache Sizes Benefits of Coded Placement for Networks with Heterogeneous Cache Sizes Abdelrahman M. Ibrahim, Ahmed A. Zewail, and Aylin Yener ireless Communications and Networking Laboratory CAN Electrical Engineering

More information

An Update Model for Network Coding in Cloud Storage Systems

An Update Model for Network Coding in Cloud Storage Systems An Update Model for Network Coding in Cloud Storage Systems Mohammad Reza Zakerinasab, Mea Wang Department of Computer Science University of Calgary {mrzakeri, meawang}@ucalgary.ca Abstract The fast emerging

More information

An Application of deterministic Network Coding in MANETs

An Application of deterministic Network Coding in MANETs An Application of deterministic Network Coding in MANETs Leenta M.J. Grobler, Albert S.J. Helberg, Henri Marais, Coenraad C. Naudé School for Electrical, Electronic and Computer Engineering North-West

More information

Randomized Network Coding in Distributed Storage Systems with Layered Overlay

Randomized Network Coding in Distributed Storage Systems with Layered Overlay 1 Randomized Network Coding in Distributed Storage Systems with Layered Overlay M. Martalò, M. Picone, M. Amoretti, G. Ferrari, and R. Raheli Department of Information Engineering, University of Parma,

More information

Decentralized Erasure Codes for Distributed Networked Storage

Decentralized Erasure Codes for Distributed Networked Storage 1 Decentralized Erasure Codes for Distributed Networked Storage Alexandros G. Dimakis, Vinod Prabhakaran, and Kannan Ramchandran Department of Electrical Engineering and Computer Science, University of

More information

1080 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 57, NO. 2, FEBRUARY Dedicated to the memory of Ralf Koetter ( )

1080 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 57, NO. 2, FEBRUARY Dedicated to the memory of Ralf Koetter ( ) 1080 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 57, NO. 2, FEBRUARY 2011 Minimum Cost Mirror Sites Using Network Coding: Replication versus Coding at the Source Nodes Shurui Huang, Student Member, IEEE,

More information

Candidate MDS Array Codes for Tolerating Three Disk Failures in RAID-7 Architectures

Candidate MDS Array Codes for Tolerating Three Disk Failures in RAID-7 Architectures Candidate MDS Array Codes for Tolerating Three Disk Failures in RAID-7 Architectures ABSTRACT Mayur Punekar Dept. of Computer Science and Eng. Qatar University Doha, Qatar mayur.punekar@ieee.org Yongge

More information

Network Coding in Underwater Sensor Networks

Network Coding in Underwater Sensor Networks in Underwater Sensor Networks Claude Manville, Abdulaziz Miyajan, Ayman Alharbi, Haining Mo, Michael Zuba and Jun-Hong Cui Computer Science & Engineering Department, University of Connecticut, Storrs,

More information

Summary of Raptor Codes

Summary of Raptor Codes Summary of Raptor Codes Tracey Ho October 29, 2003 1 Introduction This summary gives an overview of Raptor Codes, the latest class of codes proposed for reliable multicast in the Digital Fountain model.

More information

Coded Cooperative Data Exchange for Multiple Unicasts

Coded Cooperative Data Exchange for Multiple Unicasts Coded Cooperative Data Exchange for Multiple Unicasts Shahriar Etemadi Tajbakhsh and Parastoo Sadeghi Research School of Engineering The Australian National University Canberra, 000, Australia Emails:

More information

Novel Decentralized Coded Caching through Coded Prefetching

Novel Decentralized Coded Caching through Coded Prefetching ovel Decentralized Coded Caching through Coded Prefetching Yi-Peng Wei Sennur Ulukus Department of Electrical and Computer Engineering University of Maryland College Park, MD 2072 ypwei@umd.edu ulukus@umd.edu

More information

Erasure Codes for Heterogeneous Networked Storage Systems

Erasure Codes for Heterogeneous Networked Storage Systems Erasure Codes for Heterogeneous Networked Storage Systems Lluís Pàmies i Juárez Lluís Pàmies i Juárez lpjuarez@ntu.edu.sg . Introduction Outline 2. Distributed Storage Allocation Problem 3. Homogeneous

More information

Capacity Assurance in Hostile Networks

Capacity Assurance in Hostile Networks PhD Dissertation Defense Wednesday, October 7, 2015 3:30 pm - 5:30 pm 3112 Engineering Building Capacity Assurance in Hostile Networks By: Jian Li Advisor: Jian Ren ABSTRACT Linear network coding provides

More information

Information Exchange in Wireless Networks with Network Coding and Physical-layer Broadcast

Information Exchange in Wireless Networks with Network Coding and Physical-layer Broadcast 2005 Conference on Information Sciences and Systems, The Johns Hopkins University, March 16 18, 2005 Information Exchange in Wireless Networks with Network Coding and Physical-layer Broadcast Yunnan Wu

More information

Research on Transmission Based on Collaboration Coding in WSNs

Research on Transmission Based on Collaboration Coding in WSNs Research on Transmission Based on Collaboration Coding in WSNs LV Xiao-xing, ZHANG Bai-hai School of Automation Beijing Institute of Technology Beijing 8, China lvxx@mail.btvu.org Journal of Digital Information

More information

< Irregular Repeat-Accumulate LDPC Code Proposal Technology Overview

<  Irregular Repeat-Accumulate LDPC Code Proposal Technology Overview Project IEEE 802.20 Working Group on Mobile Broadband Wireless Access Title Irregular Repeat-Accumulate LDPC Code Proposal Technology Overview Date Submitted Source(s):

More information

Polynomial Codes: an Optimal Design for High-Dimensional Coded Matrix Multiplication

Polynomial Codes: an Optimal Design for High-Dimensional Coded Matrix Multiplication Polynomial Codes: an Optimal Design for High-Dimensional Coded Matrix Multiplication Qian Yu, Mohammad Ali Maddah-Ali, and A. Salman Avestimehr Department of Electrical Engineering, University of Southern

More information

Dynamic Rate Adaptation for Improved Throughput and Delay in Wireless Network Coded Broadcast

Dynamic Rate Adaptation for Improved Throughput and Delay in Wireless Network Coded Broadcast Dynamic Rate Adaptation for Improved Throughput and Delay in Wireless Network Coded Broadcast The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story

More information

International Journal of Innovations in Engineering and Technology (IJIET)

International Journal of Innovations in Engineering and Technology (IJIET) RTL Design and Implementation of Erasure Code for RAID system Chethan.K 1, Dr.Srividya.P 2, Mr.Sivashanmugam Krishnan 3 1 PG Student, Department Of ECE, R. V. College Engineering, Bangalore, India. 2 Associate

More information

Chapter 4: Implicit Error Detection

Chapter 4: Implicit Error Detection 4. Chpter 5 Chapter 4: Implicit Error Detection Contents 4.1 Introduction... 4-2 4.2 Network error correction... 4-2 4.3 Implicit error detection... 4-3 4.4 Mathematical model... 4-6 4.5 Simulation setup

More information

Topology-Aware Node Selection for Data Regeneration in Heterogeneous Distributed Storage Systems

Topology-Aware Node Selection for Data Regeneration in Heterogeneous Distributed Storage Systems Topology-Aware Node Selection for Data Regeneration in Heterogeneous Distributed Storage Systems Qingyuan Gong, Jiaqi Wang, Yan Wang, Dongsheng Wei, Jin Wang, and Xin Wang arxiv:56.5579v [cs.dc] 8 Jun

More information

Training Overhead for Decoding Random. Linear Network Codes in Wireless Networks

Training Overhead for Decoding Random. Linear Network Codes in Wireless Networks Training Overhead for Decoding Random 1 Linear Network Codes in Wireless Networks Maximilian Riemensberger, Yalin Evren Sagduyu, Michael L. Honig, and Wolfgang Utschick Abstract We consider multicast communications

More information

Latency Analysis for Distributed Storage

Latency Analysis for Distributed Storage Latency Analysis for Distributed Storage Parimal Parag, Archana Bura Department of Electrical Communication Engineering Indian Institute of Science, Bengaluru, KA 56002, India parimal, archanabura}@ece.iisc.ernet.in

More information

WHILE traditional information transmission in a data network. Bounding the Coding Advantage of Combination Network Coding in Undirected Networks

WHILE traditional information transmission in a data network. Bounding the Coding Advantage of Combination Network Coding in Undirected Networks 570 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 58, NO. 2, FEBRUARY 2012 Bounding the Coding Advantage of Combination Network Coding in Undirected Networks Shreya Maheshwar, Zongpeng Li, Member, IEEE,

More information

IN this paper, we study the problem of multicasting: Consider

IN this paper, we study the problem of multicasting: Consider IEEE TRANSACTIONS ON INFORMATION THEORY, VOL 51, NO 6, JUNE 2005 1973 Polynomial Time Algorithms for Multicast Network Code Construction Sidharth Jaggi, Student Member, IEEE, Peter Sanders, Philip A Chou,

More information

Generation of Innovative and Sparse Encoding Vectors for Broadcast Systems with Feedback

Generation of Innovative and Sparse Encoding Vectors for Broadcast Systems with Feedback 2011 IEEE International Symposium on Information Theory Proceedings Generation of Innovative and Sparse Encoding Vectors for Broadcast Systems with Feedback Ho Yuet Kwan Department of Electronic Engineering

More information

Efficient Routing for Cooperative Data Regeneration in Heterogeneous Storage Networks

Efficient Routing for Cooperative Data Regeneration in Heterogeneous Storage Networks Efficient Routing for Cooperative Data Regeneration in Heterogeneous Storage Networks Zhirong Shen, Patrick P. C. Lee, and Jiwu Shu Department of Computer Science and Technology, Tsinghua University Department

More information

Integer Programming Theory

Integer Programming Theory Integer Programming Theory Laura Galli October 24, 2016 In the following we assume all functions are linear, hence we often drop the term linear. In discrete optimization, we seek to find a solution x

More information

Mobility-Aware Coded Storage and Delivery

Mobility-Aware Coded Storage and Delivery Mobility-Aware Coded Storage and Delivery Emre Ozfatura and Deniz Gündüz Information Processing and Communications Lab Department of Electrical and Electronic Engineering Imperial College London Email:

More information

Source Coding with Distortion through Graph Coloring

Source Coding with Distortion through Graph Coloring Source Coding with Distortion through Graph Coloring Vishal Doshi, Devavrat Shah, and Muriel Médard Laboratory for Information and Decision Systems Massachusetts Institute of Technology Cambridge, MA 02139

More information

Sparse Network Coding with Overlapping Classes

Sparse Network Coding with Overlapping Classes Sparse Network Coding with Overlapping Classes arxiv:0905.2796v1 [cs.it] 18 May 2009 Danilo Silva 1, Weifei Zeng, and Frank R. Kschischang Department of Electrical and Computer Engineering, University

More information

Adaptive Linear Programming Decoding of Polar Codes

Adaptive Linear Programming Decoding of Polar Codes Adaptive Linear Programming Decoding of Polar Codes Veeresh Taranalli and Paul H. Siegel University of California, San Diego, La Jolla, CA 92093, USA Email: {vtaranalli, psiegel}@ucsd.edu Abstract Polar

More information

Network Coding Schemes for Underwater Networks

Network Coding Schemes for Underwater Networks Network Coding Schemes for Underwater Networks The benefits of implicit acknowledgement Daniel Lucani Muriel Médard Milica Stojanovic Massachusetts Institute Of Technology dlucani@mit.edu medard@mit.edu

More information

Interleaving Schemes on Circulant Graphs with Two Offsets

Interleaving Schemes on Circulant Graphs with Two Offsets Interleaving Schemes on Circulant raphs with Two Offsets Aleksandrs Slivkins Department of Computer Science Cornell University Ithaca, NY 14853 slivkins@cs.cornell.edu Jehoshua Bruck Department of Electrical

More information

Fountain Codes Based on Zigzag Decodable Coding

Fountain Codes Based on Zigzag Decodable Coding Fountain Codes Based on Zigzag Decodable Coding Takayuki Nozaki Kanagawa University, JAPAN Email: nozaki@kanagawa-u.ac.jp Abstract Fountain codes based on non-binary low-density parity-check (LDPC) codes

More information

Graph Algorithms Maximum Flow Applications

Graph Algorithms Maximum Flow Applications Chapter 5 Graph Algorithms Maximum Flow Applications Algorithm Theory WS 202/3 Fabian Kuhn Maximum Flow Applications Maximum flow has many applications Reducing a problem to a max flow problem can even

More information

A Feedback-based Adaptive Broadcast Coding Scheme for Reducing In-order Delivery Delay

A Feedback-based Adaptive Broadcast Coding Scheme for Reducing In-order Delivery Delay A Feedback-based Adaptive Broadcast Coding Scheme for Reducing In-order Delivery Delay The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.

More information

HOMEWORK #4 SOLUTIONS - MATH (1) (a) Prove that the chromatic polynomial of any tree with s vertices is. k(k 1) s 1

HOMEWORK #4 SOLUTIONS - MATH (1) (a) Prove that the chromatic polynomial of any tree with s vertices is. k(k 1) s 1 HOMEWORK #4 SOLUTIONS - MATH 3260 ASSIGNED: MARCH 19, 2003 DUE: APRIL 4, 2003 AT 2:30PM (1) (a) Prove that the chromatic polynomial of any tree with s vertices is k(k 1) s 1 Solution: Pick any vertex of

More information

Approximation Algorithms

Approximation Algorithms Approximation Algorithms Prof. Tapio Elomaa tapio.elomaa@tut.fi Course Basics A 4 credit unit course Part of Theoretical Computer Science courses at the Laboratory of Mathematics There will be 4 hours

More information

Network Routing Capacity

Network Routing Capacity IEEE TRANSACTIONS ON INFORMATION THEORY (FINAL VERSION NOV., 2005) CANNONS-DOUGHERTY-FREILING-ZEGER Network Routing Capacity Jillian Cannons, Randall Dougherty, Chris Freiling, and Kenneth Zeger Abstract

More information

Joint Coding/Routing Optimization for Correlated Sources in Wireless Visual Sensor Networks

Joint Coding/Routing Optimization for Correlated Sources in Wireless Visual Sensor Networks Joint Coding/Routing Optimization for Correlated Sources in Wireless Visual Sensor Networks Chenglin Li 1, Junni Zou 2, Hongkai Xiong 1, Yongsheng Zhang 1 1 Department of Electronic Engineering, Shanghai

More information

The Index Coding Problem: A Game-Theoretical Perspective

The Index Coding Problem: A Game-Theoretical Perspective The Index Coding Problem: A Game-Theoretical Perspective Yu-Pin Hsu, I-Hong Hou, and Alex Sprintson Department of Electrical and Computer Engineering Texas A&M University {yupinhsu, ihou, spalex}@tamu.edu

More information

Towards Reliable Broadcasting using ACKs

Towards Reliable Broadcasting using ACKs Towards Reliable Broadcasting using ACKs Mathilde Durvy Email: mathilde.durvy@epfl.ch Christina Fragouli Email: christina.fragouli@epfl.ch Patrick Thiran Email: patrick.thiran@epfl.ch Abstract We propose

More information

Synchronizing Edits in Distributed Storage Networks

Synchronizing Edits in Distributed Storage Networks Synchronizing Edits in Distributed Storage Networks Salim El Rouayheb, Sreechakra Goparaju, Han Mao Kiah, Olgica Milenkovic Department of Electrical and Computer Engineering, Illinois Institute of Technology,

More information

Some Optimization Trade-offs in Wireless Network Coding

Some Optimization Trade-offs in Wireless Network Coding Some Optimization Trade-offs in Wireless Network Coding Yalin Evren Sagduyu and Anthony Ephremides Electrical and Computer Engineering Department and Institute for Systems Research University of Maryland,

More information