Application of SDN: Load Balancing & Traffic Engineering

Size: px
Start display at page:

Download "Application of SDN: Load Balancing & Traffic Engineering"

Transcription

1 Application of SDN: Load Balancing & Traffic Engineering

2 Outline 1 OpenFlow-Based Server Load Balancing Gone Wild Introduction OpenFlow Solution Partitioning the Client Traffic Transitioning With Connection Affinity Evaluation Future Work

3 Introduction Clients access online service through a single public IP address. Data centers host online services on multiple replica servers offering the same service each has a unique IP and an integer weight. Front-end load balancers: direct each client request to a particular replica server. Problems: Dedicated load balancers are expensive and quickly become a single point of failure and congestion.

4 OpenFlow Basic Solution Plug-n-Serve system uses OpenFlow to reactively assign client requests to replicas based on the current network and server load. Plug-n-Serve intercepts the first packet of each client request and installs an individual forwarding rule that handles the remaining packets of the connection. Scalability Limitations: Overhead and delay in involving the relatively slow controller in every client connection. Many rules installed at each switch (separate rule for each client). Heavy load on the controller.

5 OpenFlow Features Microflow rule: matches on all fields. Wildcard rule: can have don t care bits in some fields. Rules can be deleted after a fixed time interval (a hard timeout). Rules can be deleted after a specified period of inactivity (a soft timeout). The switch counts the number of bytes and packets matching each rule. The controller can poll these counter values.

6 OpenFlow Alternative Approach Use wildcard rules to direct incoming client requests based on the client IP addresses. Switch performs an action of: 1 Rewriting the server IP address 2 Forwarding the packet to the output port associated with the chosen replica. Rely on microflow rules only during transitions from one set of wildcard rules to another. Soft timeouts allow these microflow rules to self destruct after a client connection completes.

7 Load-balancing Architecture Constraints: 1 Generating an efficient set of rules for a target distribution of load. 2 Ensuring that packets in the same TCP connection reach the same server across changes in the rules. Components: 1 Partitioning algorithm: Generates wildcard rules that balance load over the replicas. 2 Transitioning algorithm: Moves from one set of wildcard rules to another, without disrupting ongoing connections.

8 [1] Partitioning the Client Traffic Must divide client traffic in proportion to the load-balancing weights. Successive packets from the same TCP connection forwarded to same replica Rules installed match on client IP addresses Figure: Basic model from load balancer switch s view

9 [1] Partitioning the Client Traffic Binary tree is used to represent IP prefixes. If α j is power of 2 binary tree leaf nodes Each R j is associated with α j leaf nodes. e.g. R 2 is associated with four leaves. If α j is not power of 2 find closest power of 2 and renormalize the weights. Figure: Wildcard rule assigned to each leaf node

10 Minimizing the Number of Wildcard Rules Creating a wildcard rule for each leaf node large number of rules. Aggregate siblings associated with the same server replica. 10* can represent 100* and 101* associated with R 2. 00* can represent 000* 001* associated with R 1. 6 wildcard rules instead of 8. Alternate assignment can lead to only 4 rules: (0*, 10*, 110*, and 111*).

11 Minimizing Change During Re-Partitioning Weights α j may change over time: maintenance, save energy, congestion. Possible solution: regenerate wildcard rules from scratch. Problems: Change replica selection for large number of client IP addresses, increase overhead of transitioning to new rules.

12 Minimizing Change During Re-Partitioning Better Solution: If number of leaf nodes of a replica unchanged Rules of this replica may not need to change. e.g. If α 3 changed to 0 and α 1 changed to 4: Rule of R 2 remains unchanged, and R 1 will only have one rule 1*. Create a new binary tree for updated α j. Pre-allocates leaf nodes to re-usable wildcard rules. Re-usable wildcard rules: ith highest bit set to 1 in new and old α j even if old and new α j are different. Allocate leaf nodes for larger group rather than using existing rules of smaller pre-allocated nodes.

13 [2] Transitioning With Connection Affinity Existing connections should complete at the original replica. New Connection: TCP SYN flag is set in the first packet of a new connection. Approaches: Faster Transition: Direct some packets to controller Slower Transition: Switch handles all packets

14 Transitioning Quickly With Microflow Rules Rule directing all 0* traffic to the controller for inspection. A dedicated high-priority microflow rule with 60-second soft timeout for each connection. Rule directs to the new replica R 2 (for a SYN). Rule directs to the old replica R 1 (for a non-syn). Controller modifies the 0* rule to direct all future traffic to the new replica R 2.

15 Transitioning With No Packets to Controller Controller divides the address space for 0* into several smaller pieces, each represented by a high-priority wildcard rule (e.g., 000*, 001*, 010*, and 011*) directing traffic to old replica R second soft timeout added to higher-priority rules to be deleted if no activity safely can shift to R 2. Controller installs a single lower-priority rule directing 0* to the new replica R 2.

16 Evaluation α 1 = 3, α 2 = 4, α 3 = 1 At time 75 sec: α 2 = 0

17 Future Work: Non-Uniform Client Traffic The target distribution of load is 50%, 25%, and 25% for R 1, R 2, and R 3. Actual division of load is (overwhelming) 75% for R 1 and (underwhelming) 12.5% for R 2 and R 3 each. Solution: Use OpenFlow counters for rules. Identify severely overloaded and underloaded replicas. Identify the set of rules to shift.

18 Future Work: Network of Multiple Switches SW1: forward packets with src IP in 1* to SW3, modify dst IP to R 3. SW1: forward packets with src IP in 00* to SW2, modify dst IP to R 2. SW1: forward packets with src IP in 01* to SW2, modify dst IP to R 3. SW2,SW3: forward packets to appropriate server.

19 Advantages Computes concise wildcard rules that achieve a target distribution of the traffic. Proactively installs wildcard rules in the switches to direct requests for large groups of clients without involving the controller. Automatically adjust to changes in load-balancing policies without disrupting existing connections. Avoids the cost and complexity of separate load-balancer devices. Allows flexibility of network topology. Scales naturally as the number of switches and replicas grows, while directing client requests at line rate.

20 SDN and Traffic Engineering: SWAN

21 Outline 1 Achieving high utilization with software-driven WAN

22 Introduction Service rely on low-latency inter-dc communication, hence resources over-provisioned Unable to fully leverage investment: lack of co-ordination among services network under-subscribed on average poor efficiency of MPLS TE Solution?

23 Introduction Software-Driven WAN (SWAN) proposed by Microsoft Enables inter-dc WAN to carry significantly more traffic. Achieves high efficiency and utilization. Enables to update the network s data plane at high load as well Fully use network capacity with an order of few rules 4 / 17

24 Background & Motivation Types of services: Interactive Services critical path of end user experience - eg. DC contacts another DC to serve user s request highly sensitive to loss and delay Elastic Services regular timely delivery - eg. data replication sensitive to delay varies Background Services maintenance and provisioning activities - eg. copy all data of service to another DC for long-term storage bandwidth hungry, requires more resources not sensitive to delay or latency

25 Background & Motivation - Issues with MPLS TE Poor utilization Daily traffic pattern on a busy link Break down based on traffic type Reduction in peak usage if background traffic is dynamically adapted

26 Background & Motivation - Issues with MPLS TE Poor efficiency Flows arrive in the order F a followed by F b and finally F c MPLS TE greedily assigns path as shown in Fig. (a) while there exists a more efficient solution as shown in Fig. (b)

27 Background & Motivation - Issues with MPLS TE Poor sharing Link capacity = 1, each service (S i D i ) has unit demand With link-fairness - (S 2 D 2 ) gets twice throughput of other services

28 SWAN Overview SWAN s sharing policies Small number of priority classes Interactive Elastic Background (lowest priority) bandwidth allocated in strict precedence prefer shorter paths for higher priority classes Except interactive services, all other inform SWAN controller about details of their demand. Interactive traffic sent using traditional approach. Controller: up-to-date, global view of topology & demands; computes resource allocation for services; Per SDN paradigm, controller directly updates forwarding entries in switches

29 SWAN Overview Need for a scalable algorithm for global allocation Computationally intensive (LP) SWAN uses a practical approach approximately fair with provable bounds and close to optimal

30 SWAN Overview Atomic reconfiguration of a distributed switch Each flow unit = 1, Link capacity = 1.5 units SWAN computes multi-step congestion-free transition plan

31 SWAN Overview Key concept For each link, SWAN leaves a scratch copy s [0, 50%]. This scratch capacity guarantees a transition plan exists with a maximum of ( 1 s 1) steps.

32 SWAN Overview Switch hardware supports limited number of rules. SWAN dynamically identifies and installs tunnels using LP. What about network re-configuration? Will it disrupt traffic? SWAN sets aside scratch space (eg. 10%) on the switch to accommodate new set of rules.

33 SWAN Design Figure: Architecture of SWAN Service brokers & hosts - host estimate service s demand (every T h time); broker apportions the demand based on current limits; broker also aggregates demand and updates controller every T s time. Network agent - report topology changes to controller, get traffic info. from controller (every T a time); reliably update switches. Controller - uses info. on service demands and network topology (every T c time), computes service allocations, decide forwarding plane config. updates, and instructs service brokers and network agents accordingly.

34 SWAN Design Forwarding plane configuration uses label-based forwarding (similar to VLAN tagging) label assigned by source; transit switches use label and table to route Computing service allocations approximate max-min fairness among same priority classes Updating forwarding state update traffic distribution across tunnels uses scratch capacity and LP-based algorithm updating tunnels

35 SWAN Design - Handling Failures Network agents report link/switch failures to the controller. Controller re-computes the allocation and updates network agents and service brokers, etc. Network agents, service brokers, and the controller have backup instances.

36 Conclusion SWAN enables highly efficient and flexible inter-dc WAN Scratch capacity on the links and scratch space on the switch enable updates without congestion. Test-bed and data-driven simulations show SWAN can carry 60 % more traffic.

Topic 6: SDN in practice: Microsoft's SWAN. Student: Miladinovic Djordje Date:

Topic 6: SDN in practice: Microsoft's SWAN. Student: Miladinovic Djordje Date: Topic 6: SDN in practice: Microsoft's SWAN Student: Miladinovic Djordje Date: 17.04.2015 1 SWAN at a glance Goal: Boost the utilization of inter-dc networks Overcome the problems of current traffic engineering

More information

SWAN: Software-driven wide area network. Ratul Mahajan

SWAN: Software-driven wide area network. Ratul Mahajan SWAN: Software-driven wide area network Ratul Mahajan Partners in crime Vijay Gill Chi-Yao Hong Srikanth Kandula Ratul Mahajan Mohan Nanduri Ming Zhang Roger Wattenhofer Rohan Gandhi Xin Jin Harry Liu

More information

Software-Defined Networking (Continued)

Software-Defined Networking (Continued) Software-Defined Networking (Continued) CS640, 2015-04-23 Announcements Assign #5 released due Thursday, May 7 at 11pm Outline Recap SDN Stack Layer 2 Learning Switch Control Application Design Considerations

More information

Managing and Securing Computer Networks. Guy Leduc. Chapter 2: Software-Defined Networks (SDN) Chapter 2. Chapter goals:

Managing and Securing Computer Networks. Guy Leduc. Chapter 2: Software-Defined Networks (SDN) Chapter 2. Chapter goals: Managing and Securing Computer Networks Guy Leduc Chapter 2: Software-Defined Networks (SDN) Mainly based on: Computer Networks and Internets, 6 th Edition Douglas E. Comer Pearson Education, 2015 (Chapter

More information

Achieving High Utilization with Software-Driven WAN

Achieving High Utilization with Software-Driven WAN Achieving High Utilization with Software-Driven WAN Chi-Yao Hong (UIUC) Srikanth Kandula Ratul Mahajan Ming Zhang Vijay Gill Mohan Nanduri Roger Wattenhofer (ETH) Microsoft Abstract We present SWAN, a

More information

Languages for SDN (Frenetic)

Languages for SDN (Frenetic) Languages for SDN (Frenetic) Software Defined Networking: The Data Centre Perspective Seminar Informatikdienste A. Pantelopoulos 20.05.2016 1 SDN is useful Direct network control. Enables new applications,

More information

Slicing a Network. Software-Defined Network (SDN) FlowVisor. Advanced! Computer Networks. Centralized Network Control (NC)

Slicing a Network. Software-Defined Network (SDN) FlowVisor. Advanced! Computer Networks. Centralized Network Control (NC) Slicing a Network Advanced! Computer Networks Sherwood, R., et al., Can the Production Network Be the Testbed? Proc. of the 9 th USENIX Symposium on OSDI, 2010 Reference: [C+07] Cascado et al., Ethane:

More information

CS 5114 Network Programming Languages Data Plane. Nate Foster Cornell University Spring 2013

CS 5114 Network Programming Languages Data Plane. Nate Foster Cornell University Spring 2013 CS 5114 Network Programming Languages Data Plane http://www.flickr.com/photos/rofi/2097239111/ Nate Foster Cornell University Spring 2013 Based on lecture notes by Jennifer Rexford and Michael Freedman

More information

DCRoute: Speeding up Inter-Datacenter Traffic Allocation while Guaranteeing Deadlines

DCRoute: Speeding up Inter-Datacenter Traffic Allocation while Guaranteeing Deadlines DCRoute: Speeding up Inter-Datacenter Traffic Allocation while Guaranteeing Deadlines Mohammad Noormohammadpour, Cauligi S. Raghavendra Ming Hsieh Department of Electrical Engineering University of Southern

More information

Toward a Reliable Data Transport Architecture for Optical Burst-Switched Networks

Toward a Reliable Data Transport Architecture for Optical Burst-Switched Networks Toward a Reliable Data Transport Architecture for Optical Burst-Switched Networks Dr. Vinod Vokkarane Assistant Professor, Computer and Information Science Co-Director, Advanced Computer Networks Lab University

More information

Lecture 10.1 A real SDN implementation: the Google B4 case. Antonio Cianfrani DIET Department Networking Group netlab.uniroma1.it

Lecture 10.1 A real SDN implementation: the Google B4 case. Antonio Cianfrani DIET Department Networking Group netlab.uniroma1.it Lecture 10.1 A real SDN implementation: the Google B4 case Antonio Cianfrani DIET Department Networking Group netlab.uniroma1.it WAN WAN = Wide Area Network WAN features: Very expensive (specialized high-end

More information

Citrix CloudBridge Product Overview

Citrix CloudBridge Product Overview Product Overview Product Overview Businesses rely on branch offices to serve customers, to be near partners and suppliers and to expand into new markets. As server and desktop virtualization increase and

More information

Optimal Network Flow Allocation. EE 384Y Almir Mutapcic and Primoz Skraba 27/05/2004

Optimal Network Flow Allocation. EE 384Y Almir Mutapcic and Primoz Skraba 27/05/2004 Optimal Network Flow Allocation EE 384Y Almir Mutapcic and Primoz Skraba 27/05/2004 Problem Statement Optimal network flow allocation Find flow allocation which minimizes certain performance criterion

More information

15-744: Computer Networking. Data Center Networking II

15-744: Computer Networking. Data Center Networking II 15-744: Computer Networking Data Center Networking II Overview Data Center Topology Scheduling Data Center Packet Scheduling 2 Current solutions for increasing data center network bandwidth FatTree BCube

More information

Voice, Video and Data Convergence:

Voice, Video and Data Convergence: : A best-practice approach for transitioning your network infrastructure White Paper The business benefits of network convergence are clear: fast, dependable, real-time communication, unprecedented information

More information

Supporting Service Differentiation for Real-Time and Best-Effort Traffic in Stateless Wireless Ad-Hoc Networks (SWAN)

Supporting Service Differentiation for Real-Time and Best-Effort Traffic in Stateless Wireless Ad-Hoc Networks (SWAN) Supporting Service Differentiation for Real-Time and Best-Effort Traffic in Stateless Wireless Ad-Hoc Networks (SWAN) G. S. Ahn, A. T. Campbell, A. Veres, and L. H. Sun IEEE Trans. On Mobile Computing

More information

CCIE Service Provider Sample Lab. Part 2 of 7

CCIE Service Provider Sample Lab. Part 2 of 7 CCIE Service Provider Sample Lab Part 2 of 7 SP Sample Lab Main Topology R13 S2/1.135.13/24 Backbone Carrier SP AS 1002 S2/1 PPP E0/1.69.6/24 R6 Customer Carrier SP ABC Site 5 AS 612 E1/0 ISIS.126.6/24

More information

Traffic Engineering with Forward Fault Correction

Traffic Engineering with Forward Fault Correction Traffic Engineering with Forward Fault Correction Harry Liu Microsoft Research 06/02/2016 Joint work with Ratul Mahajan, Srikanth Kandula, Ming Zhang and David Gelernter 1 Cloud services require large

More information

Software Defined Networking

Software Defined Networking CSE343/443 Lehigh University Fall 2015 Software Defined Networking Presenter: Yinzhi Cao Lehigh University Acknowledgement Many materials are borrowed from the following links: https://www.cs.duke.edu/courses/spring13/compsc

More information

Scalable Flow-Based Networking with DIFANE

Scalable Flow-Based Networking with DIFANE Scalable Flow-Based Networking with DIFANE Minlan Yu Jennifer Rexford Michael J. Freedman Jia Wang Princeton University, Princeton, NJ, USA AT&T Labs - Research, Florham Park, NJ, USA ABSTRACT Ideally,

More information

DevoFlow: Scaling Flow Management for High Performance Networks

DevoFlow: Scaling Flow Management for High Performance Networks DevoFlow: Scaling Flow Management for High Performance Networks SDN Seminar David Sidler 08.04.2016 1 Smart, handles everything Controller Control plane Data plane Dump, forward based on rules Existing

More information

Software Defined Networking

Software Defined Networking Software Defined Networking Daniel Zappala CS 460 Computer Networking Brigham Young University Proliferation of Middleboxes 2/16 a router that manipulatees traffic rather than just forwarding it NAT rewrite

More information

COMP211 Chapter 4 Network Layer: The Data Plane

COMP211 Chapter 4 Network Layer: The Data Plane COMP211 Chapter 4 Network Layer: The Data Plane All material copyright 1996-2016 J.F Kurose and K.W. Ross, All Rights Reserved Computer Networking: A Top Down Approach 7 th edition Jim Kurose, Keith Ross

More information

Chapter 5 Network Layer: The Control Plane

Chapter 5 Network Layer: The Control Plane Chapter 5 Network Layer: The Control Plane A note on the use of these Powerpoint slides: We re making these slides freely available to all (faculty, students, readers). They re in PowerPoint form so you

More information

CSC 4900 Computer Networks: Network Layer

CSC 4900 Computer Networks: Network Layer CSC 4900 Computer Networks: Network Layer Professor Henry Carter Fall 2017 Chapter 4: Network Layer 4. 1 Introduction 4.2 What s inside a router 4.3 IP: Internet Protocol Datagram format 4.4 Generalized

More information

Congestion Management in Lossless Interconnects: Challenges and Benefits

Congestion Management in Lossless Interconnects: Challenges and Benefits Congestion Management in Lossless Interconnects: Challenges and Benefits José Duato Technical University of Valencia (SPAIN) Conference title 1 Outline Why is congestion management required? Benefits Congestion

More information

Software Defined Networking

Software Defined Networking Software Defined Networking Jennifer Rexford COS 461: Computer Networks Lectures: MW 10-10:50am in Architecture N101 http://www.cs.princeton.edu/courses/archive/spr12/cos461/ The Internet: A Remarkable

More information

Introduction to Segment Routing

Introduction to Segment Routing Segment Routing (SR) is a flexible, scalable way of doing source routing. Overview of Segment Routing, page 1 How Segment Routing Works, page 2 Examples for Segment Routing, page 3 Benefits of Segment

More information

Software Defined Networks and OpenFlow. Courtesy of: AT&T Tech Talks.

Software Defined Networks and OpenFlow. Courtesy of: AT&T Tech Talks. MOBILE COMMUNICATION AND INTERNET TECHNOLOGIES Software Defined Networks and Courtesy of: AT&T Tech Talks http://web.uettaxila.edu.pk/cms/2017/spr2017/temcitms/ MODULE OVERVIEW Motivation behind Software

More information

Scalable Flow-Based Networking with DIFANE

Scalable Flow-Based Networking with DIFANE Scalable Flow-Based Networking with DIFANE Minlan Yu Jennifer Rexford Michael J. Freedman Jia Wang Princeton University, Princeton, NJ, USA AT&T Labs - Research, Florham Park, NJ, USA ABSTRACT Ideally,

More information

Chapter 3 Part 2 Switching and Bridging. Networking CS 3470, Section 1

Chapter 3 Part 2 Switching and Bridging. Networking CS 3470, Section 1 Chapter 3 Part 2 Switching and Bridging Networking CS 3470, Section 1 Refresher We can use switching technologies to interconnect links to form a large network What is a hub? What is a switch? What is

More information

Circuit Switching and Packet Switching

Circuit Switching and Packet Switching Chapter 10: Circuit Switching and Packet Switching CS420/520 Axel Krings Page 1 Switching Networks Long distance transmission is typically done over a network of switched nodes Nodes not concerned with

More information

From ATM to IP and back again: the label switched path to the converged Internet, or another blind alley?

From ATM to IP and back again: the label switched path to the converged Internet, or another blind alley? Networking 2004 Athens 11 May 2004 From ATM to IP and back again: the label switched path to the converged Internet, or another blind alley? Jim Roberts France Telecom R&D The story of QoS: how to get

More information

Software-Defined Networking (SDN) Now for Operational Technology (OT) Networks SEL 2017

Software-Defined Networking (SDN) Now for Operational Technology (OT) Networks SEL 2017 Software-Defined Networking (SDN) Now for Operational Technology (OT) Networks SEL 2017 Traditional Ethernet Challenges Plug-and-play Allow all ROOT D D D D Nondeterministic Reactive failover Difficult

More information

Design and development of the reactive BGP peering in softwaredefined routing exchanges

Design and development of the reactive BGP peering in softwaredefined routing exchanges Design and development of the reactive BGP peering in softwaredefined routing exchanges LECTURER: HAO-PING LIU ADVISOR: CHU-SING YANG (Email: alen6516@gmail.com) 1 Introduction Traditional network devices

More information

Lecture 4 Wide Area Networks - Congestion in Data Networks

Lecture 4 Wide Area Networks - Congestion in Data Networks DATA AND COMPUTER COMMUNICATIONS Lecture 4 Wide Area Networks - Congestion in Data Networks Mei Yang Based on Lecture slides by William Stallings 1 WHAT IS CONGESTION? congestion occurs when the number

More information

Scalable Enterprise Networks with Inexpensive Switches

Scalable Enterprise Networks with Inexpensive Switches Scalable Enterprise Networks with Inexpensive Switches Minlan Yu minlanyu@cs.princeton.edu Princeton University Joint work with Alex Fabrikant, Mike Freedman, Jennifer Rexford and Jia Wang 1 Enterprises

More information

Transport layer issues

Transport layer issues Transport layer issues Dmitrij Lagutin, dlagutin@cc.hut.fi T-79.5401 Special Course in Mobility Management: Ad hoc networks, 28.3.2007 Contents Issues in designing a transport layer protocol for ad hoc

More information

Mohammad Hossein Manshaei 1393

Mohammad Hossein Manshaei 1393 Mohammad Hossein Manshaei manshaei@gmail.com 1393 Voice and Video over IP Slides derived from those available on the Web site of the book Computer Networking, by Kurose and Ross, PEARSON 2 Multimedia networking:

More information

Multipath Transport, Resource Pooling, and implications for Routing

Multipath Transport, Resource Pooling, and implications for Routing Multipath Transport, Resource Pooling, and implications for Routing Mark Handley, UCL and XORP, Inc Also: Damon Wischik, UCL Marcelo Bagnulo Braun, UC3M The members of Trilogy project: www.trilogy-project.org

More information

CSE 123: Computer Networks Alex C. Snoeren. HW 2 due Thursday 10/21!

CSE 123: Computer Networks Alex C. Snoeren. HW 2 due Thursday 10/21! CSE 123: Computer Networks Alex C. Snoeren HW 2 due Thursday 10/21! Finishing up media access Contention-free methods (rings) Moving beyond one wire Link technologies have limits on physical distance Also

More information

Software-Defined Networking (SDN) Overview

Software-Defined Networking (SDN) Overview Reti di Telecomunicazione a.y. 2015-2016 Software-Defined Networking (SDN) Overview Ing. Luca Davoli Ph.D. Student Network Security (NetSec) Laboratory davoli@ce.unipr.it Luca Davoli davoli@ce.unipr.it

More information

CS 268: Lecture 7 (Beyond TCP Congestion Control)

CS 268: Lecture 7 (Beyond TCP Congestion Control) Outline CS 68: Lecture 7 (Beyond TCP Congestion Control) TCP-Friendly Rate Control (TFRC) explicit Control Protocol Ion Stoica Computer Science Division Department of Electrical Engineering and Computer

More information

ETSF05/ETSF10 Internet Protocols. Performance & QoS Congestion Control

ETSF05/ETSF10 Internet Protocols. Performance & QoS Congestion Control ETSF05/ETSF10 Internet Protocols Performance & QoS Congestion Control Quality of Service (QoS) Maintaining a functioning network Meeting applications demands User s demands = QoE (Quality of Experience)

More information

CSC 401 Data and Computer Communications Networks

CSC 401 Data and Computer Communications Networks CSC 401 Data and Computer Communications Networks Network Layer ICMP (5.6), Network Management(5.7) & SDN (5.1, 5.5, 4.4) Prof. Lina Battestilli Fall 2017 Outline 5.6 ICMP: The Internet Control Message

More information

Better Never than Late: Meeting Deadlines in Datacenter Networks

Better Never than Late: Meeting Deadlines in Datacenter Networks Better Never than Late: Meeting Deadlines in Datacenter Networks Christo Wilson, Hitesh Ballani, Thomas Karagiannis, Ant Rowstron Microsoft Research, Cambridge User-facing online services Two common underlying

More information

EXAM TCP/IP NETWORKING Duration: 3 hours With Solutions

EXAM TCP/IP NETWORKING Duration: 3 hours With Solutions SCIPER: First name: Family name: EXAM TCP/IP NETWORKING Duration: 3 hours With Solutions Jean-Yves Le Boudec January 2016 INSTRUCTIONS 1. Write your solution into this document and return it to us (you

More information

EEC-484/584 Computer Networks

EEC-484/584 Computer Networks EEC-484/584 Computer Networks Lecture 13 wenbing@ieee.org (Lecture nodes are based on materials supplied by Dr. Louise Moser at UCSB and Prentice-Hall) Outline 2 Review of lecture 12 Routing Congestion

More information

Software-Defined Networking (SDN)

Software-Defined Networking (SDN) EPFL Princeton University 2 5 A p r 12 Software-Defined Networking (SDN) Third-party Enables new functionality through mability 2 1 at the risk of bugs 3 Software Faults Will make communication unreliable

More information

ETSF05/ETSF10 Internet Protocols. Performance & QoS Congestion Control

ETSF05/ETSF10 Internet Protocols. Performance & QoS Congestion Control ETSF05/ETSF10 Internet Protocols Performance & QoS Congestion Control Quality of Service (QoS) Maintaining a functioning network Meeting applications demands User s demands = QoE (Quality of Experience)

More information

Configuring NetFlow. Understanding NetFlow CHAPTER

Configuring NetFlow. Understanding NetFlow CHAPTER 50 CHAPTER This chapter describes how to configure NetFlow statistics collection on the Cisco 7600 series routers. Note For complete syntax and usage information for the commands used in this chapter,

More information

Techniques and Protocols for Improving Network Availability

Techniques and Protocols for Improving Network Availability Techniques and Protocols for Improving Network Availability Don Troshynski dtroshynski@avici.com February 26th, 2004 Outline of Talk The Problem Common Convergence Solutions An Advanced Solution: RAPID

More information

Computer Networking. Queue Management and Quality of Service (QOS)

Computer Networking. Queue Management and Quality of Service (QOS) Computer Networking Queue Management and Quality of Service (QOS) Outline Previously:TCP flow control Congestion sources and collapse Congestion control basics - Routers 2 Internet Pipes? How should you

More information

OVER the last few years, significant efforts have. Flexible Traffic Splitting in OpenFlow Networks

OVER the last few years, significant efforts have. Flexible Traffic Splitting in OpenFlow Networks IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 13, NO. 3, SEPTEMBER 2016 407 Flexible Traffic Splitting in OpenFlow Networks Daphne Tuncer, Marinos Charalambides, Stuart Clayman, and George

More information

Configuring OpenFlow 1

Configuring OpenFlow 1 Contents Configuring OpenFlow 1 Overview 1 OpenFlow switch 1 OpenFlow port 1 OpenFlow instance 2 OpenFlow flow table 3 Group table 5 Meter table 5 OpenFlow channel 6 Protocols and standards 7 Configuration

More information

Queuing Mechanisms. Overview. Objectives

Queuing Mechanisms. Overview. Objectives Queuing Mechanisms Overview Objectives This module describes the queuing mechanisms that can be used on output interfaces. It includes the following topics: Queuing Overview FIFO Queuing Priority Queuing

More information

Lecture 9: Bridging & Switching"

Lecture 9: Bridging & Switching Lecture 9: Bridging & Switching" CSE 123: Computer Networks Alex C. Snoeren HW 2 due Wednesday! Lecture 9 Overview" Finishing up media access Contention-free methods (rings) Moving beyond one wire Link

More information

Network Control and Signalling

Network Control and Signalling Network Control and Signalling 1. Introduction 2. Fundamentals and design principles 3. Network architecture and topology 4. Network control and signalling 5. Network components 5.1 links 5.2 switches

More information

What Is Congestion? Computer Networks. Ideal Network Utilization. Interaction of Queues

What Is Congestion? Computer Networks. Ideal Network Utilization. Interaction of Queues 168 430 Computer Networks Chapter 13 Congestion in Data Networks What Is Congestion? Congestion occurs when the number of packets being transmitted through the network approaches the packet handling capacity

More information

DevoFlow: Scaling Flow Management for High-Performance Networks

DevoFlow: Scaling Flow Management for High-Performance Networks DevoFlow: Scaling Flow Management for High-Performance Networks Andy Curtis Jeff Mogul Jean Tourrilhes Praveen Yalagandula Puneet Sharma Sujata Banerjee Software-defined networking Software-defined networking

More information

Designing Next Generation Data-Centers with Advanced Communication Protocols and Systems Services

Designing Next Generation Data-Centers with Advanced Communication Protocols and Systems Services Designing Next Generation Data-Centers with Advanced Communication Protocols and Systems Services P. Balaji, K. Vaidyanathan, S. Narravula, H. W. Jin and D. K. Panda Network Based Computing Laboratory

More information

Chapter 4 Network Layer: The Data Plane. Part A. Computer Networking: A Top Down Approach

Chapter 4 Network Layer: The Data Plane. Part A. Computer Networking: A Top Down Approach Chapter 4 Network Layer: The Data Plane Part A All material copyright 996-06 J.F Kurose and K.W. Ross, All Rights Reserved Computer Networking: A Top Down Approach 7 th Edition, Global Edition Jim Kurose,

More information

Cisco Nexus Data Broker for Network Traffic Monitoring and Visibility

Cisco Nexus Data Broker for Network Traffic Monitoring and Visibility Guide Cisco Nexus Data Broker for Network Traffic Monitoring and Visibility Solution Implementation Guide 2015 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public Information.

More information

Towards a Robust Protocol Stack for Diverse Wireless Networks Arun Venkataramani

Towards a Robust Protocol Stack for Diverse Wireless Networks Arun Venkataramani Towards a Robust Protocol Stack for Diverse Wireless Networks Arun Venkataramani (in collaboration with Ming Li, Devesh Agrawal, Deepak Ganesan, Aruna Balasubramanian, Brian Levine, Xiaozheng Tie at UMass

More information

Internetworking Part 1

Internetworking Part 1 CMPE 344 Computer Networks Spring 2012 Internetworking Part 1 Reading: Peterson and Davie, 3.1 22/03/2012 1 Not all networks are directly connected Limit to how many hosts can be attached Point-to-point:

More information

OpenFlow: What s it Good for?

OpenFlow: What s it Good for? OpenFlow: What s it Good for? Apricot 2016 Pete Moyer pmoyer@brocade.com Principal Solutions Architect Agenda SDN & OpenFlow Refresher How we got here SDN/OF Deployment Examples Other practical use cases

More information

Carnegie Mellon Computer Science Department Spring 2015 Midterm Exam

Carnegie Mellon Computer Science Department Spring 2015 Midterm Exam Carnegie Mellon Computer Science Department. 15-744 Spring 2015 Midterm Exam Name: Andrew ID: INSTRUCTIONS: There are 7 pages (numbered at the bottom). Make sure you have all of them. Please write your

More information

CHAPTER 7 CONCLUSION AND FUTURE SCOPE

CHAPTER 7 CONCLUSION AND FUTURE SCOPE 121 CHAPTER 7 CONCLUSION AND FUTURE SCOPE This research has addressed the issues of grid scheduling, load balancing and fault tolerance for large scale computational grids. To investigate the solution

More information

TeraPaths: Managing Flow-Based End-to- End QoS Paths Experience and Lessons Learned

TeraPaths: Managing Flow-Based End-to- End QoS Paths Experience and Lessons Learned TeraPaths: Managing Flow-Based End-to- End QoS Paths Experience and Lessons Learned Presented by Dantong Yu Summerʼ08 ESCC/Internet 2 Joint Techs Workshop Outline Background: the TeraPaths project Establishing

More information

MPLS-TE Configuration Application

MPLS-TE Configuration Application CHAPTER 6 The contains the following tabs and subtabs: Global Tab, page 6-53 Labels Tab, page 6-54 Links Tab, page 6-55 General Subtab, page 6-56 Backup Tunnels Subtab, page 6-57 Tunnel Head Tab, page

More information

Mark Sandstrom ThroughPuter, Inc.

Mark Sandstrom ThroughPuter, Inc. Hardware Implemented Scheduler, Placer, Inter-Task Communications and IO System Functions for Many Processors Dynamically Shared among Multiple Applications Mark Sandstrom ThroughPuter, Inc mark@throughputercom

More information

On Network Dimensioning Approach for the Internet

On Network Dimensioning Approach for the Internet On Dimensioning Approach for the Internet Masayuki Murata ed Environment Division Cybermedia Center, (also, Graduate School of Engineering Science, ) e-mail: murata@ics.es.osaka-u.ac.jp http://www-ana.ics.es.osaka-u.ac.jp/

More information

Chapter 4: network layer. Network service model. Two key network-layer functions. Network layer. Input port functions. Router architecture overview

Chapter 4: network layer. Network service model. Two key network-layer functions. Network layer. Input port functions. Router architecture overview Chapter 4: chapter goals: understand principles behind services service models forwarding versus routing how a router works generalized forwarding instantiation, implementation in the Internet 4- Network

More information

Chapter 8 LOCATION SERVICES

Chapter 8 LOCATION SERVICES Chapter 8 LOCATION SERVICES Distributed Computing Group Mobile Computing Winter 2005 / 2006 Overview Mobile IP Motivation Data transfer Encapsulation Location Services & Routing Classification of location

More information

Languages for Software-Defined Networks

Languages for Software-Defined Networks Languages for Software-Defined Networks Nate Foster, Michael J. Freedman, Arjun Guha, Rob Harrison, Naga Praveen Katta, Christopher Monsanto, Joshua Reich, Mark Reitblatt, Jennifer Rexford, Cole Schlesinger,

More information

Answers to Sample Questions on Transport Layer

Answers to Sample Questions on Transport Layer Answers to Sample Questions on Transport Layer 1) Which protocol Go-Back-N or Selective-Repeat - makes more efficient use of network bandwidth? Why? Answer: Selective repeat makes more efficient use of

More information

"Filling up an old bath with holes in it, indeed. Who would be such a fool?" "A sum it is, girl," my father said. "A sum. A problem for the mind.

Filling up an old bath with holes in it, indeed. Who would be such a fool? A sum it is, girl, my father said. A sum. A problem for the mind. We were doing very well, up to the kind of sum when a bath is filling at the rate of so many gallons and two holes are letting the water out, and please to say how long it will take to fill the bath, when

More information

Centralization of Network using Openflow Protocol

Centralization of Network using Openflow Protocol Indian Journal of Science and Technology, Vol 8(S2), 165 170, January 2015 ISSN (Print) : 0974-6846 ISSN (Online) : 0974-5645 DOI : 10.17485/ijst/2015/v8iS2/61217 Centralization of Network using Openflow

More information

Basics (cont.) Characteristics of data communication technologies OSI-Model

Basics (cont.) Characteristics of data communication technologies OSI-Model 48 Basics (cont.) Characteristics of data communication technologies OSI-Model Topologies Packet switching / Circuit switching Medium Access Control (MAC) mechanisms Coding Quality of Service (QoS) 49

More information

Delay Controlled Elephant Flow Rerouting in Software Defined Network

Delay Controlled Elephant Flow Rerouting in Software Defined Network 1st International Conference on Advanced Information Technologies (ICAIT), Nov. 1-2, 2017, Yangon, Myanmar Delay Controlled Elephant Flow Rerouting in Software Defined Network Hnin Thiri Zaw, Aung Htein

More information

Cubro Packetmaster EX12

Cubro Packetmaster EX12 Cubro Packetmaster EX12 PRODUCT OVERVIEW Network Packet Broker (NPB) At a glance Definition The Packetmaster EX12 is a network packet broker and network controller switch that aggregates, filters and load

More information

Internet Traffic Characteristics. How to take care of the Bursty IP traffic in Optical Networks

Internet Traffic Characteristics. How to take care of the Bursty IP traffic in Optical Networks Internet Traffic Characteristics Bursty Internet Traffic Statistical aggregation of the bursty data leads to the efficiency of the Internet. Large Variation in Source Bandwidth 10BaseT (10Mb/s), 100BaseT(100Mb/s),

More information

DetNet. Flow Definition and Identification, Features and Mapping to/from TSN. DetNet TSN joint workshop IETF / IEEE 802, Bangkok

DetNet. Flow Definition and Identification, Features and Mapping to/from TSN. DetNet TSN joint workshop IETF / IEEE 802, Bangkok DetNet Flow Definition and Identification, Features and Mapping to/from TSN DetNet TSN joint workshop IETF / IEEE 802, Bangkok Balázs Varga 2018-11-11 DetNet - Data plane and related functions Page 1 Balázs

More information

Seven Criteria for a Sound Investment in WAN Optimization

Seven Criteria for a Sound Investment in WAN Optimization Seven Criteria for a Sound Investment in WAN Optimization Introduction WAN optimization technology brings three important business benefits to IT organizations: Reduces branch office infrastructure costs

More information

Informatica Universiteit van Amsterdam. Distributed Load-Balancing of Network Flows using Multi-Path Routing. Kevin Ouwehand. September 20, 2015

Informatica Universiteit van Amsterdam. Distributed Load-Balancing of Network Flows using Multi-Path Routing. Kevin Ouwehand. September 20, 2015 Bachelor Informatica Informatica Universiteit van Amsterdam Distributed Load-Balancing of Network Flows using Multi-Path Routing Kevin Ouwehand September 20, 2015 Supervisor(s): Stavros Konstantaros, Benno

More information

CSCD 433/533 Advanced Networks Spring Lecture 22 Quality of Service

CSCD 433/533 Advanced Networks Spring Lecture 22 Quality of Service CSCD 433/533 Advanced Networks Spring 2016 Lecture 22 Quality of Service 1 Topics Quality of Service (QOS) Defined Properties Integrated Service Differentiated Service 2 Introduction Problem Overview Have

More information

Typhoon: An SDN Enhanced Real-Time Big Data Streaming Framework

Typhoon: An SDN Enhanced Real-Time Big Data Streaming Framework Typhoon: An SDN Enhanced Real-Time Big Data Streaming Framework Junguk Cho, Hyunseok Chang, Sarit Mukherjee, T.V. Lakshman, and Jacobus Van der Merwe 1 Big Data Era Big data analysis is increasingly common

More information

Quality of Service Monitoring and Delivery Part 01. ICT Technical Update Module

Quality of Service Monitoring and Delivery Part 01. ICT Technical Update Module Quality of Service Monitoring and Delivery Part 01 ICT Technical Update Module Presentation Outline Introduction to IP-QoS IntServ Architecture DiffServ Architecture Post Graduate Certificate in Professional

More information

Chapter -5 QUALITY OF SERVICE (QOS) PLATFORM DESIGN FOR REAL TIME MULTIMEDIA APPLICATIONS

Chapter -5 QUALITY OF SERVICE (QOS) PLATFORM DESIGN FOR REAL TIME MULTIMEDIA APPLICATIONS Chapter -5 QUALITY OF SERVICE (QOS) PLATFORM DESIGN FOR REAL TIME MULTIMEDIA APPLICATIONS Chapter 5 QUALITY OF SERVICE (QOS) PLATFORM DESIGN FOR REAL TIME MULTIMEDIA APPLICATIONS 5.1 Introduction For successful

More information

T9: SDN and Flow Management: DevoFlow

T9: SDN and Flow Management: DevoFlow T9: SDN and Flow Management: DevoFlow Critique Lee, Tae Ho 1. Problems due to switch HW may be temporary. HW will evolve over time. Section 3.3 tries to defend against this point, but none of the argument

More information

Achieving Efficient Bandwidth Utilization in Wide-Area Networks While Minimizing State Changes

Achieving Efficient Bandwidth Utilization in Wide-Area Networks While Minimizing State Changes 1 Achieving Efficient Bandwidth Utilization in Wide-Area Networks While Minimizing State Changes 2 WAN Traffic Engineering Maintaining private WAN infrastructure is expensive Must balance latency-sensitive

More information

BW Protection. 2002, Cisco Systems, Inc. All rights reserved.

BW Protection. 2002, Cisco Systems, Inc. All rights reserved. BW Protection 2002, Cisco Systems, Inc. All rights reserved. 1 Cisco MPLS - Traffic Engineering for VPNs Amrit Hanspal Sr. Product Manager MPLS & QoS Internet Technologies Division 2 Agenda MPLS Fundamentals

More information

Presentation Outline. Evolution of QoS Architectures. Quality of Service Monitoring and Delivery Part 01. ICT Technical Update Module

Presentation Outline. Evolution of QoS Architectures. Quality of Service Monitoring and Delivery Part 01. ICT Technical Update Module Quality of Service Monitoring and Delivery Part 01 ICT Technical Update Module Presentation Outline Introduction to IP-QoS IntServ Architecture DiffServ Architecture Post Graduate Certificate in Professional

More information

Chapter 4 Network Layer: The Data Plane

Chapter 4 Network Layer: The Data Plane Chapter 4 Network Layer: The Data Plane A note on the use of these Powerpoint slides: We re making these slides freely available to all (faculty, students, readers). They re in PowerPoint form so you see

More information

Truffle Broadband Bonding Network Appliance

Truffle Broadband Bonding Network Appliance Truffle Broadband Bonding Network Appliance Reliable high throughput data connections with low-cost & diverse transport technologies PART I Truffle in standalone installation for a single office. Executive

More information

The War Between Mice and Elephants

The War Between Mice and Elephants The War Between Mice and Elephants Liang Guo and Ibrahim Matta Computer Science Department Boston University 9th IEEE International Conference on Network Protocols (ICNP),, Riverside, CA, November 2001.

More information

Frame Relay. Frame Relay: characteristics

Frame Relay. Frame Relay: characteristics Frame Relay Andrea Bianco Telecommunication Network Group firstname.lastname@polito.it http://www.telematica.polito.it/ Network management and QoS provisioning - 1 Frame Relay: characteristics Packet switching

More information

Merits of Open Loop. Siamack Ayandeh Onex Communications Corp. a subsidiary of. TranSwitch Corp.

Merits of Open Loop. Siamack Ayandeh Onex Communications Corp. a subsidiary of. TranSwitch Corp. One TM Merits of Open Loop Siamack Ayandeh sayandeh@onexco.com Onex Communications Corp a subsidiary of TranSwitch Corp. Outline Allows for dynamic partitioning between the High and Low priority traffic

More information

HP A5820X & A5800 Switch Series MPLS. Configuration Guide. Abstract

HP A5820X & A5800 Switch Series MPLS. Configuration Guide. Abstract HP A5820X & A5800 Switch Series MPLS Configuration Guide Abstract This document describes the software features for the HP 5820X & 5800 Series products and guides you through the software configuration

More information

Attaining the Promise and Avoiding the Pitfalls of TCP in the Datacenter. Glenn Judd Morgan Stanley

Attaining the Promise and Avoiding the Pitfalls of TCP in the Datacenter. Glenn Judd Morgan Stanley Attaining the Promise and Avoiding the Pitfalls of TCP in the Datacenter Glenn Judd Morgan Stanley 1 Introduction Datacenter computing pervasive Beyond the Internet services domain BigData, Grid Computing,

More information