Privacy in Sensor Nets

Size: px
Start display at page:

Download "Privacy in Sensor Nets"

Transcription

1 Privacy in Sensor Nets Wade Trappe Yanyong Zhang Rutgers, The State University of New Jersey 1

2 Talk Overview Brief Update on the Security Group and then PARIS Motivation Set the Stage Privacy, Pandas, and Paris Project Framework: Who? When? What? How? Team Approach: Theory and Systems Testbed Validation: ORBIT and Pandas-in-PARIS 2

3 WINLAB s Security and Computing Initiatives WINLAB has a growing initiative in wireless network security and mobile/pervasive computing Currently the Security Group consists of 3 Faculty Members: Wade Trappe (University of Maryland): Wireless Security, Multimedia Security, Physical/MAC Layer Security, Multicast, Coding and Cryptography Yanyong Zhang (Penn. State University): Distributed Computing, Sensor Networking, Pervasive Computing, Fault Tolerant Computing Architectures, Wireless Security Marco Gruteser (University of Colorado): Ubiquitous Computing, Secure Software Engineering, Privacy in Location Services 14 Students (W. Xu, Q. Li, P. Kamat, Z. Li, Y. Zhang, T. Wood, S. Chao, A. Chincholi, B. Xue, S. Raj, K. Ma, S. Swami, B. Hoh, K. Ramchandran) Collaboration: Princeton (H. Kobayashi), Columbia (H. Schulzrinne), Bell Labs (S. Paul), IBM Watson, UMD (KJR Liu, M. Wu), Rutgers CS (B. Nath), UColorado (Grunwald), URI (Y. Sun), UBC (Z. Wang), U. Texas (IAT) Funding: NSF: ORBIT (joint with Princeton, Columbia, Bell Labs, IBM, Thomson), PARIS Air Force: Multimedia Fingerprinting (joint with UMD) (complete) NICT Japan: Secure Future Wireless Networks (B3G) 3

4 NSF-NETS (NOSS) PARIS: Privacy Augmented Relaying of Information from Sensors 4

5 Motivation The things most people want to know about are usually none of their business. George Bernard Shaw Sensor network security and privacy Market expected to grow to $10B by 2010 Sensors will become part of our social fabric Information will be everywhere for the taking! Privacy is tough to define, and tougher to defend! Hacker Vs. Thug 5

6 Privacy Issues in Sensor Networks Content-Oriented Security and Privacy: Issues that arise because an adversary can observe and manipulate the exact content in a sensor message. Best addressed through cryptography and network security. Context-Oriented Privacy: Issues that arise because an adversary observes the context surrounding creation and transmission of a sensor message. Examples: Source-Location Privacy: The physical location of communication participants may be sensitive. Temporal Privacy: Temporal information corresponding to the creation of message might be sensitive. Traffic Privacy: The size and amount of messages originating from a sensor may be sensitive. Example: In sensor networks, Source-Location Privacy focuses on protecting the monitored asset from traceback. 6

7 Panda-Hunter Game Model We consider a generic asset monitoring sensor network application Panda-Hunter Game: A sensor network has been deployed to monitor a panda habitat. Sensors send Panda_Here messages, forwarded to sink. The hunter observes packets and learns information about the panda. Privacy Goal: Make it difficult for Hunter to gain knowledge about panda s behavior. Example: Source-Location Privacy Increase the time needed for an adversary to track and capture the panda. Longer safety periods mean more privacy! Data Sink Sensor Node Game Over! 7

8 Approach to Sensor Context Privacy Who should I communicate with? This question addresses source-location privacy and entails carefully designed routing solutions. When should I communicate? Here we focus on temporal privacy by introducing suitable modifications to the routing layer and MAC layer. What should I communicate? For this issue we address privacy breaches resulting from traffic analysis by modifying the underlying application s outgoing data format. How should I communicate? Here we examine modifications to the physical layer and the underlying topology which obfuscate the source s location. 8

9 Who? Routing Strategies for Privacy Sensor networks route data via multi-hops to sink. Contextual Privacy Issue: An adversary may trace his way back to source s location. Example: Flooding is a popular technique for delivering sensor data Involves each node forwarding a packet it receives Although many simultaneous paths to the sink, flooding does not increase the safety period! Explanation: Flooding contains the shortest path. Hunter will always follow shortest path to the panda. Need to change who you route to: Introduce randomization into routing Data Sink Sensor Node 9

10 Formal model Asset monitoring network is a 6 tuple : (N, S, A, R, H, M) N = network of sensor nodes S = Sink to which all messages are routed to A = The asset being monitored R = The routing strategy used by sensors H = The hunter or adversary whose movements are goverened by a set of rules M. Safety period Number of new messages initiated by the source node(s) monitoring the asset before the adversary catches up (if at all) Likelihood of capture The likelihood that the adversary will trace the asset successfully in a given period of time. Adversary characteristics Non interfering Device rich Resource rich Informed (Kerckhoff s principle) 10

11 Simulation setup Discrete event simulator written in c++ 10,000 nodes in a 6000 x 6000 (m 2 ) grid Uniform random distribution. Tx radius of nodes is 100 m. and listening radius of adversary also 100 m. Both these parameters are variable in the simulator Avg. node degree is 8 well connected network less than 1% have less than 3 neighbors. Energy consumption for Rx and Tx Single asset and single adversary 11

12 The Patient Adversary 12

13 Baseline Routing Techniques Shortest Path routing Single path Criteria: Minimum number of hops or highest gradient Minimum amount of network energy expended Minimum message delivery latency 100% message delivery guarantee Worst safety period!! Baseline flooding Each node forwards the received sensor packet once to all its neighbors. Very high energy consuion and msg overhead. Probabilistic flooding Each node forwards a received sensor packet with probability P forward to all its neighbors, the first time it receives it. Small P forward means reduced energy consumption Small P forward also means lower network reachability, lower message delivery ratio and higher delivery latency. There is a fundamental tradeoff here 13

14 Performance of Baseline routing techniques Delivery ratio P =1.0 fwd P =0.9 fwd P =0.7 fwd P =0.5 fwd shortest-path Message Delivery Ratio Source-sink distance in hops Message overhead Number of Tx per delivered msg P =1.0 fwd P =0.9 fwd P =0.7 fwd shortest-path Source-sink distance in hops 14

15 Performance of Baseline routing techniques Average message latency P =1.0 fwd P =0.9 fwd P =0.7 fwd shortest-path Avg. Msg Latency Source-sink distance in hops P =1.0 fwd P =0.9 fwd P =0.7 fwd shortest-path Safety Period Safety period Source-sink distance in hops 15

16 Routing with fake sources A second source can inject fake messages into the network to draw the adversary away from the real source. Sink can decrypt the messages and ignore the fake ones. The location of the fake source and the rate at which it floods the fake messages is very important. 16

17 Phantom routing The source message is sent out on a directed random walk for h hops before being flooded or sent down to shortest path. Combines the best of flooding and shortest path strategies but without any of the problems. 17

18 When? Traffic Strategies for Privacy Sensor networks may store, aggregate and forward data. Contextual Privacy Issue: An adversary may infer time-ofcreation context by observing and correlating traffic. Time delay translates into source-location ambiguity Need to change when you send/route/forward. Delay at the source Random delay in routing 18

19 What? Traffic Shaping Strategies for Privacy Sensor networks may report different types of data Contextual Privacy Issue: An adversary may correlate packet size and traffic with the type of data Example: Pandas and Foxes Need to change what you send Traffic Shaping for Sensor Networks: Uniform Message Size Randomized Message Size Privacy-Preserving Source Coding Panda Here! Fox Here! 19

20 How? Physical/Topology Strategies for Privacy Sensor communication infrastructure is simple Contextual Privacy Issue: Simplicity of design facilitates many contextual privacy attacks Need to change how you communicate Physical Layer Defense: Power control Localization ambiguity Network Topology Defense: Hierarchies and jump-points Network Mixing Power Received Transmit Power Uncertainty d 1 d 2 Location Uncertainty Distance 20

21 Team Approach Paris isn t for changing planes, its for changing your outlook! - Audrey Hepburn Systems meets Theory Approach: Theory: Information Theory: Huffman-coding Physical Layer Techniques Systems: Practical Implementation Issues: Observations learned from system Systems Theory Validation is key Experiments will be conducted on NSF ORBIT Wireless Testbed Hook-up imotes and Mica Motes to ORBIT Pandas-In-PARIS 21

Education. Professional Experience. Awards and Honors

Education. Professional Experience. Awards and Honors Education Wade Trappe Department of Electrical and Computer Engineering, and Wireless Information Network Laboratory (WINLAB) Rutgers, The State University of New Jersey 73 Brett Road, Piscataway, NJ 08854

More information

Enhancing Source-Location Privacy in Sensor Network Routing

Enhancing Source-Location Privacy in Sensor Network Routing 1 Enhancing Source-Location Privacy in Sensor Network Routing Pandurang Kamat, Yanyong Zhang, Wade Trappe, Celal Ozturk Wireless Information Network Laboratory (WINLAB) Rutgers University, 73 Brett Rd.,

More information

DAISY Data Analysis and Information SecuritY Lab

DAISY Data Analysis and Information SecuritY Lab DAISY Data Analysis and Information SecuritY Lab Mobile Phone Enabled Social Community Extraction for Controlling of Disease Propagation in Healthcare Yingying (Jennifer) Chen Director of Data Analysis

More information

Computer Based Image Algorithm For Wireless Sensor Networks To Prevent Hotspot Locating Attack

Computer Based Image Algorithm For Wireless Sensor Networks To Prevent Hotspot Locating Attack Computer Based Image Algorithm For Wireless Sensor Networks To Prevent Hotspot Locating Attack J.Anbu selvan 1, P.Bharat 2, S.Mathiyalagan 3 J.Anand 4 1, 2, 3, 4 PG Scholar, BIT, Sathyamangalam ABSTRACT:

More information

Entrapping Adversaries for Source Protection in Sensor Networks

Entrapping Adversaries for Source Protection in Sensor Networks Entrapping Adversaries for Source Protection in Sensor Networks Yi Ouyang 1,3 Zhengyi Le 1,3 Guanling Chen 2,3 James Ford 1,3 Fillia Makedon 1,3 1 Computer Science Department Dartmouth College {ouyang,

More information

Wireless Network Security Spring 2014

Wireless Network Security Spring 2014 Wireless Network Security 14-814 Spring 2014 Patrick Tague Class #16 Network Privacy & Anonymity 2014 Patrick Tague 1 Network Privacy Issues Network layer interactions in wireless networks often expose

More information

A Cloud-Based Scheme for Protecting Source-Location Privacy against Hotspot-Locating Attack in Wireless Sensor Networks

A Cloud-Based Scheme for Protecting Source-Location Privacy against Hotspot-Locating Attack in Wireless Sensor Networks A Cloud-Based Scheme for Protecting Source-Location Privacy against Hotspot-Locating Attack in Wireless Sensor Networks Mohamed M. E. A. Mahmoud and Xuemin (Sherman) Shen Department of Electrical and Computer

More information

Genetic-Algorithm-Based Construction of Load-Balanced CDSs in Wireless Sensor Networks

Genetic-Algorithm-Based Construction of Load-Balanced CDSs in Wireless Sensor Networks Genetic-Algorithm-Based Construction of Load-Balanced CDSs in Wireless Sensor Networks Jing He, Shouling Ji, Mingyuan Yan, Yi Pan, and Yingshu Li Department of Computer Science Georgia State University,

More information

Secure Routing in Wireless Sensor Networks: Attacks and Countermeasures

Secure Routing in Wireless Sensor Networks: Attacks and Countermeasures Secure Routing in Wireless Sensor Networks: Attacks and Countermeasures By Chris Karlof and David Wagner Lukas Wirne Anton Widera 23.11.2017 Table of content 1. Background 2. Sensor Networks vs. Ad-hoc

More information

Preserving Source Location Privacy in Monitoring-Based Wireless Sensor Networks

Preserving Source Location Privacy in Monitoring-Based Wireless Sensor Networks Preserving Source Location Privacy in Monitoring-Based Wireless Sensor Networks Yong Xi, Loren Schwiebert, and Weisong Shi Wayne State University Department of Computer Science Detroit, MI 482 {yongxi,

More information

Chapter 18 Privacy Enhancing Technologies for Wireless Sensor Networks

Chapter 18 Privacy Enhancing Technologies for Wireless Sensor Networks Chapter 18 Privacy Enhancing Technologies for Wireless Sensor Networks Chi-Yin Chow, Wenjian Xu and Tian He Abstract Since wireless sensor networks (WSNs) are vulnerable to malicious attacks due to their

More information

APP-PHY Interactions in Wireless Networks

APP-PHY Interactions in Wireless Networks University of Minnesota September 29, 2009 APP-PHY Interactions in Wireless Networks Vince Poor (poor@princeton.edu) APP-PHY Interactions in Wireless Nets Wireless Networks: Layers Application (APP) Web

More information

Towards Robust and Flexible Low-Power Wireless Networking

Towards Robust and Flexible Low-Power Wireless Networking Towards Robust and Flexible Low-Power Wireless Networking Philip Levis (joint work with Leonidas Guibas) Computer Systems Lab Stanford University 3.vii.2007 Low Power Wireless Low cost, numerous devices

More information

SMITE: A Stochastic Compressive Data Collection. Sensor Networks

SMITE: A Stochastic Compressive Data Collection. Sensor Networks SMITE: A Stochastic Compressive Data Collection Protocol for Mobile Wireless Sensor Networks Longjiang Guo, Raheem Beyah, and Yingshu Li Department of Computer Science, Georgia State University, USA Data

More information

Sleep/Wake Aware Local Monitoring (SLAM)

Sleep/Wake Aware Local Monitoring (SLAM) Sleep/Wake Aware Local Monitoring (SLAM) Issa Khalil, Saurabh Bagchi, Ness Shroff Dependable Computing Systems Lab (DCSL) & Center for Wireless Systems and Applications (CWSA) School of Electrical and

More information

Protocol Design and Optimization for

Protocol Design and Optimization for Protocol Design and Optimization for Yu Wang, Hongyi Wu*, Feng Lin, and Nian-Feng Tzeng Center for Advanced Computer Studies University of Louisiana at Lafayette Mobile Sensor Networks Applications: Air

More information

DETECTING, DETERMINING AND LOCALIZING MULTIPLE ATTACKS IN WIRELESS SENSOR NETWORK - MALICIOUS NODE DETECTION AND FAULT NODE RECOVERY SYSTEM

DETECTING, DETERMINING AND LOCALIZING MULTIPLE ATTACKS IN WIRELESS SENSOR NETWORK - MALICIOUS NODE DETECTION AND FAULT NODE RECOVERY SYSTEM DETECTING, DETERMINING AND LOCALIZING MULTIPLE ATTACKS IN WIRELESS SENSOR NETWORK - MALICIOUS NODE DETECTION AND FAULT NODE RECOVERY SYSTEM Rajalakshmi 1, Umamaheswari 2 and A.Vijayaraj 3 1 Department

More information

Towards a Wireless Lexicon. Philip Levis Computer Systems Lab Stanford University 20.viii.2007

Towards a Wireless Lexicon. Philip Levis Computer Systems Lab Stanford University 20.viii.2007 Towards a Wireless Lexicon Philip Levis Computer Systems Lab Stanford University 20.viii.2007 Low Power Wireless Low cost, numerous devices Wireless sensornets Personal area networks (PANs) Ad-hoc networks

More information

Wireless Network Security Spring 2013

Wireless Network Security Spring 2013 Wireless Network Security 14-814 Spring 2013 Patrick Tague Class #19 Location Privacy & Tracking Agenda Location privacy and tracking Implications / risks of location information Location privacy and anonymity

More information

PROTECTING SOURCE LOCATION PRIVACY AGAINST WORMHOLE ATTACK USING DAWN IN WIRELESS SENSOR NETWORKS

PROTECTING SOURCE LOCATION PRIVACY AGAINST WORMHOLE ATTACK USING DAWN IN WIRELESS SENSOR NETWORKS PROTECTING SOURCE LOCATION PRIVACY AGAINST WORMHOLE ATTACK USING DAWN IN WIRELESS SENSOR NETWORKS S. R. Naresh, S. V. Gayathri Soumiya and A.V. Ramprasad Department of ECE, KLN College of Engineering,

More information

Packet Estimation with CBDS Approach to secure MANET

Packet Estimation with CBDS Approach to secure MANET Packet Estimation with CBDS Approach to secure MANET Mr. Virendra P. Patil 1 and Mr. Rajendra V. Patil 2 1 PG Student, SSVPS COE, Dhule, Maharashtra, India 2 Assistance Professor, SSVPS COE, Dhule, Maharashtra,

More information

Using Mobile Relays to Prolong the Lifetime of Wireless Sensor Networks. Wang Wei Vikram Srinivasan Chua Kee-Chaing

Using Mobile Relays to Prolong the Lifetime of Wireless Sensor Networks. Wang Wei Vikram Srinivasan Chua Kee-Chaing Using Mobile Relays to Prolong the Lifetime of Wireless Sensor Networks Wang Wei Vikram Srinivasan Chua Kee-Chaing Overview The motivation of mobile relay The performance analysis for mobile relay in the

More information

Information Brokerage

Information Brokerage Information Brokerage Sensing Networking Leonidas Guibas Stanford University Computation CS321 Information Brokerage Services in Dynamic Environments Information Brokerage Information providers (sources,

More information

Routing protocols in WSN

Routing protocols in WSN Routing protocols in WSN 1.1 WSN Routing Scheme Data collected by sensor nodes in a WSN is typically propagated toward a base station (gateway) that links the WSN with other networks where the data can

More information

Part I. Wireless Communication

Part I. Wireless Communication 1 Part I. Wireless Communication 1.5 Topologies of cellular and ad-hoc networks 2 Introduction Cellular telephony has forever changed the way people communicate with one another. Cellular networks enable

More information

Load Balanced Link Reversal Routing in Mobile Wireless Ad Hoc Networks

Load Balanced Link Reversal Routing in Mobile Wireless Ad Hoc Networks Load Balanced Link Reversal Routing in Mobile Wireless Ad Hoc Networks Nabhendra Bisnik, Alhussein Abouzeid ECSE Department RPI Costas Busch CSCI Department RPI Mobile Wireless Networks Wireless nodes

More information

PRIVACY IN EMERGING WIRELESS NETWORKS

PRIVACY IN EMERGING WIRELESS NETWORKS PRIVACY IN EMERGING WIRELESS NETWORKS by PANDURANG KAMAT A Dissertation submitted to the Graduate School New Brunswick Rutgers, The State University of New Jersey in partial fulfillment of the requirements

More information

Extracting High-Level Context from Low-Level Sensor Data

Extracting High-Level Context from Low-Level Sensor Data Extracting High-Level Context from Low-Level Sensor Data Yanyong Zhang Bernhard Firner Rutgers University, Winlab May 10, 2011 Yanyong Zhang (Winlab) Extracting High-Level Context May 10, 2011 1 / 16 High-Level

More information

WSN NETWORK ARCHITECTURES AND PROTOCOL STACK

WSN NETWORK ARCHITECTURES AND PROTOCOL STACK WSN NETWORK ARCHITECTURES AND PROTOCOL STACK Sensing is a technique used to gather information about a physical object or process, including the occurrence of events (i.e., changes in state such as a drop

More information

Protecting Sink Location Against Global Traffic Monitoring Attacker

Protecting Sink Location Against Global Traffic Monitoring Attacker 016 International Conference on Computing, Networking and Communications, Wireless Ad Hoc and Sensor Networks Protecting Sink Location Against Global Traffic Monitoring Attacker Juan Chen Dept. of Information

More information

Nodes Energy Conserving Algorithms to prevent Partitioning in Wireless Sensor Networks

Nodes Energy Conserving Algorithms to prevent Partitioning in Wireless Sensor Networks IJCSNS International Journal of Computer Science and Network Security, VOL.17 No.9, September 2017 139 Nodes Energy Conserving Algorithms to prevent Partitioning in Wireless Sensor Networks MINA MAHDAVI

More information

Secure Message Delivery Games for Device-to-Device Communications

Secure Message Delivery Games for Device-to-Device Communications Secure Message Delivery Games for Device-to-Device Communications GameSec 2014 Manos Panaousis November 6, 2014 Manos Panaousis (University of Brighton) GameSec 14 November 6, 2014 1 / 20 Future smartphones

More information

CHAPTER 2 WIRELESS SENSOR NETWORKS AND NEED OF TOPOLOGY CONTROL

CHAPTER 2 WIRELESS SENSOR NETWORKS AND NEED OF TOPOLOGY CONTROL WIRELESS SENSOR NETWORKS AND NEED OF TOPOLOGY CONTROL 2.1 Topology Control in Wireless Sensor Networks Network topology control is about management of network topology to support network-wide requirement.

More information

CS551 Ad-hoc Routing

CS551 Ad-hoc Routing CS551 Ad-hoc Routing Bill Cheng http://merlot.usc.edu/cs551-f12 1 Mobile Routing Alternatives Why not just assume a base station? good for many cases, but not some (military, disaster recovery, sensor

More information

DETECTING WORMHOLE ATTACKS IN WIRELESS SENSOR NETWORKS

DETECTING WORMHOLE ATTACKS IN WIRELESS SENSOR NETWORKS Chapter 14 DETECTING WORMHOLE ATTACKS IN WIRELESS SENSOR NETWORKS Yurong Xu, Guanling Chen, James Ford and Fillia Makedon Abstract Wormhole attacks can destabilize or disable wireless sensor networks.

More information

Mobile Wireless Sensor Network enables convergence of ubiquitous sensor services

Mobile Wireless Sensor Network enables convergence of ubiquitous sensor services 1 2005 Nokia V1-Filename.ppt / yyyy-mm-dd / Initials Mobile Wireless Sensor Network enables convergence of ubiquitous sensor services Dr. Jian Ma, Principal Scientist Nokia Research Center, Beijing 2 2005

More information

Outline. CS5984 Mobile Computing. Dr. Ayman Abdel-Hamid, CS5984. Wireless Sensor Networks 1/2. Wireless Sensor Networks 2/2

Outline. CS5984 Mobile Computing. Dr. Ayman Abdel-Hamid, CS5984. Wireless Sensor Networks 1/2. Wireless Sensor Networks 2/2 CS5984 Mobile Computing Outline : a Survey Dr. Ayman Abdel-Hamid Computer Science Department Virginia Tech An Introduction to 1 2 1/2 Advances in micro-electro-mechanical systems technology, wireless communications,

More information

The Complexity of Connectivity in Wireless Networks. Roger WISARD

The Complexity of Connectivity in Wireless Networks. Roger WISARD The Complexity of Connectivity in Wireless Networks Roger Wattenhofer @ WISARD 2008 1 The paper Joint work with Thomas Moscibroda Former PhD student of mine Now researcher at Microsoft Research, Redmond

More information

Rumor Routing Algorithm

Rumor Routing Algorithm Aleksi.Ahtiainen@hut.fi T-79.194 Seminar on Theoretical Computer Science Feb 9 2005 Contents Introduction The Algorithm Research Results Future Work Criticism Conclusions Introduction is described in paper:

More information

ROUTING ALGORITHMS Part 2: Data centric and hierarchical protocols

ROUTING ALGORITHMS Part 2: Data centric and hierarchical protocols ROUTING ALGORITHMS Part 2: Data centric and hierarchical protocols 1 Negative Reinforcement Time out Explicitly degrade the path by re-sending interest with lower data rate. Source Gradient New Data Path

More information

Fault-Aware Flow Control and Multi-path Routing in Wireless Sensor Networks

Fault-Aware Flow Control and Multi-path Routing in Wireless Sensor Networks Fault-Aware Flow Control and Multi-path Routing in Wireless Sensor Networks X. Zhang, X. Dong Shanghai Jiaotong University J. Wu, X. Li Temple University, University of North Carolina N. Xiong Colorado

More information

IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 1, Issue 2, April-May, 2013 ISSN:

IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 1, Issue 2, April-May, 2013 ISSN: Fast Data Collection with Reduced Interference and Increased Life Time in Wireless Sensor Networks Jayachandran.J 1 and Ramalakshmi.R 2 1 M.Tech Network Engineering, Kalasalingam University, Krishnan koil.

More information

Synthesizing Adaptive Protocols by Selective Enumeration (SYNAPSE)

Synthesizing Adaptive Protocols by Selective Enumeration (SYNAPSE) Synthesizing Adaptive Protocols by Selective Enumeration (SYNAPSE) Problem Definition Solution Approach Benefits to End User Talk Overview Metrics Summary of Results to Date Lessons Learned & Future Work

More information

TinySec: A Link Layer Security Architecture for Wireless Sensor Networks. Presented by Paul Ruggieri

TinySec: A Link Layer Security Architecture for Wireless Sensor Networks. Presented by Paul Ruggieri TinySec: A Link Layer Security Architecture for Wireless Sensor Networks Chris Karlof, Naveen Sastry,, David Wagner Presented by Paul Ruggieri 1 Introduction What is TinySec? Link-layer security architecture

More information

PRIVACY AND TRUST-AWARE FRAMEWORK FOR SECURE ROUTING IN WIRELESS MESH NETWORKS

PRIVACY AND TRUST-AWARE FRAMEWORK FOR SECURE ROUTING IN WIRELESS MESH NETWORKS PRIVACY AND TRUST-AWARE FRAMEWORK FOR SECURE ROUTING IN WIRELESS MESH NETWORKS 1 PRASHANTH JAYAKUMAR, 2 P.S.KHANAGOUDAR, 3 VINAY KAVERI 1,3 Department of CSE, GIT, Belgaum, 2 Assistant Professor, Dept.

More information

Incentive-Aware Routing in DTNs

Incentive-Aware Routing in DTNs Incentive-Aware Routing in DTNs Upendra Shevade Han Hee Song Lili Qiu Yin Zhang The University of Texas at Austin IEEE ICNP 2008 October 22, 2008 1 DTNs Disruption tolerant networks No contemporaneous

More information

The APP & the PHY in Wireless Nets

The APP & the PHY in Wireless Nets The APP & the PHY in Wireless Nets The APP & the PHY in Wireless Nets The APP & the PHY in Wireless Nets The APP & the PHY in Wireless Nets The APP & the PHY in Wireless Nets The Past 25 Years: Key Developments

More information

ChitChat: An Effective Message Delivery Method in Sparse Pocket-Switched Networks

ChitChat: An Effective Message Delivery Method in Sparse Pocket-Switched Networks ChitChat: An Effective Message Delivery Method in Sparse Pocket-Switched Networks Douglas McGeehan Dan Lin Sanjay Madria Department of Computer Science Missouri University of Science and Technology Rolla,

More information

Distributed Indexing and Data Dissemination in Large Scale Wireless Sensor Networks

Distributed Indexing and Data Dissemination in Large Scale Wireless Sensor Networks Distributed Indexing and Data Dissemination in Large Scale Wireless Sensor Networks Yiwei Wu Department of Computer Science Georgia State University Email: wyw@cs.gsu.edu Yingshu Li Department of Computer

More information

Zeroing-In on Network Metric Minima for Sink Location Determination

Zeroing-In on Network Metric Minima for Sink Location Determination Zeroing-In on Network Metric Minima for Sink Location Determination Zhenhua Liu, Wenyuan Xu Dept of Computer Science & Engineering University of South Carolina, Columbia, SC, USA liuz,wyxu@csescedu ABSTRACT

More information

ORBIT Project Overview.

ORBIT Project Overview. ORBIT Project Overview www.orbit-lab.org ORBIT Overview: Project Rationale Wireless testbeds motivated by: cost & time needed to develop experimental prototypes need for reproducible protocol evaluations

More information

Data-Centric Query in Sensor Networks

Data-Centric Query in Sensor Networks Data-Centric Query in Sensor Networks Jie Gao Computer Science Department Stony Brook University 10/27/05 Jie Gao, CSE590-fall05 1 Papers Chalermek Intanagonwiwat, Ramesh Govindan and Deborah Estrin, Directed

More information

Scheduling of Multiple Applications in Wireless Sensor Networks Using Knowledge of Applications and Network

Scheduling of Multiple Applications in Wireless Sensor Networks Using Knowledge of Applications and Network International Journal of Information and Computer Science (IJICS) Volume 5, 2016 doi: 10.14355/ijics.2016.05.002 www.iji-cs.org Scheduling of Multiple Applications in Wireless Sensor Networks Using Knowledge

More information

Cyber Defense & Network Assurance (CyberDNA) Center. Professor Ehab Al Shaer, Director of CyberDNA Center UNC Charlotte

Cyber Defense & Network Assurance (CyberDNA) Center. Professor Ehab Al Shaer, Director of CyberDNA Center UNC Charlotte Cyber Defense & Network Assurance (CyberDNA) Center Professor Ehab Al Shaer, Director of CyberDNA Center UNC Charlotte March 5, 2012 About CyberDNA Vision CyberDNA Center is to enable assurable and usable

More information

13 Sensor networks Gathering in an adversarial environment

13 Sensor networks Gathering in an adversarial environment 13 Sensor networks Wireless sensor systems have a broad range of civil and military applications such as controlling inventory in a warehouse or office complex, monitoring and disseminating traffic conditions,

More information

Building Pervasive Computing Applications on Sensor Networks. Rutgers, The State University of New Jersey

Building Pervasive Computing Applications on Sensor Networks. Rutgers, The State University of New Jersey Building Pervasive Computing Applications on Sensor Networks Rutgers, The State University of New Jersey www.winlab.rutgers.edu 1 Introduction: Sensor Networks Wireless Sensor Nets Telecom Internet + Telecom

More information

Self-Adaptive Middleware for Wireless Sensor Networks: A Reference Architecture

Self-Adaptive Middleware for Wireless Sensor Networks: A Reference Architecture Architecting Self-Managing Distributed Systems Workshop ASDS@ECSAW 15 Self-Adaptive Middleware for Wireless Sensor Networks: A Reference Architecture Flávia C. Delicato Federal University of Rio de Janeiro

More information

Subject: Adhoc Networks

Subject: Adhoc Networks ISSUES IN AD HOC WIRELESS NETWORKS The major issues that affect the design, deployment, & performance of an ad hoc wireless network system are: Medium Access Scheme. Transport Layer Protocol. Routing.

More information

Detection and Removal of Black Hole Attack in Mobile Ad hoc Network

Detection and Removal of Black Hole Attack in Mobile Ad hoc Network Detection and Removal of Black Hole Attack in Mobile Ad hoc Network Harmandeep Kaur, Mr. Amarvir Singh Abstract A mobile ad hoc network consists of large number of inexpensive nodes which are geographically

More information

Routing Protocol comparison

Routing Protocol comparison Routing Protocol comparison Introduction to routing Networks allow people to communicate, collaborate, and interact in many ways. Networks are used to access web pages, talk using IP telephones, participate

More information

Overview of Mobile Networking Initiatives at WINLAB

Overview of Mobile Networking Initiatives at WINLAB Overview of Mobile Networking Initiatives at WINLAB Introduction: The Next Generation MSC Custom Mobile Infrastructure (e.g. GSM, 3G) BTS Public Switched Network (PSTN) BSC GGSN, etc. WLAN Access Point

More information

A METHOD FOR DETECTING FALSE POSITIVE AND FALSE NEGATIVE ATTACKS USING SIMULATION MODELS IN STATISTICAL EN- ROUTE FILTERING BASED WSNS

A METHOD FOR DETECTING FALSE POSITIVE AND FALSE NEGATIVE ATTACKS USING SIMULATION MODELS IN STATISTICAL EN- ROUTE FILTERING BASED WSNS A METHOD FOR DETECTING FALSE POSITIVE AND FALSE NEGATIVE ATTACKS USING SIMULATION MODELS IN STATISTICAL EN- ROUTE FILTERING BASED WSNS Su Man Nam 1 and Tae Ho Cho 2 1 College of Information and Communication

More information

ADB: An Efficient Multihop Broadcast Protocol Based on Asynchronous Duty-Cycling in Wireless Sensor Networks

ADB: An Efficient Multihop Broadcast Protocol Based on Asynchronous Duty-Cycling in Wireless Sensor Networks AD: An Efficient Multihop roadcast Protocol ased on Asynchronous Duty-Cycling in Wireless Sensor Networks Yanjun Sun* Omer Gurewitz Shu Du Lei Tang* David. Johnson* *Rice University en Gurion University

More information

Architecture and Prototyping of an based Self-Organizing Hierarchical Ad-Hoc Wireless Network (SOHAN)

Architecture and Prototyping of an based Self-Organizing Hierarchical Ad-Hoc Wireless Network (SOHAN) Architecture and Prototyping of an 802.11- based Self-Organizing Hierarchical Ad-Hoc Wireless Network (SOHAN) PIMRC 2004, Barcelona Sept 5-8, 2004 S. Ganu, L. Raju, B. Anepu, S. Zhao, I. Seskar and D.

More information

Cost-Aware SEcure Routing (CASER) Protocol Design for Wireless Sensor Networks

Cost-Aware SEcure Routing (CASER) Protocol Design for Wireless Sensor Networks .9/TPDS.4.3896, IEEE Transactions on Parallel and Distributed Systems Cost-Aware SEcure Routing (CASER) Protocol Design for Wireless Sensor Networks Di Tang Tongtong Li Jian Ren Jie Wu Abstract Lifetime

More information

DTN Interworking for Future Internet Presented by Chang, Dukhyun

DTN Interworking for Future Internet Presented by Chang, Dukhyun DTN Interworking for Future Internet 2008.02.20 Presented by Chang, Dukhyun Contents 1 2 3 4 Introduction Project Progress Future DTN Architecture Summary 2/29 DTN Introduction Delay and Disruption Tolerant

More information

Pervasive and Mobile Computing. Improved sensor network lifetime with multiple mobile sinks

Pervasive and Mobile Computing. Improved sensor network lifetime with multiple mobile sinks Pervasive and Mobile Computing 5 (2009) 542 555 Contents lists available at ScienceDirect Pervasive and Mobile Computing journal homepage: www.elsevier.com/locate/pmc Fast track article Improved sensor

More information

COMPUTER NETWORKS PERFORMANCE. Gaia Maselli

COMPUTER NETWORKS PERFORMANCE. Gaia Maselli COMPUTER NETWORKS PERFORMANCE Gaia Maselli maselli@di.uniroma1.it Prestazioni dei sistemi di rete 2 Overview of first class Practical Info (schedule, exam, readings) Goal of this course Contents of the

More information

outline Sensor Network Navigation without Locations 11/5/2009 Introduction

outline Sensor Network Navigation without Locations 11/5/2009 Introduction Sensor Network Navigation without Locations Mo Li, Yunhao Liu, Jiliang Wang, and Zheng Yang Department of Computer Science and Engineering Hong Kong University of Science and Technology, outline Introduction

More information

AN EFFICIENT MAC PROTOCOL FOR SUPPORTING QOS IN WIRELESS SENSOR NETWORKS

AN EFFICIENT MAC PROTOCOL FOR SUPPORTING QOS IN WIRELESS SENSOR NETWORKS AN EFFICIENT MAC PROTOCOL FOR SUPPORTING QOS IN WIRELESS SENSOR NETWORKS YINGHUI QIU School of Electrical and Electronic Engineering, North China Electric Power University, Beijing, 102206, China ABSTRACT

More information

Etiquette protocol for Ultra Low Power Operation in Sensor Networks

Etiquette protocol for Ultra Low Power Operation in Sensor Networks Etiquette protocol for Ultra Low Power Operation in Sensor Networks Samir Goel and Tomasz Imielinski {gsamir, imielins}@cs.rutgers.edu DataMan Lab, Department of Computer Science Acknowledgement: Prof.

More information

Security Challenges Facing the Future Wireless World (aka.. Alice and Bob in the Wireless Wonderland) Wade Trappe

Security Challenges Facing the Future Wireless World (aka.. Alice and Bob in the Wireless Wonderland) Wade Trappe Security Challenges Facing the Future Wireless World (aka.. Alice and Bob in the Wireless Wonderland) Wade Trappe Talk Overview Security has been one of the great detractors for wireless technologies (and

More information

Cognitive Radio Networks at WINLAB: Networking and Security Research

Cognitive Radio Networks at WINLAB: Networking and Security Research Cognitive Radio Networks at WINLAB: Networking and Security WINLAB Rutgers, The State University of New Jersey www.winlab.rutgers.edu Contact: Professor Wade Trappe, Associate Director trappe@winlab.rutgers.edu

More information

Wireless Internet Routing. Learning from Deployments Link Metrics

Wireless Internet Routing. Learning from Deployments Link Metrics Wireless Internet Routing Learning from Deployments Link Metrics 1 Learning From Deployments Early worked focused traditional routing issues o Control plane: topology management, neighbor discovery o Data

More information

P 5 : A Protocol for Scalable Anonymous Communications

P 5 : A Protocol for Scalable Anonymous Communications P 5 : A Protocol for Scalable Anonymous Communications 1 P 5 : A Protocol for Scalable Anonymous Communications Rob Sherwood, Bobby Bhattacharjee, Aravind Srinivasan University of Maryland, College Park

More information

GENI Experimental Infrastructure Wireless & Sensor Networks Aug 8, 2005

GENI Experimental Infrastructure Wireless & Sensor Networks Aug 8, 2005 GENI Experimental Infrastructure Wireless & Sensor Networks Aug 8, 2005 Rutgers, The State University of New Jersey D. Raychaudhuri ray@winlab.rutgers.edu www.winlab.rutgers.edu 1 GENI Wireless Network

More information

Wireless Sensor Networks --- Concepts and Challenges

Wireless Sensor Networks --- Concepts and Challenges Wireless Sensor Networks --- Concepts and Challenges Outline Basic Concepts Applications Characteristics and Challenges 2 1 Basic Concepts Traditional Sensing Method Wired/Wireless Object Signal analysis

More information

The Emergence of Networking Abstractions and Techniques in TinyOS

The Emergence of Networking Abstractions and Techniques in TinyOS The Emergence of Networking Abstractions and Techniques in TinyOS CS295-1 Paper Presentation Mert Akdere 10.12.2005 Outline Problem Statement & Motivation Background Information TinyOS HW Platforms Sample

More information

WSN Routing Protocols

WSN Routing Protocols WSN Routing Protocols 1 Routing Challenges and Design Issues in WSNs 2 Overview The design of routing protocols in WSNs is influenced by many challenging factors. These factors must be overcome before

More information

BUBBLE RAP: Social-Based Forwarding in Delay-Tolerant Networks

BUBBLE RAP: Social-Based Forwarding in Delay-Tolerant Networks 1 BUBBLE RAP: Social-Based Forwarding in Delay-Tolerant Networks Pan Hui, Jon Crowcroft, Eiko Yoneki Presented By: Shaymaa Khater 2 Outline Introduction. Goals. Data Sets. Community Detection Algorithms

More information

Data gathering using mobile agents for reducing traffic in dense mobile wireless sensor networks

Data gathering using mobile agents for reducing traffic in dense mobile wireless sensor networks Mobile Information Systems 9 (23) 295 34 295 DOI.3233/MIS-364 IOS Press Data gathering using mobile agents for reducing traffic in dense mobile wireless sensor networks Keisuke Goto, Yuya Sasaki, Takahiro

More information

CASER Protocol Using DCFN Mechanism in Wireless Sensor Network

CASER Protocol Using DCFN Mechanism in Wireless Sensor Network Volume 118 No. 7 2018, 501-505 ISSN: 1311-8080 (printed version); ISSN: 1314-3395 (on-line version) url: http://www.ijpam.eu ijpam.eu CASER Protocol Using DCFN Mechanism in Wireless Sensor Network A.Shirly

More information

BSIT 1 Technology Skills: Apply current technical tools and methodologies to solve problems.

BSIT 1 Technology Skills: Apply current technical tools and methodologies to solve problems. Bachelor of Science in Information Technology At Purdue Global, we employ a method called Course-Level Assessment, or CLA, to determine student mastery of Course Outcomes. Through CLA, we measure how well

More information

Wireless Sensor Networks (WSN)

Wireless Sensor Networks (WSN) Wireless Sensor Networks (WSN) Introduction M. Schölzel Difference to existing wireless networks Infrastructure-based networks e.g., GSM, UMTS, Base stations connected to a wired backbone network Mobile

More information

MODELING AND SIMULATION OF THRESHOLD ANALYSIS FOR PVFS IN WIRELESS SENSOR NETWORKS

MODELING AND SIMULATION OF THRESHOLD ANALYSIS FOR PVFS IN WIRELESS SENSOR NETWORKS Science MODELING AND SIMULATION OF THRESHOLD ANALYSIS FOR PVFS IN WIRELESS SENSOR NETWORKS Tae Ho Cho *1, Su Man Nam 2 *1 College of Software, Sungkyunkwan University, KOREA 2 College of Information and

More information

Networked CPS: Some Fundamental Challenges

Networked CPS: Some Fundamental Challenges Networked CPS: Some Fundamental Challenges John S. Baras Institute for Systems Research Department of Electrical and Computer Engineering Fischell Department of Bioengineering Department of Mechanical

More information

Power-efficient Communication Protocol for Social Networking Tags for Visually Impaired

Power-efficient Communication Protocol for Social Networking Tags for Visually Impaired Power-efficient Communication Protocol for Social Networking Tags for Visually Impaired Problem Social Networking Tags System for Visually Impaired is an project aims to utilize electronic id technology

More information

Ad Hoc Networks: Issues and Routing

Ad Hoc Networks: Issues and Routing Ad Hoc Networks: Issues and Routing Raj Jain Washington University in Saint Louis Saint Louis, MO 63130 Jain@cse.wustl.edu Audio/Video recordings of this lecture are available at: http://www.cse.wustl.edu/~jain/cse574-08/

More information

End-To-End Delay Optimization in Wireless Sensor Network (WSN)

End-To-End Delay Optimization in Wireless Sensor Network (WSN) Shweta K. Kanhere 1, Mahesh Goudar 2, Vijay M. Wadhai 3 1,2 Dept. of Electronics Engineering Maharashtra Academy of Engineering, Alandi (D), Pune, India 3 MITCOE Pune, India E-mail: shweta.kanhere@gmail.com,

More information

SECLOUD: Source and Destination Seclusion Using Clouds for Wireless Ad hoc Networks

SECLOUD: Source and Destination Seclusion Using Clouds for Wireless Ad hoc Networks SECLOUD: Source and Destination Seclusion Using Clouds for Wireless Ad hoc Networks Razvi Doomun, Thaier Hayajneh, Prashant Krishnamurthy, and David Tipper University of Pittsburgh Pittsburgh, PA, USA

More information

Cooperative Private Searching in Clouds

Cooperative Private Searching in Clouds Cooperative Private Searching in Clouds Jie Wu Department of Computer and Information Sciences Temple University Road Map Cloud Computing Basics Cloud Computing Security Privacy vs. Performance Proposed

More information

Cross-layer Enhanced Source Location Privacy in Sensor Networks

Cross-layer Enhanced Source Location Privacy in Sensor Networks Cross-layer Enhanced Source Location Privacy in Sensor Networks Min Shao, Wenhui Hu, Sencun Zhu, Guohong Cao, Srikanth Krishnamurthy and Tom La Porta Department of Computer Science and Engineering, The

More information

Event Driven Routing Protocols For Wireless Sensor Networks

Event Driven Routing Protocols For Wireless Sensor Networks Event Driven Routing Protocols For Wireless Sensor Networks Sherif Moussa 1, Ghada Abdel Halim 2, Salah Abdel-Mageid 2 1 Faculty of Engineering, Canadian University Dubai, Dubai, UAE. 2 Faculty of Engineering,

More information

An Energy-Efficient Hierarchical Routing for Wireless Sensor Networks

An Energy-Efficient Hierarchical Routing for Wireless Sensor Networks Volume 2 Issue 9, 213, ISSN-2319-756 (Online) An Energy-Efficient Hierarchical Routing for Wireless Sensor Networks Nishi Sharma Rajasthan Technical University Kota, India Abstract: The popularity of Wireless

More information

Virtual Sensors: Abstracting Data from Physical Sensors

Virtual Sensors: Abstracting Data from Physical Sensors Virtual Sensors: Abstracting Data from Physical Sensors Sanem Kabadayı, Adam Pridgen, and Christine Julien Mobile and Pervasive Computing Group The University of Texas at Austin June 26, 2006 Overview

More information

CYBERBIT P r o t e c t i n g a n e w D i m e n s i o n

CYBERBIT P r o t e c t i n g a n e w D i m e n s i o n CYBERBIT P r o t e c t i n g a n e w D i m e n s i o n CYBETBIT in a Nutshell A leader in the development and integration of Cyber Security Solutions A main provider of Cyber Security solutions for the

More information

Draft Notes 1 : Scaling in Ad hoc Routing Protocols

Draft Notes 1 : Scaling in Ad hoc Routing Protocols Draft Notes 1 : Scaling in Ad hoc Routing Protocols Timothy X Brown University of Colorado April 2, 2008 2 Introduction What is the best network wireless network routing protocol? This question is a function

More information

Pervasive and Mobile Computing

Pervasive and Mobile Computing Pervasive and Mobile Computing 5 (29) 369 384 Contents lists available at ScienceDirect Pervasive and Mobile Computing journal homepage: www.elsevier.com/locate/pmc A data collection protocol for real-time

More information

GENI and ORBIT Experimental Infrastructure Projects

GENI and ORBIT Experimental Infrastructure Projects GENI and ORBIT Experimental Infrastructure Projects Ivan Seskar Rutgers, The State University of New Jersey www.winlab.rutgers.edu Contact: seskar (at) winlab (dot) rutgers (dot) edu GENI Projects Cluster

More information

Challenges in Mobile Ad Hoc Network

Challenges in Mobile Ad Hoc Network American Journal of Engineering Research (AJER) e-issn: 2320-0847 p-issn : 2320-0936 Volume-5, Issue-5, pp-210-216 www.ajer.org Research Paper Challenges in Mobile Ad Hoc Network Reshma S. Patil 1, Dr.

More information