Scalable Multiprocessors

Size: px
Start display at page:

Download "Scalable Multiprocessors"

Transcription

1 arallel Computer Organization and Design : Lecture 7 er Stenström. 2008, Sally A. ckee 2009 Scalable ultiprocessors What is a scalable design? (7.1) Realizing programming models (7.2) Scalable communication architectures (SCAs) essage-based SCAs ( ) Shared-memory based SCAs (7.6) 2/17/2009 slide 1 Scalability Goals ( is number of processors) Bandwidth: scale linearly with Latency: short and independent of Cost: low fixed cost and scale linearly with Example: A bus-based multiprocessor Bandwidth: constant Latency: short and constant Cost: high for infrastructure and then linear 2/17/2009 slide 2 1

2 arallel Computer Organization and Design : Lecture 7 er Stenström. 2008, Sally A. ckee 2009 Organizational Issues Dance-hall memory organization Scalable network Distributed memory organization Scalable network CA Network composed of switches for performance and cost any concurrent transactions allowed Distributed memory can bring down bandwidth demands Bandwidth scaling: no global arbitration and ordering broadcast bandwidth fixed and expensive 2/17/2009 slide 3 Scaling Issues Latency scaling: T(n) = Overhead + Channel Time + Routing Delay Channel Time is a function of bandwidth Routing Delay is a function of number of hops in network Cost scaling: Cost(p,m) = Fixed cost + Incremental Cost (p,m) Design is cost-effective if speedup(p,m) > costup(p,m) 2/17/2009 slide 4 2

3 arallel Computer Organization and Design : Lecture 7 er Stenström. 2008, Sally A. ckee 2009 hysical Scaling Chip, board, system-level partitioning has a big impact on scaling However, little consensus Diagnostics network Control network Data network rocessing partition rocessing Control partition processors I/O partition SARC FU Data networks Control network ctrl SRA NI BUS DRA ctrl Vector unit DRA ctrl DRA ctrl Vector unit DRA ctrl DRA DRA DRA DRA 2/17/2009 slide 5 Network Transaction rimitives rimitives to implement the programming model on a scalable machine Communication Network One-way transfer serialized msg between source and output buf fer input buf fer destination Resembles a bus Source Node Destination Node transaction but much richer in variety Examples: A message send transaction A write transaction in a SAS machine 2/17/2009 slide 6 3

4 arallel Computer Organization and Design : Lecture 7 er Stenström. 2008, Sally A. ckee 2009 Bus vs. Network Transactions Design Issues: rotection Format Output buffering edia arbitration Destination name & routing Input buffering Action Completion detection Transaction ordering Bus Transactions: V-> address translation Fixed Simple Global Direct One source Response Simple Global order Network Transactions: Done at multiple points Flexible Support flexible in format Distributed Via several switches Several sources Rich diversity Response transaction No global order 2/17/2009 slide 7 SAS Transactions Source Destination (1) Initiate memory access (2) Address translation (3) Local/remote check (4) Request transaction Load r [Global address] Read request Read request (5) Remote memory access Wait emory access (6) Reply transaction (7) Complete memory access Read response Read response Time Issues: Fixed or variable size transfers Deadlock avoidance and input buffer full 2/17/2009 slide 8 4

5 arallel Computer Organization and Design : Lecture 7 er Stenström. 2008, Sally A. ckee 2009 Sequential Consistency A=1; flag=1; while (flag==0); print A; emory emory emory A:0 flag:0->1 Delay 1: A=1 3: load A 2: flag=1 Interconnection network (a) 2 3 (b) 1 Congested path Issues: Writes need acks to signal completion SC may cause extreme waiting times 2/17/2009 slide 9 essage assing ultiple flavors of synchronization semantics Blocking versus non-blocking Blocking send/recv returns when operation completes Non-blocking returns immediately (probe function tests completion) Synchronous Send completes after matching receive has executed Receive completes after data transfer from matching send completes Asynchronous (buffered, in I terminology) Send completes as soon as send buffer may be reused 2/17/2009 slide 10 5

6 arallel Computer Organization and Design : Lecture 7 er Stenström. 2008, Sally A. ckee 2009 Synchronous rotocol Source Destination (1) Initiate send Recv src, local VA, len (2) Address translation on src (3) Local/remote check (4) Send-ready request Send dest, local VA, len Send-rdy req (5) Remote check for posted receive (assume success) Wait Tag check (6) Reply transaction (7) Bulk data transfer Source VA Dest VA or ID Recv-rdy reply Data-xfer req Time Alternative: Keep match table at the sender, enabling a two-phase receive-initiated protocol 2/17/2009 slide 11 Asynchronous Optimistic rotocol (1) Initiate send (2) Address translation (3) Local/remote check (4) Send data (5) Remote check for posted receive; on fail, allocate data buffer Source Send ( dest, local VA, len) Data-xfer req Destination Tag match Allocate buffer Time Recv src, local VA, len Issues: Copying overhead at receiver from temp buffer to user space Huge buffer space at receiver to cope with worst case 2/17/2009 slide 12 6

7 arallel Computer Organization and Design : Lecture 7 er Stenström. 2008, Sally A. ckee 2009 Asynchronous Robust rotocol Source Destination (1) Initiate send (2) Address translation on dest (3) Local /remote check (4) Send-ready request Send dest, local VA, len Send-rdy req (5) Remote check for posted receive (assume fail); record send-ready Return and compute Tag check (6) Receive-ready request (7) Bulk data reply Source VA Dest VA or ID Recv src, local VA, len Recv-rdy req Data-xfer reply Time Note: after handshake, send and recv buffer addresses are known, so data transfer can be performed with little overhead 2/17/2009 slide 13 Active essages Request handler handler Reply User-level analog of network transactions transfer data packet and invoke handler to extract it from network and integrate with ongoing computation 2/17/2009 slide 14 7

8 arallel Computer Organization and Design : Lecture 7 er Stenström. 2008, Sally A. ckee 2009 Challenges Common to SAS and Input buffer overflow: how to signal buffer space is exhausted Solutions: ACK at protocol level back pressure flow control special ACK path or drop packets (requires time-out) Fetch deadlock (revisited): a request often generates a response that can form dependence cycles in the network Solutions: two logically independent request/response networks NACK requests at receiver to free space 2/17/2009 slide 15 Increasing HW Support, Specialization, Intrusiveness, erformance (???) 2/17/2009 slide 16 Spectrum of Designs None, physical bit stream blind, physical DA ncube, isc,... User/System User-level port C-5, *T User-level handler J-achine, onsoon,... Remote virtual address rocessing, translation aragon, eiko CS-2 Global physical address roc + emory controller R3, BBN, T3D Cache-to-cache Cache controller Dash, KSR, Flash 8

9 arallel Computer Organization and Design : Lecture 7 er Stenström. 2008, Sally A. ckee 2009 Architectures Scalable Network essage Output rocessing checks translation formatting scheduling CA Communication Assist Node Architecture CA Input rocessing checks translation buffering action Design tradeoff: how much processing in CA vs, and how much interpretation of network transaction hysical DA (7.3) User-level access (7.4) Dedicated message processing (7.5) 2/17/2009 slide 17 hysical DA Data Dest Example: ncube/2, IB S1 DA channels Addr Length Rdy Cmd Status, interrupt Addr Length Rdy emory emory Node processor packages messages in user/system mode DA used to copy between network and system buffers roblem: no way to distinguish between user/system messages, which results in much overhead because node processor must be involved 2/17/2009 slide 18 9

10 arallel Computer Organization and Design : Lecture 7 er Stenström. 2008, Sally A. ckee 2009 User-Level Access Data User/system Dest Example: C-5 em Status, interrupt em Network interface mapped into user space Communication assist does protection checks, translation, etc. No intervention by kernel except for interrupts 2/17/2009 slide 19 Dedicated essage rocessing Network does em NI dest em NI Interprets msg Supports msg operations Off-loads with a clean msg abstraction User System User System Issues: / communicate via shared memory: coherence traffic can be a bottleneck due to all concurrent actions 2/17/2009 slide 20 10

11 arallel Computer Organization and Design : Lecture 7 er Stenström. 2008, Sally A. ckee 2009 Shared hysical Address Space Scalable Network seudo memory seudo processor seudo memory seudo processor Remote read/write performed by pseudo processors Cache coherence issues treated in Ch. 8 2/17/2009 slide 21 11

Outline. Limited Scaling of a Bus

Outline. Limited Scaling of a Bus Outline Scalability physical, bandwidth, latency and cost level of integration Realizing rogramming Models network transactions protocols safety input buffer problem: N-1 fetch deadlock Communication Architecture

More information

NOW Handout Page 1. Recap: Gigaplane Bus Timing. Scalability

NOW Handout Page 1. Recap: Gigaplane Bus Timing. Scalability Recap: Gigaplane Bus Timing 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 Address Rd A Rd B Scalability State Arbitration 1 4,5 2 Share ~Own 6 Own 7 A D A D A D A D A D A D A D A D CS 258, Spring 99 David E. Culler

More information

[ 7.2.5] Certain challenges arise in realizing SAS or messagepassing programming models. Two of these are input-buffer overflow and fetch deadlock.

[ 7.2.5] Certain challenges arise in realizing SAS or messagepassing programming models. Two of these are input-buffer overflow and fetch deadlock. Buffering roblems [ 7.2.5] Certain challenges arise in realizing SAS or messagepassing programming models. Two of these are input-buffer overflow and fetch deadlock. Input-buffer overflow Suppose a large

More information

Architecture or Parallel Computers CSC / ECE 506

Architecture or Parallel Computers CSC / ECE 506 Architecture or Parallel Computers CSC / ECE 506 Summer 2006 Scalable Programming Models 6/19/2006 Dr Steve Hunter Back to Basics Parallel Architecture = Computer Architecture + Communication Architecture

More information

Scalable Distributed Memory Machines

Scalable Distributed Memory Machines Scalable Distributed Memory Machines Goal: Parallel machines that can be scaled to hundreds or thousands of processors. Design Choices: Custom-designed or commodity nodes? Network scalability. Capability

More information

Under the Hood, Part 1: Implementing Message Passing

Under the Hood, Part 1: Implementing Message Passing Lecture 27: Under the Hood, Part 1: Implementing Message Passing Parallel Computer Architecture and Programming CMU 15-418/15-618, Fall 2017 Today s Theme 2 Message passing model (abstraction) Threads

More information

Learning Curve for Parallel Applications. 500 Fastest Computers

Learning Curve for Parallel Applications. 500 Fastest Computers Learning Curve for arallel Applications ABER molecular dynamics simulation program Starting point was vector code for Cray-1 145 FLO on Cray90, 406 for final version on 128-processor aragon, 891 on 128-processor

More information

A Scalable SAS Machine

A Scalable SAS Machine arallel omputer Organization and Design : Lecture 8 er Stenström. 2008, Sally. ckee 2009 Scalable ache oherence Design principles of scalable cache protocols Overview of design space (8.1) Basic operation

More information

Evolution and Convergence of Parallel Architectures

Evolution and Convergence of Parallel Architectures History Evolution and Convergence of arallel Architectures Historically, parallel architectures tied to programming models Divergent architectures, with no predictable pattern of growth. Todd C. owry CS

More information

Scalable Cache Coherence

Scalable Cache Coherence Scalable Cache Coherence [ 8.1] All of the cache-coherent systems we have talked about until now have had a bus. Not only does the bus guarantee serialization of transactions; it also serves as convenient

More information

CMSC 611: Advanced Computer Architecture

CMSC 611: Advanced Computer Architecture CMSC 611: Advanced Computer Architecture Shared Memory Most slides adapted from David Patterson. Some from Mohomed Younis Interconnection Networks Massively processor networks (MPP) Thousands of nodes

More information

Scalable Multiprocessors

Scalable Multiprocessors Scalable Multiprocessors [ 11.1] scalable system is one in which resources can be added to the system without reaching a hard limit. Of course, there may still be economic limits. s the size of the system

More information

Multiprocessor Interconnection Networks

Multiprocessor Interconnection Networks Multiprocessor Interconnection Networks Todd C. Mowry CS 740 November 19, 1998 Topics Network design space Contention Active messages Networks Design Options: Topology Routing Direct vs. Indirect Physical

More information

ECE 669 Parallel Computer Architecture

ECE 669 Parallel Computer Architecture ECE 669 arallel Computer Architecture Lecture 2 Architectural erspective Overview Increasingly attractive Economics, technology, architecture, application demand Increasingly central and mainstream arallelism

More information

Approaches to Building Parallel Machines. Shared Memory Architectures. Example Cache Coherence Problem. Shared Cache Architectures

Approaches to Building Parallel Machines. Shared Memory Architectures. Example Cache Coherence Problem. Shared Cache Architectures Approaches to Building arallel achines Switch/Bus n Scale Shared ory Architectures (nterleaved) First-level (nterleaved) ain memory n Arvind Krishnamurthy Fall 2004 (nterleaved) ain memory Shared Cache

More information

CPS104 Computer Organization and Programming Lecture 20: Superscalar processors, Multiprocessors. Robert Wagner

CPS104 Computer Organization and Programming Lecture 20: Superscalar processors, Multiprocessors. Robert Wagner CS104 Computer Organization and rogramming Lecture 20: Superscalar processors, Multiprocessors Robert Wagner Faster and faster rocessors So much to do, so little time... How can we make computers that

More information

Scalable Cache Coherence

Scalable Cache Coherence arallel Computing Scalable Cache Coherence Hwansoo Han Hierarchical Cache Coherence Hierarchies in cache organization Multiple levels of caches on a processor Large scale multiprocessors with hierarchy

More information

CMSC 611: Advanced. Distributed & Shared Memory

CMSC 611: Advanced. Distributed & Shared Memory CMSC 611: Advanced Computer Architecture Distributed & Shared Memory Centralized Shared Memory MIMD Processors share a single centralized memory through a bus interconnect Feasible for small processor

More information

Lecture 3: Flow-Control

Lecture 3: Flow-Control High-Performance On-Chip Interconnects for Emerging SoCs http://tusharkrishna.ece.gatech.edu/teaching/nocs_acaces17/ ACACES Summer School 2017 Lecture 3: Flow-Control Tushar Krishna Assistant Professor

More information

Limitations of Memory System Performance

Limitations of Memory System Performance Slides taken from arallel Computing latforms Ananth Grama, Anshul Gupta, George Karypis, and Vipin Kumar! " To accompany the text ``Introduction to arallel Computing'', Addison Wesley, 2003. Limitations

More information

NOW Handout Page 1. Natural Extensions of Memory System. Distributed Memory Multiprocessors. Fundamental Issues. Fundamental Issue #1: Naming

NOW Handout Page 1. Natural Extensions of Memory System. Distributed Memory Multiprocessors. Fundamental Issues. Fundamental Issue #1: Naming NOW Handout age 1 Natural xtensions of emory ystem 1 witch n cale (nterleaved) First-level 1 n istributed emory ultiprocessors (nterleaved) ain memory nterconnection network 252, pring 2005 avid. uller

More information

Under the Hood, Part 1: Implementing Message Passing

Under the Hood, Part 1: Implementing Message Passing Lecture 27: Under the Hood, Part 1: Implementing Message Passing Parallel Computer Architecture and Programming CMU 15-418/15-618, Today s Theme Message passing model (abstraction) Threads operate within

More information

Scalable Cache Coherence. Jinkyu Jeong Computer Systems Laboratory Sungkyunkwan University

Scalable Cache Coherence. Jinkyu Jeong Computer Systems Laboratory Sungkyunkwan University Scalable Cache Coherence Jinkyu Jeong (jinkyu@skku.edu) Computer Systems Laboratory Sungkyunkwan University http://csl.skku.edu Hierarchical Cache Coherence Hierarchies in cache organization Multiple levels

More information

ECE 669 Parallel Computer Architecture

ECE 669 Parallel Computer Architecture ECE 669 Parallel Computer Architecture Lecture 18 Scalable Parallel Caches Overview ost cache protocols are more complicated than two state Snooping not effective for network-based systems Consider three

More information

Lecture 17: Parallel Architectures and Future Computer Architectures. Shared-Memory Multiprocessors

Lecture 17: Parallel Architectures and Future Computer Architectures. Shared-Memory Multiprocessors Lecture 17: arallel Architectures and Future Computer Architectures rof. Kunle Olukotun EE 282h Fall 98/99 1 Shared-emory ultiprocessors Several processors share one address space» conceptually a shared

More information

Interconnection Networks

Interconnection Networks Lecture 17: Interconnection Networks Parallel Computer Architecture and Programming A comment on web site comments It is okay to make a comment on a slide/topic that has already been commented on. In fact

More information

CS252 Graduate Computer Architecture Lecture 14. Multiprocessor Networks March 9 th, 2011

CS252 Graduate Computer Architecture Lecture 14. Multiprocessor Networks March 9 th, 2011 CS252 Graduate Computer Architecture Lecture 14 Multiprocessor Networks March 9 th, 2011 John Kubiatowicz Electrical Engineering and Computer Sciences University of California, Berkeley http://www.eecs.berkeley.edu/~kubitron/cs252

More information

Multiprocessing and Scalability. A.R. Hurson Computer Science and Engineering The Pennsylvania State University

Multiprocessing and Scalability. A.R. Hurson Computer Science and Engineering The Pennsylvania State University A.R. Hurson Computer Science and Engineering The Pennsylvania State University 1 Large-scale multiprocessor systems have long held the promise of substantially higher performance than traditional uniprocessor

More information

Three basic multiprocessing issues

Three basic multiprocessing issues Three basic multiprocessing issues 1. artitioning. The sequential program must be partitioned into subprogram units or tasks. This is done either by the programmer or by the compiler. 2. Scheduling. Associated

More information

Multiprocessors II: CC-NUMA DSM. CC-NUMA for Large Systems

Multiprocessors II: CC-NUMA DSM. CC-NUMA for Large Systems Multiprocessors II: CC-NUMA DSM DSM cache coherence the hardware stuff Today s topics: what happens when we lose snooping new issues: global vs. local cache line state enter the directory issues of increasing

More information

High Performance Computing

High Performance Computing Master Degree Program in Computer Science and Networking, 2014-15 High Performance Computing 1 st appello January 13, 2015 Write your name, surname, student identification number (numero di matricola),

More information

Module 17: "Interconnection Networks" Lecture 37: "Introduction to Routers" Interconnection Networks. Fundamentals. Latency and bandwidth

Module 17: Interconnection Networks Lecture 37: Introduction to Routers Interconnection Networks. Fundamentals. Latency and bandwidth Interconnection Networks Fundamentals Latency and bandwidth Router architecture Coherence protocol and routing [From Chapter 10 of Culler, Singh, Gupta] file:///e /parallel_com_arch/lecture37/37_1.htm[6/13/2012

More information

Lecture 7: Flow Control - I

Lecture 7: Flow Control - I ECE 8823 A / CS 8803 - ICN Interconnection Networks Spring 2017 http://tusharkrishna.ece.gatech.edu/teaching/icn_s17/ Lecture 7: Flow Control - I Tushar Krishna Assistant Professor School of Electrical

More information

Chapter 9 Multiprocessors

Chapter 9 Multiprocessors ECE200 Computer Organization Chapter 9 Multiprocessors David H. lbonesi and the University of Rochester Henk Corporaal, TU Eindhoven, Netherlands Jari Nurmi, Tampere University of Technology, Finland University

More information

NOW Handout Page 1. *T: Network Co-Processor. General Purpose Node-to-Network Interface in Scalable Multiprocessors. Dedicated Message Processor

NOW Handout Page 1. *T: Network Co-Processor. General Purpose Node-to-Network Interface in Scalable Multiprocessors. Dedicated Message Processor *T: o-rocessor General urpose Node-to- Interface in Scalable Multiprocessors S, Spring 99 David. uller omputer Science Division U.. erkeley 3//99 S S99 iwr: Systolic omputation Host Interface unit Dedicated

More information

Introduction to Multiprocessors (Part II) Cristina Silvano Politecnico di Milano

Introduction to Multiprocessors (Part II) Cristina Silvano Politecnico di Milano Introduction to Multiprocessors (Part II) Cristina Silvano Politecnico di Milano Outline The problem of cache coherence Snooping protocols Directory-based protocols Prof. Cristina Silvano, Politecnico

More information

Multiprocessor Cache Coherence. Chapter 5. Memory System is Coherent If... From ILP to TLP. Enforcing Cache Coherence. Multiprocessor Types

Multiprocessor Cache Coherence. Chapter 5. Memory System is Coherent If... From ILP to TLP. Enforcing Cache Coherence. Multiprocessor Types Chapter 5 Multiprocessor Cache Coherence Thread-Level Parallelism 1: read 2: read 3: write??? 1 4 From ILP to TLP Memory System is Coherent If... ILP became inefficient in terms of Power consumption Silicon

More information

Cache Coherence in Scalable Machines

Cache Coherence in Scalable Machines ache oherence in Scalable Machines SE 661 arallel and Vector Architectures rof. Muhamed Mudawar omputer Engineering Department King Fahd University of etroleum and Minerals Generic Scalable Multiprocessor

More information

Lecture notes for CS Chapter 4 11/27/18

Lecture notes for CS Chapter 4 11/27/18 Chapter 5: Thread-Level arallelism art 1 Introduction What is a parallel or multiprocessor system? Why parallel architecture? erformance potential Flynn classification Communication models Architectures

More information

Lecture: Transactional Memory, Networks. Topics: TM implementations, on-chip networks

Lecture: Transactional Memory, Networks. Topics: TM implementations, on-chip networks Lecture: Transactional Memory, Networks Topics: TM implementations, on-chip networks 1 Summary of TM Benefits As easy to program as coarse-grain locks Performance similar to fine-grain locks Avoids deadlock

More information

Parallel Computing Trends: from MPPs to NoWs

Parallel Computing Trends: from MPPs to NoWs Parallel Computing Trends: from MPPs to NoWs (from Massively Parallel Processors to Networks of Workstations) Fall Research Forum Oct 18th, 1994 Thorsten von Eicken Department of Computer Science Cornell

More information

TDT Appendix E Interconnection Networks

TDT Appendix E Interconnection Networks TDT 4260 Appendix E Interconnection Networks Review Advantages of a snooping coherency protocol? Disadvantages of a snooping coherency protocol? Advantages of a directory coherency protocol? Disadvantages

More information

Aleksandar Milenkovich 1

Aleksandar Milenkovich 1 Parallel Computers Lecture 8: Multiprocessors Aleksandar Milenkovic, milenka@ece.uah.edu Electrical and Computer Engineering University of Alabama in Huntsville Definition: A parallel computer is a collection

More information

Lecture 12: Interconnection Networks. Topics: communication latency, centralized and decentralized switches, routing, deadlocks (Appendix E)

Lecture 12: Interconnection Networks. Topics: communication latency, centralized and decentralized switches, routing, deadlocks (Appendix E) Lecture 12: Interconnection Networks Topics: communication latency, centralized and decentralized switches, routing, deadlocks (Appendix E) 1 Topologies Internet topologies are not very regular they grew

More information

CMSC 411 Computer Systems Architecture Lecture 21 Multiprocessors 3

CMSC 411 Computer Systems Architecture Lecture 21 Multiprocessors 3 MS 411 omputer Systems rchitecture Lecture 21 Multiprocessors 3 Outline Review oherence Write onsistency dministrivia Snooping Building Blocks Snooping protocols and examples oherence traffic and performance

More information

Scalable Cache Coherent Systems

Scalable Cache Coherent Systems NUM SS Scalable ache oherent Systems Scalable distributed shared memory machines ssumptions: rocessor-ache-memory nodes connected by scalable network. Distributed shared physical address space. ommunication

More information

Lecture 15: I/O Devices & Drivers

Lecture 15: I/O Devices & Drivers CS 422/522 Design & Implementation of Operating Systems Lecture 15: I/O Devices & Drivers Zhong Shao Dept. of Computer Science Yale University Acknowledgement: some slides are taken from previous versions

More information

EC 513 Computer Architecture

EC 513 Computer Architecture EC 513 Computer Architecture Cache Coherence - Directory Cache Coherence Prof. Michel A. Kinsy Shared Memory Multiprocessor Processor Cores Local Memories Memory Bus P 1 Snoopy Cache Physical Memory P

More information

Curriculum 2013 Knowledge Units Pertaining to PDC

Curriculum 2013 Knowledge Units Pertaining to PDC Curriculum 2013 Knowledge Units Pertaining to C KA KU Tier Level NumC Learning Outcome Assembly level machine Describe how an instruction is executed in a classical von Neumann machine, with organization

More information

Review. EECS 252 Graduate Computer Architecture. Lec 13 Snooping Cache and Directory Based Multiprocessors. Outline. Challenges of Parallel Processing

Review. EECS 252 Graduate Computer Architecture. Lec 13 Snooping Cache and Directory Based Multiprocessors. Outline. Challenges of Parallel Processing EEC 252 Graduate Computer Architecture Lec 13 nooping Cache and Directory Based Multiprocessors David atterson Electrical Engineering and Computer ciences University of California, Berkeley http://www.eecs.berkeley.edu/~pattrsn

More information

The Multikernel: A new OS architecture for scalable multicore systems Baumann et al. Presentation: Mark Smith

The Multikernel: A new OS architecture for scalable multicore systems Baumann et al. Presentation: Mark Smith The Multikernel: A new OS architecture for scalable multicore systems Baumann et al. Presentation: Mark Smith Review Introduction Optimizing the OS based on hardware Processor changes Shared Memory vs

More information

I/O. Fall Tore Larsen. Including slides from Pål Halvorsen, Tore Larsen, Kai Li, and Andrew S. Tanenbaum)

I/O. Fall Tore Larsen. Including slides from Pål Halvorsen, Tore Larsen, Kai Li, and Andrew S. Tanenbaum) I/O Fall 2011 Tore Larsen Including slides from Pål Halvorsen, Tore Larsen, Kai Li, and Andrew S. Tanenbaum) Big Picture Today we talk about I/O characteristics interconnection devices & controllers (disks

More information

I/O. Fall Tore Larsen. Including slides from Pål Halvorsen, Tore Larsen, Kai Li, and Andrew S. Tanenbaum)

I/O. Fall Tore Larsen. Including slides from Pål Halvorsen, Tore Larsen, Kai Li, and Andrew S. Tanenbaum) I/O Fall 2010 Tore Larsen Including slides from Pål Halvorsen, Tore Larsen, Kai Li, and Andrew S. Tanenbaum) Big Picture Today we talk about I/O characteristics interconnection devices & controllers (disks

More information

Lecture 8: Snooping and Directory Protocols. Topics: split-transaction implementation details, directory implementations (memory- and cache-based)

Lecture 8: Snooping and Directory Protocols. Topics: split-transaction implementation details, directory implementations (memory- and cache-based) Lecture 8: Snooping and Directory Protocols Topics: split-transaction implementation details, directory implementations (memory- and cache-based) 1 Split Transaction Bus So far, we have assumed that a

More information

I/O Handling. ECE 650 Systems Programming & Engineering Duke University, Spring Based on Operating Systems Concepts, Silberschatz Chapter 13

I/O Handling. ECE 650 Systems Programming & Engineering Duke University, Spring Based on Operating Systems Concepts, Silberschatz Chapter 13 I/O Handling ECE 650 Systems Programming & Engineering Duke University, Spring 2018 Based on Operating Systems Concepts, Silberschatz Chapter 13 Input/Output (I/O) Typical application flow consists of

More information

Lecture 2: Snooping and Directory Protocols. Topics: Snooping wrap-up and directory implementations

Lecture 2: Snooping and Directory Protocols. Topics: Snooping wrap-up and directory implementations Lecture 2: Snooping and Directory Protocols Topics: Snooping wrap-up and directory implementations 1 Split Transaction Bus So far, we have assumed that a coherence operation (request, snoops, responses,

More information

Cray XE6 Performance Workshop

Cray XE6 Performance Workshop Cray XE6 erformance Workshop odern HC Architectures David Henty d.henty@epcc.ed.ac.uk ECC, University of Edinburgh Overview Components History Flynn s Taxonomy SID ID Classification via emory Distributed

More information

Multiprocessors & Thread Level Parallelism

Multiprocessors & Thread Level Parallelism Multiprocessors & Thread Level Parallelism COE 403 Computer Architecture Prof. Muhamed Mudawar Computer Engineering Department King Fahd University of Petroleum and Minerals Presentation Outline Introduction

More information

Parallel Programming. Motivating Problems (application case studies) Process of creating a parallel program

Parallel Programming. Motivating Problems (application case studies) Process of creating a parallel program arallel rogramming Simulating Ocean Currents Lecture 8: arallel rocessing Motivating roblems (application case studies) rocess of creating a parallel program rof. Fred Chong ECS 250A Computer Architecture

More information

!! How is a thread different from a process? !! Why are threads useful? !! How can POSIX threads be useful?

!! How is a thread different from a process? !! Why are threads useful? !! How can POSIX threads be useful? Chapter 2: Threads: Questions CSCI [4 6]730 Operating Systems Threads!! How is a thread different from a process?!! Why are threads useful?!! How can OSIX threads be useful?!! What are user-level and kernel-level

More information

Barrelfish Project ETH Zurich. Message Notifications

Barrelfish Project ETH Zurich. Message Notifications Barrelfish Project ETH Zurich Message Notifications Barrelfish Technical Note 9 Barrelfish project 16.06.2010 Systems Group Department of Computer Science ETH Zurich CAB F.79, Universitätstrasse 6, Zurich

More information

Review: Multiprocessor. CPE 631 Session 21: Multiprocessors (Part 2) Potential HW Coherency Solutions. Bus Snooping Topology

Review: Multiprocessor. CPE 631 Session 21: Multiprocessors (Part 2) Potential HW Coherency Solutions. Bus Snooping Topology Review: Multiprocessor CPE 631 Session 21: Multiprocessors (Part 2) Department of Electrical and Computer Engineering University of Alabama in Huntsville Basic issues and terminology Communication: share

More information

Page 1. Cache Coherence

Page 1. Cache Coherence Page 1 Cache Coherence 1 Page 2 Memory Consistency in SMPs CPU-1 CPU-2 A 100 cache-1 A 100 cache-2 CPU-Memory bus A 100 memory Suppose CPU-1 updates A to 200. write-back: memory and cache-2 have stale

More information

Lecture 24: Interconnection Networks. Topics: topologies, routing, deadlocks, flow control

Lecture 24: Interconnection Networks. Topics: topologies, routing, deadlocks, flow control Lecture 24: Interconnection Networks Topics: topologies, routing, deadlocks, flow control 1 Topology Examples Grid Torus Hypercube Criteria Bus Ring 2Dtorus 6-cube Fully connected Performance Bisection

More information

INTERCONNECTION NETWORKS LECTURE 4

INTERCONNECTION NETWORKS LECTURE 4 INTERCONNECTION NETWORKS LECTURE 4 DR. SAMMAN H. AMEEN 1 Topology Specifies way switches are wired Affects routing, reliability, throughput, latency, building ease Routing How does a message get from source

More information

Parallel Computers. CPE 631 Session 20: Multiprocessors. Flynn s Tahonomy (1972) Why Multiprocessors?

Parallel Computers. CPE 631 Session 20: Multiprocessors. Flynn s Tahonomy (1972) Why Multiprocessors? Parallel Computers CPE 63 Session 20: Multiprocessors Department of Electrical and Computer Engineering University of Alabama in Huntsville Definition: A parallel computer is a collection of processing

More information

ECE ECE4680

ECE ECE4680 ECE468. -4-7 The otivation for s System ECE468 Computer Organization and Architecture DRA Hierarchy System otivation Large memories (DRA) are slow Small memories (SRA) are fast ake the average access time

More information

Shared Memory Multiprocessors

Shared Memory Multiprocessors Shared Memory Multiprocessors Jesús Labarta Index 1 Shared Memory architectures............... Memory Interconnect Cache Processor Concepts? Memory Time 2 Concepts? Memory Load/store (@) Containers Time

More information

ECE 650 Systems Programming & Engineering. Spring 2018

ECE 650 Systems Programming & Engineering. Spring 2018 ECE 650 Systems Programming & Engineering Spring 2018 Networking Transport Layer Tyler Bletsch Duke University Slides are adapted from Brian Rogers (Duke) TCP/IP Model 2 Transport Layer Problem solved:

More information

Computer Networks. Transmission Control Protocol. Jianping Pan Spring /3/17 CSC361 1

Computer Networks. Transmission Control Protocol. Jianping Pan Spring /3/17 CSC361 1 Computer Networks Transmission Control Protocol Jianping Pan Spring 2017 2/3/17 CSC361 1 https://connex.csc.uvic.ca/portal NSERC USRA awards available at UVic CSc for 2017/18 2/3/17 CSC361 2 TCP Transmission

More information

Parallel Arch. Review

Parallel Arch. Review Parallel Arch. Review Zeljko Zilic McConnell Engineering Building Room 536 Main Points Understanding of the design and engineering of modern parallel computers Technology forces Fundamental architectural

More information

Portland State University ECE 588/688. Directory-Based Cache Coherence Protocols

Portland State University ECE 588/688. Directory-Based Cache Coherence Protocols Portland State University ECE 588/688 Directory-Based Cache Coherence Protocols Copyright by Alaa Alameldeen and Haitham Akkary 2018 Why Directory Protocols? Snooping-based protocols may not scale All

More information

Communication Networks ( ) / Fall 2013 The Blavatnik School of Computer Science, Tel-Aviv University. Allon Wagner

Communication Networks ( ) / Fall 2013 The Blavatnik School of Computer Science, Tel-Aviv University. Allon Wagner Communication Networks (0368-3030) / Fall 2013 The Blavatnik School of Computer Science, Tel-Aviv University Allon Wagner Kurose & Ross, Chapter 4 (5 th ed.) Many slides adapted from: J. Kurose & K. Ross

More information

Lecture 28 Introduction to Parallel Processing and some Architectural Ramifications. Flynn s Taxonomy. Multiprocessing.

Lecture 28 Introduction to Parallel Processing and some Architectural Ramifications. Flynn s Taxonomy. Multiprocessing. 1 2 Lecture 28 Introduction to arallel rocessing and some Architectural Ramifications 3 4 ultiprocessing Flynn s Taxonomy Flynn s Taxonomy of arallel achines How many Instruction streams? How many Data

More information

Shared Memory SMP and Cache Coherence (cont) Adapted from UCB CS252 S01, Copyright 2001 USB

Shared Memory SMP and Cache Coherence (cont) Adapted from UCB CS252 S01, Copyright 2001 USB Shared SMP and Cache Coherence (cont) Adapted from UCB CS252 S01, Copyright 2001 USB 1 Review: Snoopy Cache Protocol Write Invalidate Protocol: Multiple readers, single writer Write to shared data: an

More information

Unit 1. Chapter 3 Top Level View of Computer Function and Interconnection

Unit 1. Chapter 3 Top Level View of Computer Function and Interconnection Unit 1 Chapter 3 Top Level View of Computer Function and Interconnection Program Concept Hardwired systems are inflexible General purpose hardware can do different tasks, given correct control signals

More information

Lecture 13: Interconnection Networks. Topics: lots of background, recent innovations for power and performance

Lecture 13: Interconnection Networks. Topics: lots of background, recent innovations for power and performance Lecture 13: Interconnection Networks Topics: lots of background, recent innovations for power and performance 1 Interconnection Networks Recall: fully connected network, arrays/rings, meshes/tori, trees,

More information

Three parallel-programming models

Three parallel-programming models Three parallel-programming models Shared-memory programming is like using a bulletin board where you can communicate with colleagues. essage-passing is like communicating via e-mail or telephone calls.

More information

CS/ECE 757: Advanced Computer Architecture II (Parallel Computer Architecture) Introduction (Chapter 1)

CS/ECE 757: Advanced Computer Architecture II (Parallel Computer Architecture) Introduction (Chapter 1) CS/ECE 757: Advanced Computer Architecture II (arallel Computer Architecture) Introduction (Chapter 1) Copyright 2001 Mark D. Hill University of Wisconsin-Madison Slides are derived from work by Sarita

More information

Lecture 8: Directory-Based Cache Coherence. Topics: scalable multiprocessor organizations, directory protocol design issues

Lecture 8: Directory-Based Cache Coherence. Topics: scalable multiprocessor organizations, directory protocol design issues Lecture 8: Directory-Based Cache Coherence Topics: scalable multiprocessor organizations, directory protocol design issues 1 Scalable Multiprocessors P1 P2 Pn C1 C2 Cn 1 CA1 2 CA2 n CAn Scalable interconnection

More information

Introduction to Multiprocessors (Part I) Prof. Cristina Silvano Politecnico di Milano

Introduction to Multiprocessors (Part I) Prof. Cristina Silvano Politecnico di Milano Introduction to Multiprocessors (Part I) Prof. Cristina Silvano Politecnico di Milano Outline Key issues to design multiprocessors Interconnection network Centralized shared-memory architectures Distributed

More information

Message Passing Models and Multicomputer distributed system LECTURE 7

Message Passing Models and Multicomputer distributed system LECTURE 7 Message Passing Models and Multicomputer distributed system LECTURE 7 DR SAMMAN H AMEEN 1 Node Node Node Node Node Node Message-passing direct network interconnection Node Node Node Node Node Node PAGE

More information

Scalable Cache Coherent Systems Scalable distributed shared memory machines Assumptions:

Scalable Cache Coherent Systems Scalable distributed shared memory machines Assumptions: Scalable ache oherent Systems Scalable distributed shared memory machines ssumptions: rocessor-ache-memory nodes connected by scalable network. Distributed shared physical address space. ommunication assist

More information

Aleksandar Milenkovic, Electrical and Computer Engineering University of Alabama in Huntsville

Aleksandar Milenkovic, Electrical and Computer Engineering University of Alabama in Huntsville Lecture 18: Multiprocessors Aleksandar Milenkovic, milenka@ece.uah.edu Electrical and Computer Engineering University of Alabama in Huntsville Parallel Computers Definition: A parallel computer is a collection

More information

EE108B Lecture 17 I/O Buses and Interfacing to CPU. Christos Kozyrakis Stanford University

EE108B Lecture 17 I/O Buses and Interfacing to CPU. Christos Kozyrakis Stanford University EE108B Lecture 17 I/O Buses and Interfacing to CPU Christos Kozyrakis Stanford University http://eeclass.stanford.edu/ee108b 1 Announcements Remaining deliverables PA2.2. today HW4 on 3/13 Lab4 on 3/19

More information

Lecture 15: PCM, Networks. Today: PCM wrap-up, projects discussion, on-chip networks background

Lecture 15: PCM, Networks. Today: PCM wrap-up, projects discussion, on-chip networks background Lecture 15: PCM, Networks Today: PCM wrap-up, projects discussion, on-chip networks background 1 Hard Error Tolerance in PCM PCM cells will eventually fail; important to cause gradual capacity degradation

More information

Advanced Computer Networks. End Host Optimization

Advanced Computer Networks. End Host Optimization Oriana Riva, Department of Computer Science ETH Zürich 263 3501 00 End Host Optimization Patrick Stuedi Spring Semester 2017 1 Today End-host optimizations: NUMA-aware networking Kernel-bypass Remote Direct

More information

Lecture 12: Interconnection Networks. Topics: dimension/arity, routing, deadlock, flow control

Lecture 12: Interconnection Networks. Topics: dimension/arity, routing, deadlock, flow control Lecture 12: Interconnection Networks Topics: dimension/arity, routing, deadlock, flow control 1 Interconnection Networks Recall: fully connected network, arrays/rings, meshes/tori, trees, butterflies,

More information

Lecture: Coherence, Synchronization. Topics: directory-based coherence, synchronization primitives (Sections )

Lecture: Coherence, Synchronization. Topics: directory-based coherence, synchronization primitives (Sections ) Lecture: Coherence, Synchronization Topics: directory-based coherence, synchronization primitives (Sections 5.1-5.5) 1 Cache Coherence Protocols Directory-based: A single location (directory) keeps track

More information

EE/CSCI 451: Parallel and Distributed Computation

EE/CSCI 451: Parallel and Distributed Computation EE/CSCI 451: Parallel and Distributed Computation Lecture #4 1/24/2018 Xuehai Qian xuehai.qian@usc.edu http://alchem.usc.edu/portal/xuehaiq.html University of Southern California 1 Announcements PA #1

More information

CS 347 Parallel and Distributed Data Processing

CS 347 Parallel and Distributed Data Processing CS 347 arallel and Distributed Data rocessing Spring 2016 Notes 1: Introduction CS 245 Centralized Database Simplifications Single front end One place to keep locks If processor fails then system fails

More information

Interconnection Networks

Interconnection Networks Lecture 18: Interconnection Networks Parallel Computer Architecture and Programming CMU 15-418/15-618, Spring 2015 Credit: many of these slides were created by Michael Papamichael This lecture is partially

More information

Scalable Multiprocessors

Scalable Multiprocessors Topics Scalable Multiprocessors Scaling issues Supporting programming models Network interface Interconnection network Considerations in Bluegene/L design 2 Limited Scaling of a Bus Comparing with a LAN

More information

Lecture 16: Network Layer Overview, Internet Protocol

Lecture 16: Network Layer Overview, Internet Protocol Lecture 16: Network Layer Overview, Internet Protocol COMP 332, Spring 2018 Victoria Manfredi Acknowledgements: materials adapted from Computer Networking: A Top Down Approach 7 th edition: 1996-2016,

More information

CSCE 463/612 Networks and Distributed Processing Spring 2018

CSCE 463/612 Networks and Distributed Processing Spring 2018 CSCE 463/612 Networks and Distributed Processing Spring 2018 Network Layer Dmitri Loguinov Texas A&M University March 29, 2018 Original slides copyright 1996-2004 J.F Kurose and K.W. Ross 1 Homework #3

More information

! How is a thread different from a process? ! Why are threads useful? ! How can POSIX threads be useful?

! How is a thread different from a process? ! Why are threads useful? ! How can POSIX threads be useful? Chapter 2: Threads: Questions CSCI [4 6]730 Operating Systems Threads! How is a thread different from a process?! Why are threads useful?! How can OSIX threads be useful?! What are user-level and kernel-level

More information

Module 14: "Directory-based Cache Coherence" Lecture 31: "Managing Directory Overhead" Directory-based Cache Coherence: Replacement of S blocks

Module 14: Directory-based Cache Coherence Lecture 31: Managing Directory Overhead Directory-based Cache Coherence: Replacement of S blocks Directory-based Cache Coherence: Replacement of S blocks Serialization VN deadlock Starvation Overflow schemes Sparse directory Remote access cache COMA Latency tolerance Page migration Queue lock in hardware

More information

Caches (Writing) Hakim Weatherspoon CS 3410, Spring 2012 Computer Science Cornell University. P & H Chapter 5.2 3, 5.5

Caches (Writing) Hakim Weatherspoon CS 3410, Spring 2012 Computer Science Cornell University. P & H Chapter 5.2 3, 5.5 s (Writing) Hakim Weatherspoon CS, Spring Computer Science Cornell University P & H Chapter.,. Administrivia Lab due next onday, April th HW due next onday, April th Goals for Today Parameter Tradeoffs

More information

Page 1. SMP Review. Multiprocessors. Bus Based Coherence. Bus Based Coherence. Characteristics. Cache coherence. Cache coherence

Page 1. SMP Review. Multiprocessors. Bus Based Coherence. Bus Based Coherence. Characteristics. Cache coherence. Cache coherence SMP Review Multiprocessors Today s topics: SMP cache coherence general cache coherence issues snooping protocols Improved interaction lots of questions warning I m going to wait for answers granted it

More information

CSE502: Computer Architecture CSE 502: Computer Architecture

CSE502: Computer Architecture CSE 502: Computer Architecture CSE 502: Computer Architecture Shared-Memory Multi-Processors Shared-Memory Multiprocessors Multiple threads use shared memory (address space) SysV Shared Memory or Threads in software Communication implicit

More information