Mladen Stefanov F48235 R.A.I.D

Size: px
Start display at page:

Download "Mladen Stefanov F48235 R.A.I.D"

Transcription

1 R.A.I.D Data is the most valuable asset of any business today. Lost data, in most cases, means lost business. Even if you backup regularly, you need a fail-safe way to ensure that your data is protected and can be accessed without interruption in the event of an online disk failure. Adding RAID, to your storage configurations is one of the most cost-effective ways to maintain both data protection and access. But what is RAID? RAID is an acronym of REDUNDANT ARRAY OF INEXPENSIVE DISKS, defined by D. Patterson, G. Gibson, and R. Katz, a technology that allows, by arranging disks(minimum two) into arrays, users to achieve incredible storage reliability and/or performance, from low-cost and less reliable hard disks drives. There are different schemes/architectures of RAID and they are named by the word RAID followed by a number, as RAID0, RAID1 etc. These various designs, aim several design goals: increase data reliability, increase I/O performance or sometimes both. When several disks are set up to use RAID, they are said to be in RAID array. This array distributes data across multiple disks, but the array is seen by the computer user and operating system as one single disk. Tree key concepts are involved in RAID implementations mirroring, striping and error correction. Mirroring - identical data is written to more than one disk; striping - data is distributed across more than one disk; error correction - redundant ("parity") data is stored to allow problems to be detected and fixed. RAID combines two or more physical hard disks into a single logical unit and can be implemented in hardware, in the form of special disk controllers, or in software, as a kernel module that is layered in between the low-level disk driver, and the file system which sits above it. RAID hardware is always a "disk controller" Hardware-RAID is a device to which one can cable up the disk drives. Usually it comes in the form of an adapter card that will plug into a ISA/EISA/PCI/S- Bus/MicroChannel slot. However, some RAID controllers are in the form of a box

2 that connects into the cable in between the usual system disk controller, and the disk drives. The latest RAID hardware used with the latest & fastest CPU will usually provide the best overall performance, although at a significant price. This is because most RAID controllers come with on-board DSP's and memory cache that can offload a considerable amount of processing from the main CPU, as well as allow high transfer rates into the large controller cache. Old RAID hardware can act as a "deaccelerator" when used with newer CPU's: yesterday's fancy DSP and cache can act as a bottleneck, and it's performance is often beaten by pure-software RAID and new but otherwise plain, run-of-the-mill disk controllers. RAID hardware can offer an advantage over pure-software RAID, if it can makes use of disk-spindle synchronization and its knowledge of the disk-platter position with regard to the disk head, and the desired disk-block. However, most modern (low-cost) disk drives do not offer this information and level of control anyway, and thus, most RAID hardware does not take advantage of it. RAID hardware is usually not compatible across different brands, makes and models: if a RAID controller fails, it must be replaced by another controller of the same type. As of this writing (June 1998), a broad variety of hardware controllers will operate under Linux; however, none of them currently come with configuration and management utilities that run under Linux. Software-RAID is a set of kernel modules, together with management utilities that implement RAID purely in software, and require no extraordinary hardware. The Linux, RAID subsystem is implemented as a layer in the kernel that sits above the low-level disk drivers (for IDE, SCSI drives and etc.), and the block-device interface. The file system, ext2fs, DOS-FAT, or whatever we want, sits above the block-device interface. Software-RAID, by its very software nature, tends to be more flexible than a hardware solution. The downside is that it of course requires more CPU cycles and power to run well than a comparable hardware system. Of course, the cost can't be beat. Software RAID has one further important distinguishing feature: it operates on a partition-by-partition basis, where a number of individual disk partitions are ganged together to create a RAID partition. This is in contrast to most hardware RAID solutions, which gang together entire disk drives into an array. With hardware, the fact that there is a RAID array is transparent to the operating

3 system, which tends to simplify management. With software, there are far more configuration options and choices, tending to complicate matters. Stripe width and Stripe size. What are they? RAID technology use striping to improve performance by splitting up files into small pieces and distributing them among multiple hard disks. Most striping implementations allow the creator of the array control over two critical parameters that define the way that the data is broken into chunks and sent to the various disks. Each of these factors has an important impact on the performance of a striped array. The first parameter is stripe width of the array. Stripe width refers to the number of parallel stripes that can be written to or red from simultaneously. This is equal to the number of disks in the array. That means when we adding more drives to the array, basically we are increasing the parallelism of the array. For example if we create array of four 160GB drives, we will have greater transfer performance than two 320GB drives. The second important parameter is the stripe size. Stripe size, in RAID arrays, is the smallest allocation unit of logical disk or volume, written to each disk. It is sometimes called block size or chunk size and values can be from 2kiB to 512kiB. The impact of stripe size upon performance is more difficult to quantify than the effect of stripe width but they are two main things we should know. Decreasing Stripe Size: As stripe size is decreased, files are broken into smaller and smaller pieces. This increases the number of drives that an average file will use to hold all the blocks containing the data of that file, theoretically increasing transfer performance, but decreasing positioning performance. Increasing Stripe Size: Increasing the stripe size of the array does the opposite of decreasing it, of course. Fewer drives are required to store files of a given size, so transfer performance decreases. However, if the controller is optimized to allow it, the requirement for fewer drives allows the drives not needed for a particular access to be used for another one, improving positioning performance.

4 The improvement in positioning performance that results from increasing stripe size to allow multiple parallel accesses to different disks in the array depends entirely on the controller's smarts. For example, some controllers are designed to not do any writes to a striped array until they have enough data to fill an entire stripe across all the disks in the array. Clearly, this controller will not improve positioning performance as much as one that doesn't have this limitation. Also, striping with parity often requires extra reads and writes to maintain the integrity of the parity information It seems like there is no optimal stripe size. Everything depends on your performance needs, what type of data you will store and type of application you run Operation modes/states Optimal should be normal operational mode for all RAID arrays. In this state everything works fine, there is no failed drive, performance is not affected. Degraded When malfunction of one or more drives occurs, whole array enters in degraded state called by someone a critical state. In this mode performance is reduced and how much it is depends on the type of RAID used, and also how the RAID controller reacts to the drive failure. One of the reasons for reduced performance is that one of the drives is no longer available, and the array must compensate for this loss of hardware. In a two-drive mirrored array, you are left with an "array of one drive", and therefore, performance becomes the same as it would be for a single drive. In a striped array with parity, performance is degraded due to the loss of a drive and the need to regenerate its lost information from the parity data, on the fly, as data is read back from the array. The other reason is rebuilding Rebuilding this term means restoration process of the array and could be initiated by two ways, manual or automatically. Automatic rebuilding could be initiated immediately after hard disk fail occur if there is a dedicated disk, called hot spare disk and this option in the configuration of array is been enabled. Otherwise administrator must replace failed disk and start rebuilding process manually. A

5 mirrored array must copy the contents of the good drive over to the replacement drive. Rebuilding process are going to be time-consuming and also relatively slow - it can take several hours. During this time, the array will function properly, but its performance will be greatly diminished. The impact on performance of rebuilding depends entirely on the RAID level and the nature of the controller, but it usually affects it significantly. Hardware RAID will generally do a faster job of rebuilding than software RAID. Fortunately, rebuilding doesn't happen often. Degraded and Rebuilding state, both are critical states because there is no data protection and array has no fault tolerance RAID 0 (Striping) STANDART RAID LEVELS Offers low cost and maximum performance, but offers no fault tolerance; a single disk failure results in TOTAL data loss. Businesses use RAID 0 mainly for tasks requiring fast access to a large capacity of temporary disk storage (such as video/audio post-production, multimedia imaging, CAD, data logging, etc.) where in case of a disk failure, the data can be easily reloaded without impacting the business. There are also no cost disadvantages as all storage is usable. RAID 0 usable capacity is 100% as all available drives are used.

6 RAID 1 (Mirroring) Provides cost-effective, high fault tolerance for configurations with two disk drives. RAID 1 refers to maintaining duplicate sets of all data on separate disk drives. It also provides the highest data availability since two complete copies of all information are maintained. There must be two disks in the configuration and there is a cost disadvantage as the usable capacity is half the number of available disks. RAID 1 offers data protection insurance for any environments where absolute data redundancy, availability and performance are key, and cost per usable gigabyte of capacity is a secondary consideration. RAID 1 usable capacity is 50% of the available drives in the RAID set. RAID 2 (Hamming code parity) Seldom used anymore, and to some degree are have been made obsolete by modern disk technology. RAID-2 is similar to RAID-4, but stores ECC information instead of parity. Since all modern disk drives incorporate ECC under the covers, this offers little additional protection. RAID-2 can offer greater data consistency if power is lost during a write; however, battery backup and a clean shutdown can offer the same benefits. RAID-2 is not supported by the Linux Software-RAID drivers.

7 RAID 3 (Striped set with dedicated parity) This mechanism provides fault tolerance similar to RAID 5. However, because the stripe across the disks is much smaller than a file system block, reads and writes to the array perform like a single drive with a high linear write performance. For this to work properly, the drives must have synchronized rotation. If one drive fails, performance is not affected. RAID 4 (Block level parity) Interleaves stripes like RAID-0, but it requires an additional partition to store parity information. The parity is used to offer redundancy: if any one of the disks fail the data on the remaining disks can be used to reconstruct the data that was on the failed disk. Given N data disks, and one parity disk, the parity stripe is computed by taking one stripe from each of the data disks, and XOR'ing them together. Thus, the storage capacity of a an (N+1)-disk RAID-4 array is N, which is a lot better than mirroring (N+1) drives, and is almost as good as a RAID-0 setup for large N. Note that for N=1, where there is one data drive, and one parity drive, RAID-4 is a lot like mirroring, in that each of the two disks is a copy of each other. However, RAID-4 does NOT offer the read-performance of mirroring, and offers considerably degraded write performance. In brief, this is because updating the parity requires a read of the old parity, before the new parity can be calculated and written out. In an environment with lots of writes, the parity disk can become a bottleneck, as each write must access the parity disk. RAID 5 (Striping with parity) Uses data striping in a technique designed to provide fault-tolerant data storage, but doesn't require duplication of data like RAID 1 and RAID 1E. Data is striped across all of the drives in the array, but for each stripe through the array (one stripe unit from each disk) one stripe unit is reserved to hold parity data calculated from the other stripe units in the same stripe. Read performance is therefore very good, but there is a penalty for writes, since the parity data has to be

8 recalculated and written along with the new data. To avoid a bottleneck, the parity data for consecutive stripes is interleaved with the data across all disks in the array. RAID 5 has been the standard in server environments requiring fault tolerance. The RAID parity requires one disk drive per RAID set, so usable capacity will always be one disk drive less than the number of available disks in the configuration of available capacity - still better than RAID 1 which as only a 50% usable capacity. RAID 5 requires a minimum of three disks and a maximum of 16 disks to be implemented. RAID 5 usable capacity is between 67% - 94%, depending on the number of data drives in the RAID set. RAID 6 (Striping with dual parity) Data is striped across several physical drives and dual parity is used to store and recover data. It tolerates the failure of two drives in an array, providing better fault tolerance than RAID 5. It also enables the use of more cost-effective ATA and SATA disks to storage business critical data. This RAID level is similar to RAID 5, but includes a second parity scheme that is distributed across different drives and therefore offers extremely high fault tolerance and drive failure tolerance. RAID 6 can withstand a double disk failure. RAID 6 requires a minimum of four disks and a maximum of 16 disks to be implemented. Usable capacity is always 2 less than the number of available disk drives in the RAID set. With less expensive, but less reliable SATA disk drives in a configuration that employs RAID 6, it is possible to achieve a higher level of availability. This is because the second parity drive in the RAID 6 RAID set can withstand a second failure during a rebuild. In a RAID 5 set, the degraded

9 state and/or the rebuilding time onto a hot spare is considered the window at which the RAID array is most vulnerable to data loss. During this time, if a second disk failure occurs, data is unrecoverable. With RAID 6 there are no windows of vulnerability as the second parity drive protects against this. RAID 1E (Striped Mirroring) NON-STANDART RAID LEVELS Combines data striping from RAID 0 with data mirroring from RAID 1. Data written in a stripe on one disk is mirrored to a stripe on the next drive in the array. The main advantage over RAID 1 is that RAID 1E arrays can be implemented using an odd number of disks. When using even numbers of disks it is always preferable to use RAID 10, which will allow multiple drive failures. With odd numbers of disks, however, RAID 1E supports only one drive failure. RAID 1E usable capacity is 50% of the total available capacity of all disk drives in the RAID set.

10 RAID 5EE (Hot Space) Provides the protection of RAID 5 with higher I/Os per second by utilizing one more drive, with data efficiently distributed across the spare drive for improved I/O access. RAID 5EE distributes the hot-spare drive space over the N+1 drives comprising the RAID-5 array plus standard hot-spare drive. This means that in normal operating mode the hot spare is an active participant in the array rather than spinning unused. In a normal RAID 5 array adding a hot-spare drive to RAID 5 array protects data by reducing the time spent in the critical rebuild state. This technique does not make maximum use of the hot-spare drive because it sits idle until a failure occurs. Often many years can elapse before the hot-spare drive is ever used. For small RAID 5 arrays in particular, having an extra disk to read from (four disks instead of three, as an example) can provide significantly better read performance. For example, going from a 4-drive RAID 5 array with a hot spare to a 5-drive RAID 5EE array will increase performance by roughly 25%. One downside of RAID 5EE is that the hot-spare drive cannot be shared across multiple physical arrays as with standard RAID 5 plus hot-spare. RAID 5 technique is more cost efficient for multiple arrays because it allows a single hot-spare drive to provide coverage for multiple physical arrays. This configuration reduces the cost of using a hot-spare drive, but the downside is the inability to handle separate drive failures within different arrays. This RAID level can sustain a single drive failure. RAID 5EE useable capacity is between 50% - 88%, depending on the number of data drives in the RAID set. RAID 5EE requires a minimum of four disks and a maximum of 16 disks to be implemented.

11 RAID 10 (Striping and mirroring) NESTED(hybrid) RAIDs Combines RAID 0 striping and RAID 1 mirroring. This level provides the improved performance of striping while still providing the redundancy of mirroring. RAID 10 is the result of forming a RAID 0 array from two or more RAID 1 arrays. This RAID level provides fault tolerance - up to one disk of each sub-array may fail without causing loss of data. Usable capacity of RAID 10 is 50% of available disk drives. RAID 50 (Striping) Combines multiple RAID 5 sets with RAID 0 (striping). Striping helps to increase capacity and performance without adding disks to each RAID 5 array (which will decrease data availability and could impact performance when running in a degraded mode). RAID 50 comprises RAID 0 striping across lower-level RAID 5 arrays. The benefits of RAID 5 are gained while the spanned RAID 0 allows the incorporation of many more disks into a single logical drive. Up to one drive in each sub-array may fail without loss of data. Also, rebuild times are substantially less then

12 a single large RAID 5 array. Usable capacity of RAID 50 is between 67% - 94%, depending on the number of data drives in the RAID set. RAID 60 (Striping and striping with dual party) Combines multiple RAID 6 sets with RAID 0 (striping). Dual parity allows the failure of two disks in each RAID 6 array. Striping helps to increase capacity and performance without adding disks to each RAID 6 array (which would decrease data availability and could impact performance in degraded mode).

13 Mladen Stefanov F48235 Obviously there is no optimal RAID level, stripe size and RAID implementation, software or hardware. Everything is in accordance of current circumstances and available resources. Old Server Futjitsu Siemenens priemergy with 14 sets attached enclosure. Operational disk was 13x320GB SCSI in RAID5 array.

14 Last month new supermicro server replaced old tree upper futjitsu servers and old tape device.

15 New Supermicro server with 24 sets enclosure. 18x2TB western digital and 1x2Tb global hot spare disk in RAID6 for storage. 2x136GB SAS drives in RAID1 for operating system and applications

Definition of RAID Levels

Definition of RAID Levels RAID The basic idea of RAID (Redundant Array of Independent Disks) is to combine multiple inexpensive disk drives into an array of disk drives to obtain performance, capacity and reliability that exceeds

More information

The term "physical drive" refers to a single hard disk module. Figure 1. Physical Drive

The term physical drive refers to a single hard disk module. Figure 1. Physical Drive HP NetRAID Tutorial RAID Overview HP NetRAID Series adapters let you link multiple hard disk drives together and write data across them as if they were one large drive. With the HP NetRAID Series adapter,

More information

RAID SEMINAR REPORT /09/2004 Asha.P.M NO: 612 S7 ECE

RAID SEMINAR REPORT /09/2004 Asha.P.M NO: 612 S7 ECE RAID SEMINAR REPORT 2004 Submitted on: Submitted by: 24/09/2004 Asha.P.M NO: 612 S7 ECE CONTENTS 1. Introduction 1 2. The array and RAID controller concept 2 2.1. Mirroring 3 2.2. Parity 5 2.3. Error correcting

More information

Lenovo RAID Introduction Reference Information

Lenovo RAID Introduction Reference Information Lenovo RAID Introduction Reference Information Using a Redundant Array of Independent Disks (RAID) to store data remains one of the most common and cost-efficient methods to increase server's storage performance,

More information

SYSTEM UPGRADE, INC Making Good Computers Better. System Upgrade Teaches RAID

SYSTEM UPGRADE, INC Making Good Computers Better. System Upgrade Teaches RAID System Upgrade Teaches RAID In the growing computer industry we often find it difficult to keep track of the everyday changes in technology. At System Upgrade, Inc it is our goal and mission to provide

More information

HP AutoRAID (Lecture 5, cs262a)

HP AutoRAID (Lecture 5, cs262a) HP AutoRAID (Lecture 5, cs262a) Ali Ghodsi and Ion Stoica, UC Berkeley January 31, 2018 (based on slide from John Kubiatowicz, UC Berkeley) Array Reliability Reliability of N disks = Reliability of 1 Disk

More information

RAID (Redundant Array of Inexpensive Disks)

RAID (Redundant Array of Inexpensive Disks) Magnetic Disk Characteristics I/O Connection Structure Types of Buses Cache & I/O I/O Performance Metrics I/O System Modeling Using Queuing Theory Designing an I/O System RAID (Redundant Array of Inexpensive

More information

HP AutoRAID (Lecture 5, cs262a)

HP AutoRAID (Lecture 5, cs262a) HP AutoRAID (Lecture 5, cs262a) Ion Stoica, UC Berkeley September 13, 2016 (based on presentation from John Kubiatowicz, UC Berkeley) Array Reliability Reliability of N disks = Reliability of 1 Disk N

More information

1 of 6 4/8/2011 4:08 PM Electronic Hardware Information, Guides and Tools search newsletter subscribe Home Utilities Downloads Links Info Ads by Google Raid Hard Drives Raid Raid Data Recovery SSD in Raid

More information

Database Management Systems, 2nd edition, Raghu Ramakrishnan, Johannes Gehrke, McGraw-Hill

Database Management Systems, 2nd edition, Raghu Ramakrishnan, Johannes Gehrke, McGraw-Hill Lecture Handout Database Management System Lecture No. 34 Reading Material Database Management Systems, 2nd edition, Raghu Ramakrishnan, Johannes Gehrke, McGraw-Hill Modern Database Management, Fred McFadden,

More information

In the late 1980s, rapid adoption of computers

In the late 1980s, rapid adoption of computers hapter 3 ata Protection: RI In the late 1980s, rapid adoption of computers for business processes stimulated the KY ONPTS Hardware and Software RI growth of new applications and databases, significantly

More information

I/O CANNOT BE IGNORED

I/O CANNOT BE IGNORED LECTURE 13 I/O I/O CANNOT BE IGNORED Assume a program requires 100 seconds, 90 seconds for main memory, 10 seconds for I/O. Assume main memory access improves by ~10% per year and I/O remains the same.

More information

1. Introduction. Traditionally, a high bandwidth file system comprises a supercomputer with disks connected

1. Introduction. Traditionally, a high bandwidth file system comprises a supercomputer with disks connected 1. Introduction Traditionally, a high bandwidth file system comprises a supercomputer with disks connected by a high speed backplane bus such as SCSI [3][4] or Fibre Channel [2][67][71]. These systems

More information

Storage Systems. Storage Systems

Storage Systems. Storage Systems Storage Systems Storage Systems We already know about four levels of storage: Registers Cache Memory Disk But we've been a little vague on how these devices are interconnected In this unit, we study Input/output

More information

NVIDIA RAID Installation Guide

NVIDIA RAID Installation Guide NVIDIA RAID Installation Guide 1. NVIDIA BIOS RAID Installation Guide.. 2 1.1 Introduction to RAID. 2 1.2 RAID Configurations Precautions.. 3 1.3 Create Disk Array. 4 2. NVIDIA Windows RAID Installation

More information

Raid: Who What Where When and Why. 3/23 Draft V1 David Arts 4/3 Draft V2 David Arts 4/10 First Release David Arts

Raid: Who What Where When and Why. 3/23 Draft V1 David Arts 4/3 Draft V2 David Arts 4/10 First Release David Arts Raid: Who What Where When and Why 3/23 Draft V1 David Arts 4/3 Draft V2 David Arts 4/10 First Release David Arts 1 Table of Contents General Concepts and Definitions... 3 What is Raid... 3 Origins of RAID...

More information

Chapter 6 - External Memory

Chapter 6 - External Memory Chapter 6 - External Memory Luis Tarrataca luis.tarrataca@gmail.com CEFET-RJ L. Tarrataca Chapter 6 - External Memory 1 / 66 Table of Contents I 1 Motivation 2 Magnetic Disks Write Mechanism Read Mechanism

More information

Storage Devices for Database Systems

Storage Devices for Database Systems Storage Devices for Database Systems 5DV120 Database System Principles Umeå University Department of Computing Science Stephen J. Hegner hegner@cs.umu.se http://www.cs.umu.se/~hegner Storage Devices for

More information

I/O CANNOT BE IGNORED

I/O CANNOT BE IGNORED LECTURE 13 I/O I/O CANNOT BE IGNORED Assume a program requires 100 seconds, 90 seconds for main memory, 10 seconds for I/O. Assume main memory access improves by ~10% per year and I/O remains the same.

More information

Modern RAID Technology. RAID Primer A Configuration Guide

Modern RAID Technology. RAID Primer A Configuration Guide Modern RAID Technology RAID Primer A Configuration Guide E x c e l l e n c e i n C o n t r o l l e r s Modern RAID Technology RAID Primer A Configuration Guide 6th Edition Copyright 1997-2003 ICP vortex

More information

COMP283-Lecture 3 Applied Database Management

COMP283-Lecture 3 Applied Database Management COMP283-Lecture 3 Applied Database Management Introduction DB Design Continued Disk Sizing Disk Types & Controllers DB Capacity 1 COMP283-Lecture 3 DB Storage: Linear Growth Disk space requirements increases

More information

Some material adapted from Mohamed Younis, UMBC CMSC 611 Spr 2003 course slides Some material adapted from Hennessy & Patterson / 2003 Elsevier

Some material adapted from Mohamed Younis, UMBC CMSC 611 Spr 2003 course slides Some material adapted from Hennessy & Patterson / 2003 Elsevier Some material adapted from Mohamed Younis, UMBC CMSC 6 Spr 23 course slides Some material adapted from Hennessy & Patterson / 23 Elsevier Science Characteristics IBM 39 IBM UltraStar Integral 82 Disk diameter

More information

V. Mass Storage Systems

V. Mass Storage Systems TDIU25: Operating Systems V. Mass Storage Systems SGG9: chapter 12 o Mass storage: Hard disks, structure, scheduling, RAID Copyright Notice: The lecture notes are mainly based on modifications of the slides

More information

Chapter 10: Mass-Storage Systems

Chapter 10: Mass-Storage Systems Chapter 10: Mass-Storage Systems Silberschatz, Galvin and Gagne 2013 Chapter 10: Mass-Storage Systems Overview of Mass Storage Structure Disk Structure Disk Attachment Disk Scheduling Disk Management Swap-Space

More information

RAID. Redundant Array of Inexpensive Disks. Industry tends to use Independent Disks

RAID. Redundant Array of Inexpensive Disks. Industry tends to use Independent Disks RAID Chapter 5 1 RAID Redundant Array of Inexpensive Disks Industry tends to use Independent Disks Idea: Use multiple disks to parallelise Disk I/O for better performance Use multiple redundant disks for

More information

IBM i Version 7.3. Systems management Disk management IBM

IBM i Version 7.3. Systems management Disk management IBM IBM i Version 7.3 Systems management Disk management IBM IBM i Version 7.3 Systems management Disk management IBM Note Before using this information and the product it supports, read the information in

More information

Associate Professor Dr. Raed Ibraheem Hamed

Associate Professor Dr. Raed Ibraheem Hamed Associate Professor Dr. Raed Ibraheem Hamed University of Human Development, College of Science and Technology Computer Science Department 2015 2016 1 Points to Cover Storing Data in a DBMS Primary Storage

More information

CSE 451: Operating Systems Winter Redundant Arrays of Inexpensive Disks (RAID) and OS structure. Gary Kimura

CSE 451: Operating Systems Winter Redundant Arrays of Inexpensive Disks (RAID) and OS structure. Gary Kimura CSE 451: Operating Systems Winter 2013 Redundant Arrays of Inexpensive Disks (RAID) and OS structure Gary Kimura The challenge Disk transfer rates are improving, but much less fast than CPU performance

More information

Chapter 10: Mass-Storage Systems. Operating System Concepts 9 th Edition

Chapter 10: Mass-Storage Systems. Operating System Concepts 9 th Edition Chapter 10: Mass-Storage Systems Silberschatz, Galvin and Gagne 2013 Chapter 10: Mass-Storage Systems Overview of Mass Storage Structure Disk Structure Disk Attachment Disk Scheduling Disk Management Swap-Space

More information

hot plug RAID memory technology for fault tolerance and scalability

hot plug RAID memory technology for fault tolerance and scalability hp industry standard servers april 2003 technology brief TC030412TB hot plug RAID memory technology for fault tolerance and scalability table of contents abstract... 2 introduction... 2 memory reliability...

More information

I/O, Disks, and RAID Yi Shi Fall Xi an Jiaotong University

I/O, Disks, and RAID Yi Shi Fall Xi an Jiaotong University I/O, Disks, and RAID Yi Shi Fall 2017 Xi an Jiaotong University Goals for Today Disks How does a computer system permanently store data? RAID How to make storage both efficient and reliable? 2 What does

More information

Che-Wei Chang Department of Computer Science and Information Engineering, Chang Gung University

Che-Wei Chang Department of Computer Science and Information Engineering, Chang Gung University Che-Wei Chang chewei@mail.cgu.edu.tw Department of Computer Science and Information Engineering, Chang Gung University l Chapter 10: File System l Chapter 11: Implementing File-Systems l Chapter 12: Mass-Storage

More information

IST346. Data Storage

IST346. Data Storage IST346 Data Storage Data Storage Why Data Storage? Information is a the center of all organizations. Organizations need to store data. Lots of it. What Kinds of Data? Documents and Files (Reports, Proposals,

More information

Virtual Memory. Reading. Sections 5.4, 5.5, 5.6, 5.8, 5.10 (2) Lecture notes from MKP and S. Yalamanchili

Virtual Memory. Reading. Sections 5.4, 5.5, 5.6, 5.8, 5.10 (2) Lecture notes from MKP and S. Yalamanchili Virtual Memory Lecture notes from MKP and S. Yalamanchili Sections 5.4, 5.5, 5.6, 5.8, 5.10 Reading (2) 1 The Memory Hierarchy ALU registers Cache Memory Memory Memory Managed by the compiler Memory Managed

More information

Address Accessible Memories. A.R. Hurson Department of Computer Science Missouri University of Science & Technology

Address Accessible Memories. A.R. Hurson Department of Computer Science Missouri University of Science & Technology Address Accessible Memories A.R. Hurson Department of Computer Science Missouri University of Science & Technology 1 Memory System Memory Requirements for a Computer An internal storage medium to store

More information

Distributed Video Systems Chapter 5 Issues in Video Storage and Retrieval Part 2 - Disk Array and RAID

Distributed Video Systems Chapter 5 Issues in Video Storage and Retrieval Part 2 - Disk Array and RAID Distributed Video ystems Chapter 5 Issues in Video torage and Retrieval art 2 - Disk Array and RAID Jack Yiu-bun Lee Department of Information Engineering The Chinese University of Hong Kong Contents 5.1

More information

Implementing Software RAID

Implementing Software RAID Implementing Software RAID on Dell PowerEdge Servers Software RAID is an inexpensive storage method offering fault tolerance and enhanced disk read-write performance. This article defines and compares

More information

Physical Storage Media

Physical Storage Media Physical Storage Media These slides are a modified version of the slides of the book Database System Concepts, 5th Ed., McGraw-Hill, by Silberschatz, Korth and Sudarshan. Original slides are available

More information

NVIDIA RAID Installation Guide

NVIDIA RAID Installation Guide NVIDIA RAID Installation Guide 1. NVIDIA BIOS RAID Installation Guide.. 2 1.1 Introduction to RAID.. 2 1.2 RAID Configurations Precautions 3 1.3 Installing Windows XP / XP 64-bit / Vista / Vista 64-bit

More information

Storage. Hwansoo Han

Storage. Hwansoo Han Storage Hwansoo Han I/O Devices I/O devices can be characterized by Behavior: input, out, storage Partner: human or machine Data rate: bytes/sec, transfers/sec I/O bus connections 2 I/O System Characteristics

More information

NAS System. User s Manual. Revision 1.0

NAS System. User s Manual. Revision 1.0 User s Manual Revision 1.0 Before You Begin efore going through with this manual, you should read and focus on the following safety guidelines. Information about the NAS system s packaging and delivery

More information

Chapter 12: Mass-Storage

Chapter 12: Mass-Storage Chapter 12: Mass-Storage Systems Chapter 12: Mass-Storage Systems Revised 2010. Tao Yang Overview of Mass Storage Structure Disk Structure Disk Attachment Disk Scheduling Disk Management Swap-Space Management

More information

Computer Organization and Structure. Bing-Yu Chen National Taiwan University

Computer Organization and Structure. Bing-Yu Chen National Taiwan University Computer Organization and Structure Bing-Yu Chen National Taiwan University Storage and Other I/O Topics I/O Performance Measures Types and Characteristics of I/O Devices Buses Interfacing I/O Devices

More information

RAID: The Innovative Data Storage Manager

RAID: The Innovative Data Storage Manager RAID: The Innovative Data Storage Manager Amit Tyagi IIMT College of Engineering, Greater Noida, UP, India Abstract-RAID is a technology that is used to increase the performance and/or reliability of data

More information

CSE325 Principles of Operating Systems. Mass-Storage Systems. David P. Duggan. April 19, 2011

CSE325 Principles of Operating Systems. Mass-Storage Systems. David P. Duggan. April 19, 2011 CSE325 Principles of Operating Systems Mass-Storage Systems David P. Duggan dduggan@sandia.gov April 19, 2011 Outline Storage Devices Disk Scheduling FCFS SSTF SCAN, C-SCAN LOOK, C-LOOK Redundant Arrays

More information

Storage and File Structure. Classification of Physical Storage Media. Physical Storage Media. Physical Storage Media

Storage and File Structure. Classification of Physical Storage Media. Physical Storage Media. Physical Storage Media Storage and File Structure Classification of Physical Storage Media Overview of Physical Storage Media Magnetic Disks RAID Tertiary Storage Storage Access File Organization Organization of Records in Files

More information

Ch 11: Storage and File Structure

Ch 11: Storage and File Structure Ch 11: Storage and File Structure Overview of Physical Storage Media Magnetic Disks RAID Tertiary Storage Storage Access File Organization Organization of Records in Files Data-Dictionary Dictionary Storage

More information

CISC 7310X. C11: Mass Storage. Hui Chen Department of Computer & Information Science CUNY Brooklyn College. 4/19/2018 CUNY Brooklyn College

CISC 7310X. C11: Mass Storage. Hui Chen Department of Computer & Information Science CUNY Brooklyn College. 4/19/2018 CUNY Brooklyn College CISC 7310X C11: Mass Storage Hui Chen Department of Computer & Information Science CUNY Brooklyn College 4/19/2018 CUNY Brooklyn College 1 Outline Review of memory hierarchy Mass storage devices Reliability

More information

PANASAS TIERED PARITY ARCHITECTURE

PANASAS TIERED PARITY ARCHITECTURE PANASAS TIERED PARITY ARCHITECTURE Larry Jones, Matt Reid, Marc Unangst, Garth Gibson, and Brent Welch White Paper May 2010 Abstract Disk drives are approximately 250 times denser today than a decade ago.

More information

Implementing a Statically Adaptive Software RAID System

Implementing a Statically Adaptive Software RAID System Implementing a Statically Adaptive Software RAID System Matt McCormick mattmcc@cs.wisc.edu Master s Project Report Computer Sciences Department University of Wisconsin Madison Abstract Current RAID systems

More information

An Introduction to RAID

An Introduction to RAID Intro An Introduction to RAID Gursimtan Singh Dept. of CS & IT Doaba College RAID stands for Redundant Array of Inexpensive Disks. RAID is the organization of multiple disks into a large, high performance

More information

3.3 Understanding Disk Fault Tolerance Windows May 15th, 2007

3.3 Understanding Disk Fault Tolerance Windows May 15th, 2007 3.3 Understanding Disk Fault Tolerance Windows May 15th, 2007 Fault tolerance refers to the capability of a computer or network to continue to function when some component fails. Disk fault tolerance refers

More information

Lecture 23: I/O Redundant Arrays of Inexpensive Disks Professor Randy H. Katz Computer Science 252 Spring 1996

Lecture 23: I/O Redundant Arrays of Inexpensive Disks Professor Randy H. Katz Computer Science 252 Spring 1996 Lecture 23: I/O Redundant Arrays of Inexpensive Disks Professor Randy H Katz Computer Science 252 Spring 996 RHKS96 Review: Storage System Issues Historical Context of Storage I/O Storage I/O Performance

More information

HPSS RAIT. A high performance, resilient, fault-tolerant tape data storage class. 1

HPSS RAIT. A high performance, resilient, fault-tolerant tape data storage class.   1 HPSS RAIT A high performance, resilient, fault-tolerant tape data storage class http://www.hpss-collaboration.org 1 Why RAIT? HPSS supports striped tape without RAIT o Conceptually similar to RAID 0 o

More information

NT2 U3. 2-Bay RAID Storage Enclosure. User Manual May 18, 2010 v1.1

NT2 U3. 2-Bay RAID Storage Enclosure. User Manual May 18, 2010 v1.1 2-Bay RAID Storage Enclosure User Manual May 18, 2010 v1.1 EN Introduction 1 Introduction 1.1 System Requirements 1.1.1 PC Requirements Minimum Intel Pentium III CPU 500MHz, 128MB RAM Windows Vista, Windows

More information

Guide to SATA Hard Disks Installation and RAID Configuration

Guide to SATA Hard Disks Installation and RAID Configuration Guide to SATA Hard Disks Installation and RAID Configuration 1. Guide to SATA Hard Disks Installation... 2 1.1 Serial ATA (SATA) Hard Disks Installation... 2 2. Guide to RAID Configurations... 3 2.1 Introduction

More information

Administrivia. CMSC 411 Computer Systems Architecture Lecture 19 Storage Systems, cont. Disks (cont.) Disks - review

Administrivia. CMSC 411 Computer Systems Architecture Lecture 19 Storage Systems, cont. Disks (cont.) Disks - review Administrivia CMSC 411 Computer Systems Architecture Lecture 19 Storage Systems, cont. Homework #4 due Thursday answers posted soon after Exam #2 on Thursday, April 24 on memory hierarchy (Unit 4) and

More information

Chapter 13: Mass-Storage Systems. Disk Scheduling. Disk Scheduling (Cont.) Disk Structure FCFS. Moving-Head Disk Mechanism

Chapter 13: Mass-Storage Systems. Disk Scheduling. Disk Scheduling (Cont.) Disk Structure FCFS. Moving-Head Disk Mechanism Chapter 13: Mass-Storage Systems Disk Scheduling Disk Structure Disk Scheduling Disk Management Swap-Space Management RAID Structure Disk Attachment Stable-Storage Implementation Tertiary Storage Devices

More information

Chapter 13: Mass-Storage Systems. Disk Structure

Chapter 13: Mass-Storage Systems. Disk Structure Chapter 13: Mass-Storage Systems Disk Structure Disk Scheduling Disk Management Swap-Space Management RAID Structure Disk Attachment Stable-Storage Implementation Tertiary Storage Devices Operating System

More information

Today: Secondary Storage! Typical Disk Parameters!

Today: Secondary Storage! Typical Disk Parameters! Today: Secondary Storage! To read or write a disk block: Seek: (latency) position head over a track/cylinder. The seek time depends on how fast the hardware moves the arm. Rotational delay: (latency) time

More information

High Performance Computing Course Notes High Performance Storage

High Performance Computing Course Notes High Performance Storage High Performance Computing Course Notes 2008-2009 2009 High Performance Storage Storage devices Primary storage: register (1 CPU cycle, a few ns) Cache (10-200 cycles, 0.02-0.5us) Main memory Local main

More information

CS3600 SYSTEMS AND NETWORKS

CS3600 SYSTEMS AND NETWORKS CS3600 SYSTEMS AND NETWORKS NORTHEASTERN UNIVERSITY Lecture 9: Mass Storage Structure Prof. Alan Mislove (amislove@ccs.neu.edu) Moving-head Disk Mechanism 2 Overview of Mass Storage Structure Magnetic

More information

Chapter 6. Storage and Other I/O Topics

Chapter 6. Storage and Other I/O Topics Chapter 6 Storage and Other I/O Topics Introduction I/O devices can be characterized by Behaviour: input, output, storage Partner: human or machine Data rate: bytes/sec, transfers/sec I/O bus connections

More information

MD4 esata. 4-Bay Rack Mount Chassis. User Manual February 6, v1.0

MD4 esata. 4-Bay Rack Mount Chassis. User Manual February 6, v1.0 4-Bay Rack Mount Chassis User Manual February 6, 2009 - v1.0 EN Introduction 1 Introduction 1.1 System Requirements 1.1.1 PC Requirements Minimum Intel Pentium III CPU 500MHz, 128MB RAM esata equipped

More information

Concepts Introduced. I/O Cannot Be Ignored. Typical Collection of I/O Devices. I/O Issues

Concepts Introduced. I/O Cannot Be Ignored. Typical Collection of I/O Devices. I/O Issues Concepts Introduced I/O Cannot Be Ignored Assume a program requires 100 seconds, 90 seconds for accessing main memory and 10 seconds for I/O. I/O introduction magnetic disks ash memory communication with

More information

Hydra Super-S LCM. 4-Bay RAID Storage Enclosure (3.5 SATA HDD) User Manual July 30, v1.2

Hydra Super-S LCM. 4-Bay RAID Storage Enclosure (3.5 SATA HDD) User Manual July 30, v1.2 4-Bay RAID Storage Enclosure (3.5 SATA HDD) User Manual July 30, 2009 - v1.2 EN Introduction 1 Introduction 1.1 System Requirements 1.1.1 PC Requirements Minimum Intel Pentium III CPU 500MHz, 128MB RAM

More information

Taurus Super-S LCM. Dual-Bay RAID Storage Enclosure for two 3.5 Serial ATA Hard Drives. User Manual July 27, v1.2

Taurus Super-S LCM. Dual-Bay RAID Storage Enclosure for two 3.5 Serial ATA Hard Drives. User Manual July 27, v1.2 Dual-Bay RAID Storage Enclosure for two 3.5 Serial ATA Hard Drives User Manual July 27, 2009 - v1.2 EN Introduction 1 Introduction 1.1 System Requirements 1.1.1 PC Requirements Minimum Intel Pentium III

More information

Storing Data: Disks and Files

Storing Data: Disks and Files Storing Data: Disks and Files Chapter 7 (2 nd edition) Chapter 9 (3 rd edition) Yea, from the table of my memory I ll wipe away all trivial fond records. -- Shakespeare, Hamlet Database Management Systems,

More information

Part IV I/O System. Chapter 12: Mass Storage Structure

Part IV I/O System. Chapter 12: Mass Storage Structure Part IV I/O System Chapter 12: Mass Storage Structure Disk Structure Three elements: cylinder, track and sector/block. Three types of latency (i.e., delay) Positional or seek delay mechanical and slowest

More information

IBM. Systems management Disk management. IBM i 7.1

IBM. Systems management Disk management. IBM i 7.1 IBM IBM i Systems management Disk management 7.1 IBM IBM i Systems management Disk management 7.1 Note Before using this information and the product it supports, read the information in Notices, on page

More information

Specifying Storage Servers for IP security applications

Specifying Storage Servers for IP security applications Specifying Storage Servers for IP security applications The migration of security systems from analogue to digital IP based solutions has created a large demand for storage servers high performance PCs

More information

A+ Guide to Hardware: Managing, Maintaining, and Troubleshooting, 5e. Chapter 6 Supporting Hard Drives

A+ Guide to Hardware: Managing, Maintaining, and Troubleshooting, 5e. Chapter 6 Supporting Hard Drives A+ Guide to Hardware: Managing, Maintaining, and Troubleshooting, 5e Chapter 6 Supporting Hard Drives Objectives Learn about the technologies used inside a hard drive and how data is organized on the drive

More information

Taurus Super-S Combo

Taurus Super-S Combo Dual-Bay Storage Enclosure for 3.5 Serial ATA Hard Drives User Manual May 11, 2009 - v1.1 EN Table of Contents CHAPTER 1 - INTRODUCTION 1 CHAPTER 3 - SYSTEM SET UP 7 ICON KEY 1 THE TAURUS SUPER-S COMBO

More information

Serial-ATA RAID Card. Version 1.0

Serial-ATA RAID Card. Version 1.0 Serial-ATA RAID Card Version 1.0 Contents Features....P.4 Specifications....P.5 Package Content....P.5 System Requirement.P.6 Driver Installation....P.6 Install Serial-ATA Host Card GUI Utility...P.16

More information

Configuring Storage Profiles

Configuring Storage Profiles This part contains the following chapters: Storage Profiles, page 1 Disk Groups and Disk Group Configuration Policies, page 2 RAID Levels, page 3 Automatic Disk Selection, page 4 Supported LUN Modifications,

More information

CS2410: Computer Architecture. Storage systems. Sangyeun Cho. Computer Science Department University of Pittsburgh

CS2410: Computer Architecture. Storage systems. Sangyeun Cho. Computer Science Department University of Pittsburgh CS24: Computer Architecture Storage systems Sangyeun Cho Computer Science Department (Some slides borrowed from D Patterson s lecture slides) Case for storage Shift in focus from computation to communication

More information

Mass-Storage. ICS332 - Fall 2017 Operating Systems. Henri Casanova

Mass-Storage. ICS332 - Fall 2017 Operating Systems. Henri Casanova Mass-Storage ICS332 - Fall 2017 Operating Systems Henri Casanova (henric@hawaii.edu) Magnetic Disks! Magnetic disks (a.k.a. hard drives ) are (still) the most common secondary storage devices today! They

More information

Computer Science 146. Computer Architecture

Computer Science 146. Computer Architecture Computer Science 46 Computer Architecture Spring 24 Harvard University Instructor: Prof dbrooks@eecsharvardedu Lecture 22: More I/O Computer Science 46 Lecture Outline HW5 and Project Questions? Storage

More information

RAID5 versus RAID10. First let's get on the same page so we're all talking about apples.

RAID5 versus RAID10. First let's get on the same page so we're all talking about apples. RAID5 versus RAID10 First let's get on the same page so we're all talking about apples. What is RAID? RAID originally stood for Redundant Arrays of Inexpensive Disk and was an idea proposed in the early

More information

Database Systems. November 2, 2011 Lecture #7. topobo (mit)

Database Systems. November 2, 2011 Lecture #7. topobo (mit) Database Systems November 2, 2011 Lecture #7 1 topobo (mit) 1 Announcement Assignment #2 due today Assignment #3 out today & due on 11/16. Midterm exam in class next week. Cover Chapters 1, 2,

More information

CS370: System Architecture & Software [Fall 2014] Dept. Of Computer Science, Colorado State University

CS370: System Architecture & Software [Fall 2014] Dept. Of Computer Science, Colorado State University CS 370: SYSTEM ARCHITECTURE & SOFTWARE [MASS STORAGE] Frequently asked questions from the previous class survey Shrideep Pallickara Computer Science Colorado State University L29.1 L29.2 Topics covered

More information

Today: Coda, xfs. Case Study: Coda File System. Brief overview of other file systems. xfs Log structured file systems HDFS Object Storage Systems

Today: Coda, xfs. Case Study: Coda File System. Brief overview of other file systems. xfs Log structured file systems HDFS Object Storage Systems Today: Coda, xfs Case Study: Coda File System Brief overview of other file systems xfs Log structured file systems HDFS Object Storage Systems Lecture 20, page 1 Coda Overview DFS designed for mobile clients

More information

Method to Establish a High Availability and High Performance Storage Array in a Green Environment

Method to Establish a High Availability and High Performance Storage Array in a Green Environment Method to Establish a High Availability and High Performance Storage Array in a Green Environment Dr. M. K. Jibbe Director of Quality Architect Team, NetApp APG mahmoudj@netapp.com Marlin Gwaltney Quality

More information

5.11 Parallelism and Memory Hierarchy: Redundant Arrays of Inexpensive Disks 485.e1

5.11 Parallelism and Memory Hierarchy: Redundant Arrays of Inexpensive Disks 485.e1 5.11 Parallelism and Memory Hierarchy: Redundant Arrays of Inexpensive Disks 485.e1 5.11 Parallelism and Memory Hierarchy: Redundant Arrays of Inexpensive Disks Amdahl s law in Chapter 1 reminds us that

More information

Chapter 11: File System Implementation. Objectives

Chapter 11: File System Implementation. Objectives Chapter 11: File System Implementation Objectives To describe the details of implementing local file systems and directory structures To describe the implementation of remote file systems To discuss block

More information

CMSC 424 Database design Lecture 12 Storage. Mihai Pop

CMSC 424 Database design Lecture 12 Storage. Mihai Pop CMSC 424 Database design Lecture 12 Storage Mihai Pop Administrative Office hours tomorrow @ 10 Midterms are in solutions for part C will be posted later this week Project partners I have an odd number

More information

Taurus Mini Super-S3. Dual-Bay RAID Storage Enclosure for two 2.5-inch Serial ATA Hard Drives. User Manual March 31, 2014 v1.1

Taurus Mini Super-S3. Dual-Bay RAID Storage Enclosure for two 2.5-inch Serial ATA Hard Drives. User Manual March 31, 2014 v1.1 Dual-Bay RAID Storage Enclosure for two 2.5-inch Serial ATA Hard Drives User Manual March 31, 2014 v1.1 EN Table of Contents Table of Contents 1 Introduction... 1 1.1 System Requirements... 1 1.1.1 PC

More information

CMD Medley ATA RAID SOFTWARE User s Manual June 10, 2001 Revision 1.0

CMD Medley ATA RAID SOFTWARE User s Manual June 10, 2001 Revision 1.0 MAN-300649-000 CMD Medley ATA RAID SOFTWARE User s Manual June 10, 2001 Revision 1.0 Trademarks and Copyright CMD, CMD Technology, and CMD Medley are trademarks of CMD Technology, Inc. All other product

More information

AMD RAID Installation Guide

AMD RAID Installation Guide AMD RAID Installation Guide 1. AMD BIOS RAID Installation Guide.. 2 1.1 Introduction to RAID.. 2 1.2 RAID Configurations Precautions 3 1.3 Installing Windows 7 / 7 64-bit / Vista TM / Vista TM 64-bit /

More information

Australian Journal of Basic and Applied Sciences

Australian Journal of Basic and Applied Sciences ISSN:1991-8178 Australian Journal of Basic and Applied Sciences Journal home page: www.ajbasweb.com A Review on Raid Levels Implementation and Comparisons P. Sivakumar and K. Devi Department of Computer

More information

Computer Organization and Technology External Memory

Computer Organization and Technology External Memory Computer Organization and Technology External Memory Assoc. Prof. Dr. Wattanapong Kurdthongmee Division of Computer Engineering, School of Engineering and Resources, Walailak University 1 Magnetic Disk

More information

Lecture 29. Friday, March 23 CS 470 Operating Systems - Lecture 29 1

Lecture 29. Friday, March 23 CS 470 Operating Systems - Lecture 29 1 Lecture 29 Reminder: Homework 7 is due on Monday at class time for Exam 2 review; no late work accepted. Reminder: Exam 2 is on Wednesday. Exam 2 review sheet is posted. Questions? Friday, March 23 CS

More information

CSE380 - Operating Systems. Communicating with Devices

CSE380 - Operating Systems. Communicating with Devices CSE380 - Operating Systems Notes for Lecture 15-11/4/04 Matt Blaze (some examples by Insup Lee) Communicating with Devices Modern architectures support convenient communication with devices memory mapped

More information

Taurus Super-S3 LCM. Dual-Bay RAID Storage Enclosure for two 3.5-inch Serial ATA Hard Drives. User Manual March 31, 2014 v1.2

Taurus Super-S3 LCM. Dual-Bay RAID Storage Enclosure for two 3.5-inch Serial ATA Hard Drives. User Manual March 31, 2014 v1.2 Dual-Bay RAID Storage Enclosure for two 3.5-inch Serial ATA Hard Drives User Manual March 31, 2014 v1.2 www.inxtron.com EN Table of Contents Table of Contents 1 Introduction... 1 1.1 Technical Specifications...

More information

FASTTRAK S150 TX4 USER MANUAL. Version 1.5M

FASTTRAK S150 TX4 USER MANUAL. Version 1.5M FASTTRAK S150 TX4 USER MANUAL Version 1.5M FastTrak S150 TX4 User Manual Copyright 2003 Promise Technology, Inc. All Rights Reserved. Copyright by Promise Technology, Inc. (Promise Technology). No part

More information

Chapter 11. I/O Management and Disk Scheduling

Chapter 11. I/O Management and Disk Scheduling Operating System Chapter 11. I/O Management and Disk Scheduling Lynn Choi School of Electrical Engineering Categories of I/O Devices I/O devices can be grouped into 3 categories Human readable devices

More information

How to recover a failed Storage Spaces

How to recover a failed Storage Spaces www.storage-spaces-recovery.com How to recover a failed Storage Spaces ReclaiMe Storage Spaces Recovery User Manual 2013 www.storage-spaces-recovery.com Contents Overview... 4 Storage Spaces concepts and

More information

Taurus Mini Super-S LCM

Taurus Mini Super-S LCM Dual-Bay RAID Storage Enclosure for two 2.5-inch Serial ATA Hard Drives User Manual August 1, 2011 v1.0 www.akitio.com EN Table of Contents Table of Contents 1 Introduction... 1 1.1 System Requirements...

More information

Lecture 15 - Chapter 10 Storage and File Structure

Lecture 15 - Chapter 10 Storage and File Structure CMSC 461, Database Management Systems Spring 2018 Lecture 15 - Chapter 10 Storage and File Structure These slides are based on Database System Concepts 6th edition book (whereas some quotes and figures

More information

CS5460: Operating Systems Lecture 20: File System Reliability

CS5460: Operating Systems Lecture 20: File System Reliability CS5460: Operating Systems Lecture 20: File System Reliability File System Optimizations Modern Historic Technique Disk buffer cache Aggregated disk I/O Prefetching Disk head scheduling Disk interleaving

More information