SHRD: Improving Spatial Locality in Flash Storage Accesses by Sequentializing in Host and Randomizing in Device

Size: px
Start display at page:

Download "SHRD: Improving Spatial Locality in Flash Storage Accesses by Sequentializing in Host and Randomizing in Device"

Transcription

1 SHRD: Improving Spatial Locality in Flash Storage Accesses by Sequentializing in Host and Randomizing in Device Hyukjoong Kim 1, Dongkun Shin 1, Yun Ho Jeong 2 and Kyung Ho Kim 2 1 Samsung Electronics 2 Presented at FAST 17 1

2 Bandwidth (MB/s) Random write is still slow at SSD random write (4KB) sequential write (512KB) emmc 5.0 (Odroid-XU3) UFS (Galaxy S6) SATA SSD (Intel 525) SATA SSD (Samsung 850 Pro) NVMe SSD (Intel 750) 2

3 Why is RW slower than SW? 1. Request Handling Overhead 2. Garbage Collection Overhead 3. Mapping Table Handling Overhead 3

4 Why is RW slower than SW? 1. Request Handling Overhead Sequential write Large, few requests Random write Small, many requests Packed command e.g. emmc Interrupt coalescing e.g. NVMe, SATA NCQ Vectored I/O e.g. OpenChannel SSD [FAST 17] 4

5 Why is RW slower than SW? 2. Garbage Collection Overhead Blocks with SW Invalid I I I Valid V V V Blocks with RW RW generates hot/cold-mixed blocks Dispersed invalid pages high GC overhead I V I V V I V I Hot/cold separation Stores hot and cold data into different blocks Incremental GC / bggc can hide GC latency 5

6 Why is RW slower than SW? 3. Mapping Table Handling Overhead Page-level mapping FTL shows good performance on RW Requires a large DRAM to maintain fine-grained mapping table 4 byte per 4 KB 8 GB DRAM for 8 TB storage Demand loading FTL (DFTL [ASPLOS 08]) Uses a small map cache with on-demand map loading Random writes invoke frequent map loading/unloading 6

7 Demand-loading FTL (DFTL) Write LPN 768 Map caching scheme can show good performance by utilizing temporal & spatial locality Page level map load/unload One map page contains multiple contiguous mapping entries Vulnerable to random workload low temporal & spatial locality high map miss rate high map loading overhead LRU list loads map pages map blocks map page NAND Flash Chips DRAM Map Cache map page unloads data blocks map page data OOB 7

8 Previous Solution: LFS Generate only sequential writes out-of-place append-only write scheme Invalid Invalid Append logging storage space Problems reclaiming log space (cleaning overhead) Filesystem needs to copy valid page host-to-device data transfer Large metadata, wandering tree problem Fragmented read operation FS Storage read copy write LPN: Cleaning requires host-to-device data transfer operations 8

9 Can we remove copy overhead? SSD maintains a page-level mapping table Address remapping Can change the logical address of a written data by modifying mapping table AnViL [FAST 15], SHARE [SIGMOD 16] Can reclaim log space with address remapping FS Storage read copy write LPN: < Copying at filesystem > remap request FS Storage LPN: 32 remap 128 < Remapping at storage > Logical Physical Mapping Table 9

10 Which layer? File System or Block Layer Our solution is Append logging on Block Layer Append logging on log area temporarily Remap to the original location Can utilize legacy filesystems (e.g. EXT4) Simpler metadata management Faster sequential read performance Legacy Applications Legacy Filesystems Append-logging D/D Storage 10

11 SHRD (Sequentializing in Host, Randomizing in Device) Sequentializing in Host Host OS writes random requests sequentially at log area Randomizing in Device SSD modifies the mapping table to change the logical address Normal area Log area (reserved) (1) Sequentializing (2) Randomizing 11

12 SHRD Example: write multiple small random writes Logical address 0 Logging 1024 Normal area (FS visible) single large sequential write 1024 Log area (FS invisible) olpn: original LPN tlpn: temporal LPN Host redirection table olpn tlpn physical address Device mapping table LPN PPN NAND flash

13 SHRD Example: read redirection olpn: original LPN tlpn: temporal LPN Logical address 0 Read 32 redirect to Host redirection table olpn tlpn physical address Device mapping table LPN PPN NAND flash

14 SHRD Example: remap olpn: original LPN tlpn: temporal LPN Logical address 0 remap Host redirection table olpn tlpn physical address Device mapping table LPN PPN NAND flash

15 Can we really reduce map loading overhead? Remap modifies the mapping entries of sequentialized pages A time-ordered access scheme olpn tlpn olpn inherits the original random pattern low spatial locality olpn-ordered map access The mapping table is olpn-indexed Can increase spatial locality time-ordered access 8 map loads remapping sequence tlpn olpn-ordered access 5 map loads 15

16 Map miss ratio utilization of parallel unit The effect of request reordering 15% 10% 5% stg_0 proj_0 stg_0 proj_0 improve parallelism reduce map miss 100% 80% 60% 40% 20% 0% NONE 2MB 4MB 8MB 16MB 32MB 64MB Reordering window size 0% 16

17 SHRD (Sequentializing in Host, Randomizing in Device) File system, Applications Device Driver map reclaim read() map insert write() Randomizer Redirection Table Sequentializer SSD (SHRD-FTL) Map Cache remap() read( ) twrite() Map Blocks Data Blocks RWLB Blocks 17

18 SHRD (Sequentializing in Host, Randomizing in Device) File system, Applications Device Driver Randomizer Redirection Table Sequentializer Sequentializer Gathers random write requests, sequentially logs into temporal location Redirection table Maintains redirection table between temporal address and original address Randomizer Sends remap command to storage device and reclaims temporal location 18

19 SHRD (Sequentializing in Host, Randomizing in Device) SHRD-FTL Receives twrite and remap command from host OS twrite Write command with two addresses, temporal/original address The data must be stored into separate physical blocks called RWLB remap Restores the data written at temporal location into original address Changes mapping table from temporal address to original address Corresponding RWLB blocks will be transferred into data blocks remap (tlpn, olpn) SSD (SHRD-FTL) Map Cache twrite (olpn, tlpn) Map Blocks Data Blocks RWLB Blocks 19

20 Special commands: twrite & remap twrite (olpn[n], tlpn_start, n, data) Write command sends two addresses, (tlpn, olpn) olpn is stored at the OOB area of physical page used for power-off-recovery / GC Packed command with multiple RW requests remap (olpn[m], tlpn[m], m) m = # of remapping entries per remap command olpn-sorted entries Improving spatial locality Changes mapping table from tlpn to olpn tlpn : PPN olpn : PPN 20

21 Command Sequence: Sequentializing in Host a b c d I/O scheduler twrite header olpn tlpn twrite data mapping a b c d SHRD driver SATA write command (OOB) Completion SATA write command (OOB) Completion SATA Interface seq_ptr rand_ptr 1024 a SSD Device Normal area b c d Log area 1024 data spare NAND a 32 21

22 Command Sequence: Randomizing in Device I/O scheduler remap olpn tlpn SHRD driver SATA write command (OOB) Change mapping table SATA Interface SSD Device rand_ptr seq_ptr Normal area 1024 a b c d valid log area Log area 22

23 GC & Power Off Recovery (POR) Reverse map in out-of-band (OOB) area SSD stores corresponding LPN in OOB area Reverse map is used for GC & recovery GC: change the mapping table of victim valid page Recovery: recover the mapping table of active blocks Physical page layout Data OOB ECC LPN 23

24 GC & Power Off Recovery (POR) Store olpn at the OOB area of RWLB RWLB blocks must be excluded from choosing victim until entire data stored in the blocks are remapped Non-remapped data will be auto-remapped at POR by scanning the OOB area of RWLB blocks twrite Data RWLB Block olpn after remap moved into data block can be victim of GC OOB before remap POR will scan OOB do auto-remap 24

25 Implementation SHRD D/D is implemented in Linux kernel Additional kernel module at SCSI D/D layer Host redirection table: about 1 MB for 64 MB log area Prototype SSD device Modified the firmware of a commercial SATA3 SSD device (Samsung 843) DFTL & SHRD-FTL are implemented Map cache size is configurable 25

26 bandwidth (MB/s) map load per page IO RW Performance According to cache DFTL SHRD 30x faster than DFTL at tiny size of cache 128KB 256KB 512KB 1MB 2MB 4MB 8MB fully Map cache size loaded Better performance than DFTL By reducing map loading/unloading overhead SHRD shows steady performance regardless of cache size fio random write test (32GB space, 4KB write) DFTL SHRD 128KB 256KB 512KB 1MB 2MB 4MB 8MB fully Map cache size loaded 26

27 throughput (normalized to DFTL) Performance on Real Benchmarks small random write dominant workloads sequential write workload CMT caches about 5% of entire workload space read/flush dominant workload tpcc YCSB postmark fileserver varmail Better performance at all workloads Small gains at sequential or read dominant workload still better than DFTL 27

28 bandwidth (MB/s) SHRD gains at EXT4 vs. F2FS low utilization high utilization F2FS (SSR) w/ DFTL EXT4 w/ DFTL time(s) EXT4 shows bad performance on random write Performance of F2FS decreases due to SSR at high utilization 28

29 bandwidth (MB/s) SHRD gains at EXT4 vs. F2FS low utilization ext4 improvement high utilization F2FS (SSR) w/ DFTL F2FS (SSR) w/ SHRD EXT4 w/ DFTL EXT4 w/ SHRD F2FS improvement time(s) SHRD improves both EXT4 and F2FS SHRD improves the bandwidth of aged F2FS EXT4 shows similar performance as F2FS by using SHRD 29

30 bandwidth (MB/s) bandwidth (MB/s) SHRD gains at EXT4 vs. F2FS F2FS (SSR) w/ DFTL F2FS (SSR) w/ SHRD EXT4 w/ DFTL EXT4 w/ SHRD EXT4 w/ SHRD F2FS (SSR) w/ SHRD time(s) Sequential read performance of EXT4 is much better The out-of-place scheme of F2FS scatters the data blocks of a file 0 Sequential read Random read 30

31 bandwidth (MB/s) Latency Comparison Remap command can delay read operations Several remapping entries are batched into a single command # of remapping entries per command can control the maximum latency of following I/O operations read write fio mixed workload remap period (32GB area, 4KB random read/write mixed) DFTL SHRD 31

32 Visualizing address accessing pattern: postmark seqeuntialized write remap command access < without SHRD > < with SHRD >

33 Conclusion SHRD is an address reshaping technique transforms RW into SW at the block D/D restores the original addresses without copy operations Solves POR / GC issues of address remapping SHRD improves 30x better performance at a small map cache reduces DRAM drastically 33

34 Thank you. 34

Solid State Drives (SSDs) Jin-Soo Kim Computer Systems Laboratory Sungkyunkwan University

Solid State Drives (SSDs) Jin-Soo Kim Computer Systems Laboratory Sungkyunkwan University Solid State Drives (SSDs) Jin-Soo Kim (jinsookim@skku.edu) Computer Systems Laboratory Sungkyunkwan University http://csl.skku.edu Memory Types FLASH High-density Low-cost High-speed Low-power High reliability

More information

I/O Devices & SSD. Dongkun Shin, SKKU

I/O Devices & SSD. Dongkun Shin, SKKU I/O Devices & SSD 1 System Architecture Hierarchical approach Memory bus CPU and memory Fastest I/O bus e.g., PCI Graphics and higherperformance I/O devices Peripheral bus SCSI, SATA, or USB Connect many

More information

SFS: Random Write Considered Harmful in Solid State Drives

SFS: Random Write Considered Harmful in Solid State Drives SFS: Random Write Considered Harmful in Solid State Drives Changwoo Min 1, 2, Kangnyeon Kim 1, Hyunjin Cho 2, Sang-Won Lee 1, Young Ik Eom 1 1 Sungkyunkwan University, Korea 2 Samsung Electronics, Korea

More information

Clustered Page-Level Mapping for Flash Memory-Based Storage Devices

Clustered Page-Level Mapping for Flash Memory-Based Storage Devices H. Kim and D. Shin: ed Page-Level Mapping for Flash Memory-Based Storage Devices 7 ed Page-Level Mapping for Flash Memory-Based Storage Devices Hyukjoong Kim and Dongkun Shin, Member, IEEE Abstract Recent

More information

Using Transparent Compression to Improve SSD-based I/O Caches

Using Transparent Compression to Improve SSD-based I/O Caches Using Transparent Compression to Improve SSD-based I/O Caches Thanos Makatos, Yannis Klonatos, Manolis Marazakis, Michail D. Flouris, and Angelos Bilas {mcatos,klonatos,maraz,flouris,bilas}@ics.forth.gr

More information

ParaFS: A Log-Structured File System to Exploit the Internal Parallelism of Flash Devices

ParaFS: A Log-Structured File System to Exploit the Internal Parallelism of Flash Devices ParaFS: A Log-Structured File System to Exploit the Internal Parallelism of Devices Jiacheng Zhang, Jiwu Shu, Youyou Lu Tsinghua University 1 Outline Background and Motivation ParaFS Design Evaluation

More information

Toward SLO Complying SSDs Through OPS Isolation

Toward SLO Complying SSDs Through OPS Isolation Toward SLO Complying SSDs Through OPS Isolation October 23, 2015 Hongik University UNIST (Ulsan National Institute of Science & Technology) Sam H. Noh 1 Outline Part 1: FAST 2015 Part 2: Beyond FAST 2

More information

VSSIM: Virtual Machine based SSD Simulator

VSSIM: Virtual Machine based SSD Simulator 29 th IEEE Conference on Mass Storage Systems and Technologies (MSST) Long Beach, California, USA, May 6~10, 2013 VSSIM: Virtual Machine based SSD Simulator Jinsoo Yoo, Youjip Won, Joongwoo Hwang, Sooyong

More information

Page Mapping Scheme to Support Secure File Deletion for NANDbased Block Devices

Page Mapping Scheme to Support Secure File Deletion for NANDbased Block Devices Page Mapping Scheme to Support Secure File Deletion for NANDbased Block Devices Ilhoon Shin Seoul National University of Science & Technology ilhoon.shin@snut.ac.kr Abstract As the amount of digitized

More information

Strata: A Cross Media File System. Youngjin Kwon, Henrique Fingler, Tyler Hunt, Simon Peter, Emmett Witchel, Thomas Anderson

Strata: A Cross Media File System. Youngjin Kwon, Henrique Fingler, Tyler Hunt, Simon Peter, Emmett Witchel, Thomas Anderson A Cross Media File System Youngjin Kwon, Henrique Fingler, Tyler Hunt, Simon Peter, Emmett Witchel, Thomas Anderson 1 Let s build a fast server NoSQL store, Database, File server, Mail server Requirements

More information

Yiying Zhang, Leo Prasath Arulraj, Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau. University of Wisconsin - Madison

Yiying Zhang, Leo Prasath Arulraj, Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau. University of Wisconsin - Madison Yiying Zhang, Leo Prasath Arulraj, Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau University of Wisconsin - Madison 1 Indirection Reference an object with a different name Flexible, simple, and

More information

Optimizing Translation Information Management in NAND Flash Memory Storage Systems

Optimizing Translation Information Management in NAND Flash Memory Storage Systems Optimizing Translation Information Management in NAND Flash Memory Storage Systems Qi Zhang 1, Xuandong Li 1, Linzhang Wang 1, Tian Zhang 1 Yi Wang 2 and Zili Shao 2 1 State Key Laboratory for Novel Software

More information

Cascade Mapping: Optimizing Memory Efficiency for Flash-based Key-value Caching

Cascade Mapping: Optimizing Memory Efficiency for Flash-based Key-value Caching Cascade Mapping: Optimizing Memory Efficiency for Flash-based Key-value Caching Kefei Wang and Feng Chen Louisiana State University SoCC '18 Carlsbad, CA Key-value Systems in Internet Services Key-value

More information

OSSD: A Case for Object-based Solid State Drives

OSSD: A Case for Object-based Solid State Drives MSST 2013 2013/5/10 OSSD: A Case for Object-based Solid State Drives Young-Sik Lee Sang-Hoon Kim, Seungryoul Maeng, KAIST Jaesoo Lee, Chanik Park, Samsung Jin-Soo Kim, Sungkyunkwan Univ. SSD Desktop Laptop

More information

FStream: Managing Flash Streams in the File System

FStream: Managing Flash Streams in the File System FStream: Managing Flash Streams in the File System Eunhee Rho, Kanchan Joshi, Seung-Uk Shin, Nitesh Jagadeesh Shetty, Joo-Young Hwang, Sangyeun Cho, Daniel DG Lee, Jaeheon Jeong Memory Division, Samsung

More information

ParaFS: A Log-Structured File System to Exploit the Internal Parallelism of Flash Devices

ParaFS: A Log-Structured File System to Exploit the Internal Parallelism of Flash Devices ParaFS: A Log-Structured File System to Exploit the Internal Parallelism of Devices Jiacheng Zhang Jiwu Shu Youyou Lu Department of Computer Science and Technology, Tsinghua University Tsinghua National

More information

NAND Flash-based Storage. Jin-Soo Kim Computer Systems Laboratory Sungkyunkwan University

NAND Flash-based Storage. Jin-Soo Kim Computer Systems Laboratory Sungkyunkwan University NAND Flash-based Storage Jin-Soo Kim (jinsookim@skku.edu) Computer Systems Laboratory Sungkyunkwan University http://csl.skku.edu Today s Topics NAND flash memory Flash Translation Layer (FTL) OS implications

More information

COS 318: Operating Systems. Storage Devices. Vivek Pai Computer Science Department Princeton University

COS 318: Operating Systems. Storage Devices. Vivek Pai Computer Science Department Princeton University COS 318: Operating Systems Storage Devices Vivek Pai Computer Science Department Princeton University http://www.cs.princeton.edu/courses/archive/fall11/cos318/ Today s Topics Magnetic disks Magnetic disk

More information

High-Performance Transaction Processing in Journaling File Systems Y. Son, S. Kim, H. Y. Yeom, and H. Han

High-Performance Transaction Processing in Journaling File Systems Y. Son, S. Kim, H. Y. Yeom, and H. Han High-Performance Transaction Processing in Journaling File Systems Y. Son, S. Kim, H. Y. Yeom, and H. Han Seoul National University, Korea Dongduk Women s University, Korea Contents Motivation and Background

More information

S-FTL: An Efficient Address Translation for Flash Memory by Exploiting Spatial Locality

S-FTL: An Efficient Address Translation for Flash Memory by Exploiting Spatial Locality S-FTL: An Efficient Address Translation for Flash Memory by Exploiting Spatial Locality Song Jiang, Lei Zhang, Xinhao Yuan, Hao Hu, and Yu Chen Department of Electrical and Computer Engineering Wayne State

More information

FFS: The Fast File System -and- The Magical World of SSDs

FFS: The Fast File System -and- The Magical World of SSDs FFS: The Fast File System -and- The Magical World of SSDs The Original, Not-Fast Unix Filesystem Disk Superblock Inodes Data Directory Name i-number Inode Metadata Direct ptr......... Indirect ptr 2-indirect

More information

Storage Architecture and Software Support for SLC/MLC Combined Flash Memory

Storage Architecture and Software Support for SLC/MLC Combined Flash Memory Storage Architecture and Software Support for SLC/MLC Combined Flash Memory Soojun Im and Dongkun Shin Sungkyunkwan University Suwon, Korea {lang33, dongkun}@skku.edu ABSTRACT We propose a novel flash

More information

Power Analysis for Flash Memory SSD. Dongkun Shin Sungkyunkwan University

Power Analysis for Flash Memory SSD. Dongkun Shin Sungkyunkwan University Power Analysis for Flash Memory SSD Dongkun Shin Sungkyunkwan University dongkun@skku.edu Introduction SSD requires low power/energy than does HDD. attractive to mobile systems and power-hungry data centers

More information

NAND Flash-based Storage. Computer Systems Laboratory Sungkyunkwan University

NAND Flash-based Storage. Computer Systems Laboratory Sungkyunkwan University NAND Flash-based Storage Jin-Soo Kim (jinsookim@skku.edu) Computer Systems Laboratory Sungkyunkwan University http://csl.skku.edu Today s Topics NAND flash memory Flash Translation Layer (FTL) OS implications

More information

Application-Managed Flash

Application-Managed Flash Application-Managed Flash Sungjin Lee*, Ming Liu, Sangwoo Jun, Shuotao Xu, Jihong Kim and Arvind *Inha University Massachusetts Institute of Technology Seoul National University Operating System Support

More information

Operating Systems. Operating Systems Professor Sina Meraji U of T

Operating Systems. Operating Systems Professor Sina Meraji U of T Operating Systems Operating Systems Professor Sina Meraji U of T How are file systems implemented? File system implementation Files and directories live on secondary storage Anything outside of primary

More information

Don t stack your Log on my Log

Don t stack your Log on my Log Don t stack your Log on my Log Jingpei Yang, Ned Plasson, Greg Gillis, Nisha Talagala, Swaminathan Sundararaman Oct 5, 2014 c 1 Outline Introduction Log-stacking models Problems with stacking logs Solutions

More information

NAND Flash-based Storage. Jin-Soo Kim Computer Systems Laboratory Sungkyunkwan University

NAND Flash-based Storage. Jin-Soo Kim Computer Systems Laboratory Sungkyunkwan University NAND Flash-based Storage Jin-Soo Kim (jinsookim@skku.edu) Computer Systems Laboratory Sungkyunkwan University http://csl.skku.edu Today s Topics NAND flash memory Flash Translation Layer (FTL) OS implications

More information

Dongjun Shin Samsung Electronics

Dongjun Shin Samsung Electronics 2014.10.31. Dongjun Shin Samsung Electronics Contents 2 Background Understanding CPU behavior Experiments Improvement idea Revisiting Linux I/O stack Conclusion Background Definition 3 CPU bound A computer

More information

CFTL: A Convertible Flash Translation Layer with Consideration of Data Access Patterns. Technical Report

CFTL: A Convertible Flash Translation Layer with Consideration of Data Access Patterns. Technical Report : A Convertible Flash Translation Layer with Consideration of Data Access Patterns Technical Report Department of Computer Science and Engineering University of Minnesota 4-9 EECS Building Union Street

More information

Maximizing Data Center and Enterprise Storage Efficiency

Maximizing Data Center and Enterprise Storage Efficiency Maximizing Data Center and Enterprise Storage Efficiency Enterprise and data center customers can leverage AutoStream to achieve higher application throughput and reduced latency, with negligible organizational

More information

Getting Real: Lessons in Transitioning Research Simulations into Hardware Systems

Getting Real: Lessons in Transitioning Research Simulations into Hardware Systems Getting Real: Lessons in Transitioning Research Simulations into Hardware Systems Mohit Saxena, Yiying Zhang Michael Swift, Andrea Arpaci-Dusseau and Remzi Arpaci-Dusseau Flash Storage Stack Research SSD

More information

Presented by: Nafiseh Mahmoudi Spring 2017

Presented by: Nafiseh Mahmoudi Spring 2017 Presented by: Nafiseh Mahmoudi Spring 2017 Authors: Publication: Type: ACM Transactions on Storage (TOS), 2016 Research Paper 2 High speed data processing demands high storage I/O performance. Flash memory

More information

FILE SYSTEMS, PART 2. CS124 Operating Systems Fall , Lecture 24

FILE SYSTEMS, PART 2. CS124 Operating Systems Fall , Lecture 24 FILE SYSTEMS, PART 2 CS124 Operating Systems Fall 2017-2018, Lecture 24 2 Last Time: File Systems Introduced the concept of file systems Explored several ways of managing the contents of files Contiguous

More information

pblk the OCSSD FTL Linux FAST Summit 18 Javier González Copyright 2018 CNEX Labs

pblk the OCSSD FTL Linux FAST Summit 18 Javier González Copyright 2018 CNEX Labs pblk the OCSSD FTL Linux FAST Summit 18 Javier González Read Latency Read Latency with 0% Writes Random Read 4K Percentiles 2 Read Latency Read Latency with 20% Writes Random Read 4K + Random Write 4K

More information

A Semi Preemptive Garbage Collector for Solid State Drives. Junghee Lee, Youngjae Kim, Galen M. Shipman, Sarp Oral, Feiyi Wang, and Jongman Kim

A Semi Preemptive Garbage Collector for Solid State Drives. Junghee Lee, Youngjae Kim, Galen M. Shipman, Sarp Oral, Feiyi Wang, and Jongman Kim A Semi Preemptive Garbage Collector for Solid State Drives Junghee Lee, Youngjae Kim, Galen M. Shipman, Sarp Oral, Feiyi Wang, and Jongman Kim Presented by Junghee Lee High Performance Storage Systems

More information

SUPA: A Single Unified Read-Write Buffer and Pattern-Change-Aware FTL for the High Performance of Multi-Channel SSD

SUPA: A Single Unified Read-Write Buffer and Pattern-Change-Aware FTL for the High Performance of Multi-Channel SSD SUPA: A Single Unified Read-Write Buffer and Pattern-Change-Aware FTL for the High Performance of Multi-Channel SSD DONGJIN KIM, KYU HO PARK, and CHAN-HYUN YOUN, KAIST To design the write buffer and flash

More information

u Covered: l Management of CPU & concurrency l Management of main memory & virtual memory u Currently --- Management of I/O devices

u Covered: l Management of CPU & concurrency l Management of main memory & virtual memory u Currently --- Management of I/O devices Where Are We? COS 318: Operating Systems Storage Devices Jaswinder Pal Singh Computer Science Department Princeton University (http://www.cs.princeton.edu/courses/cos318/) u Covered: l Management of CPU

More information

Virtual Memory. Reading. Sections 5.4, 5.5, 5.6, 5.8, 5.10 (2) Lecture notes from MKP and S. Yalamanchili

Virtual Memory. Reading. Sections 5.4, 5.5, 5.6, 5.8, 5.10 (2) Lecture notes from MKP and S. Yalamanchili Virtual Memory Lecture notes from MKP and S. Yalamanchili Sections 5.4, 5.5, 5.6, 5.8, 5.10 Reading (2) 1 The Memory Hierarchy ALU registers Cache Memory Memory Memory Managed by the compiler Memory Managed

More information

Optimizing Flash-based Key-value Cache Systems

Optimizing Flash-based Key-value Cache Systems Optimizing Flash-based Key-value Cache Systems Zhaoyan Shen, Feng Chen, Yichen Jia, Zili Shao Department of Computing, Hong Kong Polytechnic University Computer Science & Engineering, Louisiana State University

More information

Linux Kernel Abstractions for Open-Channel SSDs

Linux Kernel Abstractions for Open-Channel SSDs Linux Kernel Abstractions for Open-Channel SSDs Matias Bjørling Javier González, Jesper Madsen, and Philippe Bonnet 2015/03/01 1 Market Specific FTLs SSDs on the market with embedded FTLs targeted at specific

More information

Webscale, All Flash, Distributed File Systems. Avraham Meir Elastifile

Webscale, All Flash, Distributed File Systems. Avraham Meir Elastifile Webscale, All Flash, Distributed File Systems Avraham Meir Elastifile 1 Outline The way to all FLASH The way to distributed storage Scale-out storage management Conclusion 2 Storage Technology Trend NAND

More information

A Mixed Flash Translation Layer Structure for SLC-MLC Combined Flash Memory System

A Mixed Flash Translation Layer Structure for SLC-MLC Combined Flash Memory System A Mixed Flash Translation Layer Structure for SLC-MLC Combined Flash Memory System Seung-Ho Park, Jung-Wook Park, Jong-Min Jeong, Jung-Hwan Kim, Shin-Dug Kim Department of Computer Science, Yonsei University,

More information

ZBD: Using Transparent Compression at the Block Level to Increase Storage Space Efficiency

ZBD: Using Transparent Compression at the Block Level to Increase Storage Space Efficiency ZBD: Using Transparent Compression at the Block Level to Increase Storage Space Efficiency Thanos Makatos, Yannis Klonatos, Manolis Marazakis, Michail D. Flouris, and Angelos Bilas {mcatos,klonatos,maraz,flouris,bilas}@ics.forth.gr

More information

Open-Channel SSDs Offer the Flexibility Required by Hyperscale Infrastructure Matias Bjørling CNEX Labs

Open-Channel SSDs Offer the Flexibility Required by Hyperscale Infrastructure Matias Bjørling CNEX Labs Open-Channel SSDs Offer the Flexibility Required by Hyperscale Infrastructure Matias Bjørling CNEX Labs 1 Public and Private Cloud Providers 2 Workloads and Applications Multi-Tenancy Databases Instance

More information

Managing Array of SSDs When the Storage Device is No Longer the Performance Bottleneck

Managing Array of SSDs When the Storage Device is No Longer the Performance Bottleneck Managing Array of Ds When the torage Device is No Longer the Performance Bottleneck Byung. Kim, Jaeho Kim, am H. Noh UNIT (Ulsan National Institute of cience & Technology) Outline Motivation & Observation

More information

1110 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 33, NO. 7, JULY 2014

1110 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 33, NO. 7, JULY 2014 1110 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 33, NO. 7, JULY 2014 Adaptive Paired Page Prebackup Scheme for MLC NAND Flash Memory Jaeil Lee and Dongkun Shin,

More information

NAND Flash-based Storage. Jin-Soo Kim Computer Systems Laboratory Sungkyunkwan University

NAND Flash-based Storage. Jin-Soo Kim Computer Systems Laboratory Sungkyunkwan University NAND Flash-based Storage Jin-Soo Kim (jinsookim@skku.edu) Computer Systems Laboratory Sungkyunkwan University http://csl.skku.edu Today s Topics NAND flash memory Flash Translation Layer (FTL) OS implications

More information

Delayed Partial Parity Scheme for Reliable and High-Performance Flash Memory SSD

Delayed Partial Parity Scheme for Reliable and High-Performance Flash Memory SSD Delayed Partial Parity Scheme for Reliable and High-Performance Flash Memory SSD Soojun Im School of ICE Sungkyunkwan University Suwon, Korea Email: lang33@skku.edu Dongkun Shin School of ICE Sungkyunkwan

More information

Mass-Storage Structure

Mass-Storage Structure Operating Systems (Fall/Winter 2018) Mass-Storage Structure Yajin Zhou (http://yajin.org) Zhejiang University Acknowledgement: some pages are based on the slides from Zhi Wang(fsu). Review On-disk structure

More information

2. PICTURE: Cut and paste from paper

2. PICTURE: Cut and paste from paper File System Layout 1. QUESTION: What were technology trends enabling this? a. CPU speeds getting faster relative to disk i. QUESTION: What is implication? Can do more work per disk block to make good decisions

More information

Secondary storage. CS 537 Lecture 11 Secondary Storage. Disk trends. Another trip down memory lane

Secondary storage. CS 537 Lecture 11 Secondary Storage. Disk trends. Another trip down memory lane Secondary storage CS 537 Lecture 11 Secondary Storage Michael Swift Secondary storage typically: is anything that is outside of primary memory does not permit direct execution of instructions or data retrieval

More information

CSCI-GA Database Systems Lecture 8: Physical Schema: Storage

CSCI-GA Database Systems Lecture 8: Physical Schema: Storage CSCI-GA.2433-001 Database Systems Lecture 8: Physical Schema: Storage Mohamed Zahran (aka Z) mzahran@cs.nyu.edu http://www.mzahran.com View 1 View 2 View 3 Conceptual Schema Physical Schema 1. Create a

More information

MQSim: A Framework for Enabling Realistic Studies of Modern Multi-Queue SSD Devices

MQSim: A Framework for Enabling Realistic Studies of Modern Multi-Queue SSD Devices MQSim: A Framework for Enabling Realistic Studies of Modern Multi-Queue SSD Devices Arash Tavakkol, Juan Gómez-Luna, Mohammad Sadrosadati, Saugata Ghose, Onur Mutlu February 13, 2018 Executive Summary

More information

[537] Flash. Tyler Harter

[537] Flash. Tyler Harter [537] Flash Tyler Harter Flash vs. Disk Disk Overview I/O requires: seek, rotate, transfer Inherently: - not parallel (only one head) - slow (mechanical) - poor random I/O (locality around disk head) Random

More information

p-oftl: An Object-based Semantic-aware Parallel Flash Translation Layer

p-oftl: An Object-based Semantic-aware Parallel Flash Translation Layer p-oftl: An Object-based Semantic-aware Parallel Flash Translation Layer Wei Wang, Youyou Lu, and Jiwu Shu Department of Computer Science and Technology, Tsinghua University, Beijing, China Tsinghua National

More information

LAST: Locality-Aware Sector Translation for NAND Flash Memory-Based Storage Systems

LAST: Locality-Aware Sector Translation for NAND Flash Memory-Based Storage Systems : Locality-Aware Sector Translation for NAND Flash Memory-Based Storage Systems Sungjin Lee, Dongkun Shin, Young-Jin Kim and Jihong Kim School of Information and Communication Engineering, Sungkyunkwan

More information

COS 318: Operating Systems. Storage Devices. Kai Li Computer Science Department Princeton University

COS 318: Operating Systems. Storage Devices. Kai Li Computer Science Department Princeton University COS 318: Operating Systems Storage Devices Kai Li Computer Science Department Princeton University http://www.cs.princeton.edu/courses/archive/fall11/cos318/ Today s Topics Magnetic disks Magnetic disk

More information

Chapter 14 HARD: Host-Level Address Remapping Driver for Solid-State Disk

Chapter 14 HARD: Host-Level Address Remapping Driver for Solid-State Disk Chapter 14 HARD: Host-Level Address Remapping Driver for Solid-State Disk Young-Joon Jang and Dongkun Shin Abstract Recent SSDs use parallel architectures with multi-channel and multiway, and manages multiple

More information

Linux Storage System Bottleneck Exploration

Linux Storage System Bottleneck Exploration Linux Storage System Bottleneck Exploration Bean Huo / Zoltan Szubbocsev Beanhuo@micron.com / zszubbocsev@micron.com 215 Micron Technology, Inc. All rights reserved. Information, products, and/or specifications

More information

NAND/MTD support under Linux

NAND/MTD support under Linux 12 July 2012 NAND Features 1 Flash is everywhere NAND Features non-volatile computer storage chip that can be electrically erased and reprogrammed usb flash drives memory cards solid-state drives Flash

More information

File System Implementations

File System Implementations CSE 451: Operating Systems Winter 2005 FFS and LFS Steve Gribble File System Implementations We ve looked at disks and file systems generically now it s time to bridge the gap by talking about specific

More information

Gecko: Contention-Oblivious Disk Arrays for Cloud Storage

Gecko: Contention-Oblivious Disk Arrays for Cloud Storage Gecko: Contention-Oblivious Disk Arrays for Cloud Storage Ji-Yong Shin Cornell University In collaboration with Mahesh Balakrishnan (MSR SVC), Tudor Marian (Google), and Hakim Weatherspoon (Cornell) FAST

More information

Open-Channel SSDs Then. Now. And Beyond. Matias Bjørling, March 22, Copyright 2017 CNEX Labs

Open-Channel SSDs Then. Now. And Beyond. Matias Bjørling, March 22, Copyright 2017 CNEX Labs Open-Channel SSDs Then. Now. And Beyond. Matias Bjørling, March 22, 2017 What is an Open-Channel SSD? Then Now - Physical Page Addressing v1.2 - LightNVM Subsystem - Developing for an Open-Channel SSD

More information

Efficient Memory Mapped File I/O for In-Memory File Systems. Jungsik Choi, Jiwon Kim, Hwansoo Han

Efficient Memory Mapped File I/O for In-Memory File Systems. Jungsik Choi, Jiwon Kim, Hwansoo Han Efficient Memory Mapped File I/O for In-Memory File Systems Jungsik Choi, Jiwon Kim, Hwansoo Han Operations Per Second Storage Latency Close to DRAM SATA/SAS Flash SSD (~00μs) PCIe Flash SSD (~60 μs) D-XPoint

More information

Storage Systems : Disks and SSDs. Manu Awasthi CASS 2018

Storage Systems : Disks and SSDs. Manu Awasthi CASS 2018 Storage Systems : Disks and SSDs Manu Awasthi CASS 2018 Why study storage? Scalable High Performance Main Memory System Using Phase-Change Memory Technology, Qureshi et al, ISCA 2009 Trends Total amount

More information

PebblesDB: Building Key-Value Stores using Fragmented Log Structured Merge Trees

PebblesDB: Building Key-Value Stores using Fragmented Log Structured Merge Trees PebblesDB: Building Key-Value Stores using Fragmented Log Structured Merge Trees Pandian Raju 1, Rohan Kadekodi 1, Vijay Chidambaram 1,2, Ittai Abraham 2 1 The University of Texas at Austin 2 VMware Research

More information

COS 318: Operating Systems. Storage Devices. Jaswinder Pal Singh Computer Science Department Princeton University

COS 318: Operating Systems. Storage Devices. Jaswinder Pal Singh Computer Science Department Princeton University COS 318: Operating Systems Storage Devices Jaswinder Pal Singh Computer Science Department Princeton University http://www.cs.princeton.edu/courses/archive/fall13/cos318/ Today s Topics Magnetic disks

More information

Linux Kernel Extensions for Open-Channel SSDs

Linux Kernel Extensions for Open-Channel SSDs Linux Kernel Extensions for Open-Channel SSDs Matias Bjørling Member of Technical Staff Santa Clara, CA 1 The Future of device FTLs? Dealing with flash chip constrains is a necessity No way around the

More information

Comparing UFS and NVMe Storage Stack and System-Level Performance in Embedded Systems

Comparing UFS and NVMe Storage Stack and System-Level Performance in Embedded Systems Comparing UFS and NVMe Storage Stack and System-Level Performance in Embedded Systems Bean Huo, Blair Pan, Peter Pan, Zoltan Szubbocsev Micron Technology Introduction Embedded storage systems have experienced

More information

ijournaling: Fine-Grained Journaling for Improving the Latency of Fsync System Call

ijournaling: Fine-Grained Journaling for Improving the Latency of Fsync System Call ijournaling: Fine-Grained Journaling for Improving the Latency of Fsync System Call Daejun Park and Dongkun Shin, Sungkyunkwan University, Korea https://www.usenix.org/conference/atc17/technical-sessions/presentation/park

More information

Falcon: Scaling IO Performance in Multi-SSD Volumes. The George Washington University

Falcon: Scaling IO Performance in Multi-SSD Volumes. The George Washington University Falcon: Scaling IO Performance in Multi-SSD Volumes Pradeep Kumar H Howie Huang The George Washington University SSDs in Big Data Applications Recent trends advocate using many SSDs for higher throughput

More information

A Memory Management Scheme for Hybrid Memory Architecture in Mission Critical Computers

A Memory Management Scheme for Hybrid Memory Architecture in Mission Critical Computers A Memory Management Scheme for Hybrid Memory Architecture in Mission Critical Computers Soohyun Yang and Yeonseung Ryu Department of Computer Engineering, Myongji University Yongin, Gyeonggi-do, Korea

More information

80 IEEE TRANSACTIONS ON COMPUTERS, VOL. 60, NO. 1, JANUARY Flash-Aware RAID Techniques for Dependable and High-Performance Flash Memory SSD

80 IEEE TRANSACTIONS ON COMPUTERS, VOL. 60, NO. 1, JANUARY Flash-Aware RAID Techniques for Dependable and High-Performance Flash Memory SSD 80 IEEE TRANSACTIONS ON COMPUTERS, VOL. 60, NO. 1, JANUARY 2011 Flash-Aware RAID Techniques for Dependable and High-Performance Flash Memory SSD Soojun Im and Dongkun Shin, Member, IEEE Abstract Solid-state

More information

LightNVM: The Linux Open-Channel SSD Subsystem Matias Bjørling (ITU, CNEX Labs), Javier González (CNEX Labs), Philippe Bonnet (ITU)

LightNVM: The Linux Open-Channel SSD Subsystem Matias Bjørling (ITU, CNEX Labs), Javier González (CNEX Labs), Philippe Bonnet (ITU) ½ LightNVM: The Linux Open-Channel SSD Subsystem Matias Bjørling (ITU, CNEX Labs), Javier González (CNEX Labs), Philippe Bonnet (ITU) 0% Writes - Read Latency 4K Random Read Latency 4K Random Read Percentile

More information

A File-System-Aware FTL Design for Flash Memory Storage Systems

A File-System-Aware FTL Design for Flash Memory Storage Systems 1 A File-System-Aware FTL Design for Flash Memory Storage Systems Po-Liang Wu, Yuan-Hao Chang, Po-Chun Huang, and Tei-Wei Kuo National Taiwan University 2 Outline Introduction File Systems Observations

More information

Advanced file systems: LFS and Soft Updates. Ken Birman (based on slides by Ben Atkin)

Advanced file systems: LFS and Soft Updates. Ken Birman (based on slides by Ben Atkin) : LFS and Soft Updates Ken Birman (based on slides by Ben Atkin) Overview of talk Unix Fast File System Log-Structured System Soft Updates Conclusions 2 The Unix Fast File System Berkeley Unix (4.2BSD)

More information

Azor: Using Two-level Block Selection to Improve SSD-based I/O caches

Azor: Using Two-level Block Selection to Improve SSD-based I/O caches Azor: Using Two-level Block Selection to Improve SSD-based I/O caches Yannis Klonatos, Thanos Makatos, Manolis Marazakis, Michail D. Flouris, Angelos Bilas {klonatos, makatos, maraz, flouris, bilas}@ics.forth.gr

More information

EMSOFT 09 Yangwook Kang Ethan L. Miller Hongik Univ UC Santa Cruz 2009/11/09 Yongseok Oh

EMSOFT 09 Yangwook Kang Ethan L. Miller Hongik Univ UC Santa Cruz 2009/11/09 Yongseok Oh RCFFS : Adding Aggressive Error Correction to a high-performance Compressing Flash File System EMSOFT 09 Yangwook Kang Ethan L. Miller Hongik Univ UC Santa Cruz 2009/11/09 Yongseok Oh ysoh@uos.ac.kr 1

More information

ECE 598-MS: Advanced Memory and Storage Systems Lecture 7: Unified Address Translation with FlashMap

ECE 598-MS: Advanced Memory and Storage Systems Lecture 7: Unified Address Translation with FlashMap ECE 598-MS: Advanced Memory and Storage Systems Lecture 7: Unified Address Translation with Map Jian Huang Use As Non-Volatile Memory DRAM (nanoseconds) Application Memory Component SSD (microseconds)

More information

High Performance Solid State Storage Under Linux

High Performance Solid State Storage Under Linux High Performance Solid State Storage Under Linux Eric Seppanen, Matthew T. O Keefe, David J. Lilja Electrical and Computer Engineering University of Minnesota April 20, 2010 Motivation SSDs breaking through

More information

arxiv: v1 [cs.ar] 11 Apr 2017

arxiv: v1 [cs.ar] 11 Apr 2017 FMMU: A Hardware-Automated Flash Map Management Unit for Scalable Performance of NAND Flash-Based SSDs Yeong-Jae Woo Sang Lyul Min Department of Computer Science and Engineering, Seoul National University

More information

Memory Hierarchy Y. K. Malaiya

Memory Hierarchy Y. K. Malaiya Memory Hierarchy Y. K. Malaiya Acknowledgements Computer Architecture, Quantitative Approach - Hennessy, Patterson Vishwani D. Agrawal Review: Major Components of a Computer Processor Control Datapath

More information

Caching and consistency. Example: a tiny ext2. Example: a tiny ext2. Example: a tiny ext2. 6 blocks, 6 inodes

Caching and consistency. Example: a tiny ext2. Example: a tiny ext2. Example: a tiny ext2. 6 blocks, 6 inodes Caching and consistency File systems maintain many data structures bitmap of free blocks bitmap of inodes directories inodes data blocks Data structures cached for performance works great for read operations......but

More information

Middleware and Flash Translation Layer Co-Design for the Performance Boost of Solid-State Drives

Middleware and Flash Translation Layer Co-Design for the Performance Boost of Solid-State Drives Middleware and Flash Translation Layer Co-Design for the Performance Boost of Solid-State Drives Chao Sun 1, Asuka Arakawa 1, Ayumi Soga 1, Chihiro Matsui 1 and Ken Takeuchi 1 1 Chuo University Santa Clara,

More information

Improving throughput for small disk requests with proximal I/O

Improving throughput for small disk requests with proximal I/O Improving throughput for small disk requests with proximal I/O Jiri Schindler with Sandip Shete & Keith A. Smith Advanced Technology Group 2/16/2011 v.1.3 Important Workload in Datacenters Serial reads

More information

Flash-Conscious Cache Population for Enterprise Database Workloads

Flash-Conscious Cache Population for Enterprise Database Workloads IBM Research ADMS 214 1 st September 214 Flash-Conscious Cache Population for Enterprise Database Workloads Hyojun Kim, Ioannis Koltsidas, Nikolas Ioannou, Sangeetha Seshadri, Paul Muench, Clem Dickey,

More information

Lecture 16: Storage Devices

Lecture 16: Storage Devices CS 422/522 Design & Implementation of Operating Systems Lecture 16: Storage Devices Zhong Shao Dept. of Computer Science Yale University Acknowledgement: some slides are taken from previous versions of

More information

Storage. Hwansoo Han

Storage. Hwansoo Han Storage Hwansoo Han I/O Devices I/O devices can be characterized by Behavior: input, out, storage Partner: human or machine Data rate: bytes/sec, transfers/sec I/O bus connections 2 I/O System Characteristics

More information

Storage Systems : Disks and SSDs. Manu Awasthi July 6 th 2018 Computer Architecture Summer School 2018

Storage Systems : Disks and SSDs. Manu Awasthi July 6 th 2018 Computer Architecture Summer School 2018 Storage Systems : Disks and SSDs Manu Awasthi July 6 th 2018 Computer Architecture Summer School 2018 Why study storage? Scalable High Performance Main Memory System Using Phase-Change Memory Technology,

More information

Operating Systems. File Systems. Thomas Ropars.

Operating Systems. File Systems. Thomas Ropars. 1 Operating Systems File Systems Thomas Ropars thomas.ropars@univ-grenoble-alpes.fr 2017 2 References The content of these lectures is inspired by: The lecture notes of Prof. David Mazières. Operating

More information

Moneta: A High-performance Storage Array Architecture for Nextgeneration, Micro 2010

Moneta: A High-performance Storage Array Architecture for Nextgeneration, Micro 2010 Moneta: A High-performance Storage Array Architecture for Nextgeneration, Non-volatile Memories Micro 2010 NVM-based SSD NVMs are replacing spinning-disks Performance of disks has lagged NAND flash showed

More information

OpenSSD Platform Simulator to Reduce SSD Firmware Test Time. Taedong Jung, Yongmyoung Lee, Ilhoon Shin

OpenSSD Platform Simulator to Reduce SSD Firmware Test Time. Taedong Jung, Yongmyoung Lee, Ilhoon Shin OpenSSD Platform Simulator to Reduce SSD Firmware Test Time Taedong Jung, Yongmyoung Lee, Ilhoon Shin Department of Electronic Engineering, Seoul National University of Science and Technology, South Korea

More information

Bitmap discard operation for the higher utilization of flash memory storage

Bitmap discard operation for the higher utilization of flash memory storage LETTER IEICE Electronics Express, Vol.13, No.2, 1 10 Bitmap discard operation for the higher utilization of flash memory storage Seung-Ho Lim 1a) and Woo Hyun Ahn 2b) 1 Division of Computer and Electronic

More information

A Buffer Replacement Algorithm Exploiting Multi-Chip Parallelism in Solid State Disks

A Buffer Replacement Algorithm Exploiting Multi-Chip Parallelism in Solid State Disks A Buffer Replacement Algorithm Exploiting Multi-Chip Parallelism in Solid State Disks Jinho Seol, Hyotaek Shim, Jaegeuk Kim, and Seungryoul Maeng Division of Computer Science School of Electrical Engineering

More information

D E N A L I S T O R A G E I N T E R F A C E. Laura Caulfield Senior Software Engineer. Arie van der Hoeven Principal Program Manager

D E N A L I S T O R A G E I N T E R F A C E. Laura Caulfield Senior Software Engineer. Arie van der Hoeven Principal Program Manager 1 T HE D E N A L I N E X T - G E N E R A T I O N H I G H - D E N S I T Y S T O R A G E I N T E R F A C E Laura Caulfield Senior Software Engineer Arie van der Hoeven Principal Program Manager Outline Technology

More information

COS 318: Operating Systems. Journaling, NFS and WAFL

COS 318: Operating Systems. Journaling, NFS and WAFL COS 318: Operating Systems Journaling, NFS and WAFL Jaswinder Pal Singh Computer Science Department Princeton University (http://www.cs.princeton.edu/courses/cos318/) Topics Journaling and LFS Network

More information

A Flash Scheduling Strategy for Current Capping in Multi-Power-Mode SSDs

A Flash Scheduling Strategy for Current Capping in Multi-Power-Mode SSDs A Flash Scheduling Strategy for Current Capping in Multi-Power-Mode SSDs Li-Pin Chang, Chia-Hsiang Cheng, and Kai-Hsiang Lin Department of Computer Science National Chiao-Tung University, Taiwan Presented

More information

SMORE: A Cold Data Object Store for SMR Drives

SMORE: A Cold Data Object Store for SMR Drives SMORE: A Cold Data Object Store for SMR Drives Peter Macko, Xiongzi Ge, John Haskins Jr.*, James Kelley, David Slik, Keith A. Smith, and Maxim G. Smith Advanced Technology Group NetApp, Inc. * Qualcomm

More information

Chapter 12 Wear Leveling for PCM Using Hot Data Identification

Chapter 12 Wear Leveling for PCM Using Hot Data Identification Chapter 12 Wear Leveling for PCM Using Hot Data Identification Inhwan Choi and Dongkun Shin Abstract Phase change memory (PCM) is the best candidate device among next generation random access memory technologies.

More information