22xx * DS1822 Econo 1-Wire Digital Thermometer PIN ASSIGNMENT

Size: px
Start display at page:

Download "22xx * DS1822 Econo 1-Wire Digital Thermometer PIN ASSIGNMENT"

Transcription

1 FEATURES Unique 1-wire interface requires only one port pin for communication Multi-drop capability simplifies distributed temperature sensing applications Requires no external components Can be powered from data line. Power supply range is 3.0V to 5.5V Measures temperatures from 55 C to +125 C. Fahrenheit equivalent is 67 F to +257 F ±2.0 C accuracy from 10 C to +85 C Thermometer resolution is user-selectable from 9 to 12 bits Converts temperature to 12-bit digital word in 750 ms (max.) User definable temperature alarm settings Alarm search command identifies and addresses devices whose temperature is outside of programmed limits (temperature alarm condition) Software compatible with DS18B20 in systems that do not require non-volatile alarm trip-points. Applications include thermostatic controls, industrial systems, consumer products, thermometers, or any thermally sensitive system Econo 1-Wire Digital Thermometer PI ASSIGMET PI DESCRIPTIO GD DQ V DD C DALLAS - Ground - Data In/Out - Power Supply Voltage - o Connect DESCRIPTIO The Digital Thermometer provides 9 to 12 bit centigrade temperature measurements and can also function as a thermostat with user-programmable upper and lower alarm trigger points. The communicates over a 1-wire bus, which by definition requires only one data line (and ground) for communication with a central microprocessor. It has an operating temperature range of 55 C to +125 C and is accurate to ±2.0 C over the range of 10 C to +85 C. In addition, the can derive power directly from the data line ( parasite power ), eliminating the need for an external power supply. Each has a unique 64-bit identification code, which allows multiple s to function on the same 1 wire bus; thus, it is simple to use one microprocessor to control many s distributed over a large area. Applications that can benefit from this feature include HVAC environmental controls, temperature monitoring systems inside buildings, equipment or machinery, and process monitoring and control systems. 1 GD DQ VDD 2 3 (BOTTOM VIEW) TO-92 () C C V DD DQ GD PRELIMIAR 8-pin 150-mil SOIC (Z) VDD GD DQ (TOP VIEW) *xx is the die revision number Flip Chip (X) C C C GD 1 of xx *

2 DETAILED PI DESCRIPTIOS Table 1 8-PI SOIC* TO-92 SMBOL DESCRIPTIO 5 1 GD Ground. 4 2 DQ Data Input/Output pin. Open-drain 1-wire interface pin. Also provides power to the device when used in parasite power mode (see Parasite Power section.) 3 3 V DD Optional V DD pin. See Parasite Power section for details of connection. V DD must be grounded for operation in parasite power mode. *All pins not specified in this table are not to be connected. OVERVIEW Figure 1 shows a block diagram of the, and pin descriptions are given in Table 1. The 64-bit ROM stores the device s unique serial code. The scratchpad memory contains the temperature register (2-bytes) that stores the digital output from the temperature sensor, the upper and lower alarm trigger registers, T H and T L (1-byte each), and the configuration register (1-byte). The configuration register allows the user to set the resolution of the temperature-to-digital conversion to 9, 10, 11, or 12 bits. The uses Dallas exclusive 1-wire bus protocol that implements bus communication using one control signal. This unique bus system reduces PC board size and complexity and adds great flexibility to the system. In this bus system, the microprocessor (the master device) identifies and addresses devices on the bus using each device s unique 64-bit code. Because each device has a unique code, the number of devices that can be addressed on one bus is virtually unlimited. The 1-wire bus protocol, including detailed explanations of the commands and time slots, is covered in the 1-WIRE BUS SSTEM section of this datasheet. Another feature of 1-wire devices such as the is the ability to operate without an external power supply. Power is instead derived from the 1-wire bus (via the DQ pin) when the bus is high. The high bus signal is also used to charge an internal capacitor (C PP ), which then supplies power to the device when the bus is low. This method of deriving power from the 1-wire control signal is referred to as parasite power. As an alternative, the may also be powered from an external 3V - 5V supply. BLOCK DIAGRAM Figure 1 V PU DQ 4.7K PARASITE POWER CIRCUIT MEMOR COTROL LOGIC C PP ITERAL V DD 64-BIT ROM AD 1-wire PORT SCRATCHPAD: TEMPERATURE REGISTER TH and TL COFIGURATIO REGISTER TEMPERATURE SESOR V DD POWER SUPPL SESE 8-BIT CRC GEERATOR 2 of 20

3 3 of 20 OPERATIO MEASURIG TEMPERATURE The core functionality of the is its direct-to-digital temperature sensor. The resolution of the temperature sensor is user-configurable to 9, 10, 11, or 12 bits, which corresponds to increments of 0.5 C, 0.25 C, C, and C, respectively. The default resolution at power-up is 12-bit. When the master issues a Convert T [44h] command, a temperature conversion is performed and the thermal data is stored in the 2-byte temperature register in the scratchpad memory. If the is powered by an external power supply, the master can issue read time slots (see the 1-WIRE BUS SSTEM section) following the Convert T command and the will output 0 onto the bus while the temperature conversion is in progress. When the conversion is complete, the will output a 1 onto the bus. ote that if the is powered with parasite power, this notification technique cannot be used since the bus must be pulled high by a strong pull-up during the entire temperature conversion. The bus requirements for parasite power are explained in detail in the PARASITE POWER section of this datasheet. The output temperature data is calibrated in degrees centigrade; for Fahrenheit applications, a lookup table or conversion routine must be used. The temperature data is stored as a 16-bit sign-extended two s complement number in the temperature register (see Figure 2). The sign bits (S) indicate if the temperature is positive or negative; for positive numbers S = 0 and for negative numbers S = 1. If the is configured for 12-bit resolution, all bits in the temperature register will contain data. For 11-bit resolution, bit 0 will always contain a 0. For 10-bit resolution, bits 1 and 0 will always be 0, and for 9-bit resolution bits 2, 1 and 0 will be 0. Table 2 gives examples of digital output data and the corresponding temperature reading for 12-bit resolution conversions. TEMPERATURE REGISTER FORMAT Figure 2 bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0 LS Byte bit 15 bit 14 bit 13 bit 12 bit 11 bit 10 bit 9 bit 8 MS Byte S S S S S TEMPERATURE/DATA RELATIOSHIP Table 2 TEMPERATURE DIGITAL OUTPUT (Binary) DIGITAL OUTPUT (Hex) +125 C D0h +85 C h* C h C A2h +0.5 C h 0 C h -0.5 C FFF8h C FF5Eh C FE6Fh -55 C FC90h *The power on reset value of the temperature register is +85 C

4 OPERATIO ALARM SIGALIG After the performs a temperature conversion, the temperature value is compared to the alarm trigger values stored in the T H and T L registers. Only bits 11 through 4 of the temperature register are used in the comparison since T H and T L are 8-bit registers. The most significant bit of the T H and T L registers contains the sign bit for the alarm trigger values. If the result of a temperature measurement is higher than T H or lower than T L, an alarm condition exists and an alarm flag is set inside the. This flag is updated after every temperature measurement; therefore, if the alarm condition goes away, the flag will be turned off after the next temperature conversion. The master device can check the alarm flag status of all s on the bus by issuing an Alarm Search [ECh] command. Any s with a set alarm flag will respond to the command, so the master can determine exactly which s have experienced an alarm condition. If an alarm condition exists and the T H or T L settings are changed, another temperature conversion should be done to validate the alarm condition. PARASITE POWER Parasite power mode allows the to operate without a local external power supply (V DD ). This ability is especially useful for applications that require remote temperature sensing or that are very space constrained. Figure 1 shows the s parasite-power control circuitry, which steals power from the 1-wire bus via the DQ pin whenever the bus is high and stores charge on the parasite power capacitor (C PP ) to provide power when the bus is low. When the is used in parasite power mode, the V DD pin must be connected to ground. In parasite power mode, the 1-wire bus and C PP can provide sufficient current to the for most operations as long as the specified timing and voltage requirements are met (refer to the DC ELECTRICAL CHARACTERISTICS and the AC ELECTRICAL CHARACTERISTICS sections of this data sheet). However, when the is performing temperature conversions, the operating current can be as high as 1.5 ma, which can cause an unacceptable voltage drop across the weak pull-up resistor and is more current than can be supplied by C PP. Therefore, to assure that the has sufficient supply current during the conversion cycle, it is necessary to provide a strong pull-up on the 1-wire bus whenever temperature conversions are taking place. This can be accomplished by using a MOSFET to pull the bus directly to the rail as shown in Figure 3. The 1-wire bus must be switched to the strong pull-up within 10 µs (max) after any command is issued that initiates temperature conversions, and the bus must be held high by the pull-up for the duration of the conversion (t conv ). o other activity can take place on the 1-wire bus during this time. SUPPLIG THE PARASITE-POWERED DURIG TEMPERATURE COVERSIOS Figure 3 V PU Microprocessor V PU 4.7K 1-wire Bus GD DQ V DD 4 of 20

5 The can also be powered by the conventional method of connecting an external power supply to the V DD pin, as shown in Figure 4. The advantage of this method is that the MOSFET pull-up is not required, and the 1 wire bus is free to carry other traffic during the temperature conversion time. The use of parasite power is not recommended at temperatures above 100 C, since the may not be able to sustain communications due to the higher leakage currents that can exist at these temperatures. For applications in which such temperatures are likely, it is strongly recommended that the be powered by an external power supply. In some situations the bus master may not know whether the s on the bus are parasite powered or powered by external supplies. The master needs this information to determine if the strong bus pull-up is needed during temperature conversions. To get the needed information, the master can issue a command sequence that asks the s how they are powered. This sequence consists of a Skip ROM command followed by a Read Power Supply command followed by a read time slot. During the read time slot, parasite powered s will pull the bus low, and externally powered s will let the bus remain high. If the bus is pulled low, the master knows that it must supply the strong pull-up on the 1-wire bus during temperature conversions. POWERIG THE WITH A EXTERAL SUPPL Figure 4 TO OTHER 1-wire DEVICES Microprocessor V PU 4.7K 1-wire Bus GD DQ V DD EXTERAL +3V - +5V SUPPL 64-BIT LASERED ROM CODE Each contains a unique 64 bit code (see Figure 5) contained in a 64-bit ROM. This code is referred to as its ROM code. The least significant 8 bits of the ROM code contain the s 1 wire family code: 22h. The next 48 bits contain a unique serial number. The most significant 8 bits contain a cyclic redundancy check (CRC) byte that is calculated from the first 56 bits of the ROM code. A detailed explanation of the CRC bits is provided in the CRC GEERATIO section. The 64 bit ROM code and associated ROM function control logic allow the to operate as a 1 wire device and follow the 1-wire protocol detailed in the 1-WIRE BUS SSTEM section of this datasheet. 64-BIT LASERED ROM CODE Figure 5 MSB 8-BIT CRC 48-BIT SERIAL UMBER 8-BIT FAMIL CODE (22h) LSB MSB LSB MSB LSB 5 of 20

6 SCRATCHPAD MEMOR The s memory is implemented as a 9-byte scratchpad as shown in Figure 6. Byte 0 and byte 1 of the scratchpad contain the LSB and the MSB of the temperature register, respectively. These bytes are read-only. Bytes 2 and 3 contain T H and T L, the upper and lower alarm trigger points. Byte 4 contains the configuration register, which is explained in detail in the COFIGURATIO REGISTER section of this datasheet. Bytes 5, 6 and 7 are reserved for internal use by the device and cannot be overwritten; these bytes will return all 1s when read. Byte 8 of the scratchpad is read-only and contains the cyclic redundancy check (CRC) code for bytes 0 through 7 of the scratchpad. The generates this CRC using the method described in the CRC GEERATIO section. The scratchpad can be read by issuing a Read Scratchpad [BEh] command. The scratchpad data will be transferred over the 1-wire bus starting with the least significant bit of byte 0. MEMOR MAP Figure 6 SCRATCHPAD POWER-UP STATE byte 0 TEMPERATURE LSB 50h (85ºC) byte 1 TEMPERATURE MSB 05h byte 2 TH/USER BTE 1 50h (80ºC) byte 3 TL/USER BTE 2 4Bh (75ºC) byte 4 COFIGURATIO REGISTER FFh byte 5 RESERVED FFh byte 6 RESERVED FFh byte 7 RESERVED FFh byte 8 CRC EEh COFIGURATIO REGISTER Byte 4 of the scratchpad memory contains the configuration register, which is organized as shown in Figure 7. The user can set the conversion resolution of the using the R0 and R1 bits in this register as shown in Table 3. The power-up default of these bits is R0 = 1 and R1 = 1 (12-bit resolution). ote that there is a direct tradeoff between resolution and conversion time Bit 7 and bits 0-4 in the configuration register are reserved for internal use by the device and cannot be overwritten; these bits will return 1s when read. 6 of 20

7 COFIGURATIO REGISTER Figure 7 bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0 1 R1 R THERMOMETER RESOLUTIO COFIGURATIO Table 3 R1 R0 Resolution Max Conversion Time bit ms (t COV /8) bit ms (t COV /4) bit 375 ms (t COV /2) bit 750 ms (t COV ) CRC GEERATIO CRC bytes are provided as part of the s 64-bit ROM code and in the 9 th byte of the scratchpad memory. The ROM code CRC is calculated from the first 56 bits of the ROM code and is contained in the most significant byte of the ROM. The scratchpad CRC is calculated from the data stored in the scratchpad, and therefore it changes when the data in the scratchpad changes. The CRCs provide the bus master with a method of data validation when data is read from the. To verify that data has been read correctly, the bus master must re-calculate the CRC from the received data and then compare this value to either the ROM code CRC (for ROM reads) or to the scratchpad CRC (for scratchpad reads). If the calculated CRC matches the read CRC, the data has been received error free. The comparison of CRC values and the decision to continue with an operation are determined entirely by the bus master. There is no circuitry inside the that prevents a command sequence from proceeding if the CRC (ROM or scratchpad) does not match the value generated by the bus master. The equivalent polynomial function of the CRC (ROM or scratchpad) is: CRC = X 8 + X 5 + X The bus master can re-calculate the CRC and compare it to the CRC values from the using the polynomial generator shown in Figure 8. This circuit consists of a shift register and XOR gates, and the shift register bits are initialized to 0. Starting with the least significant bit of the ROM code or the least significant bit of byte 0 in the scratchpad, one bit at a time is shifted into the shift register. After shifting in the 56 th bit from the ROM or the most significant bit of byte 7 from the scratchpad, the polynomial generator will have re-calculated the CRC. ext, the 8-bit ROM or scratchpad CRC from the is shifted in to the circuit. At this point, if the re-calculated CRC was correct, the shift register will contain all 0s. Additional information about the Dallas 1-wire cyclic redundancy check is available in Application ote 27 entitled Understanding and Using Cyclic Redundancy Checks with Dallas Semiconductor Touch Memory Products. CRC GEERATOR Figure 8 IPUT XOR XOR XOR (MSB) (LSB) 7 of 20

8 1-WIRE BUS SSTEM The 1-wire bus system uses a single bus master to control one or more slave devices. The is always a slave. When there is only one slave on the bus, the system is referred to as a single-drop system; the system is multi-drop if there are multiple slaves on the bus. The following discussion of the 1-wire bus system is broken down into three topics: hardware configuration, transaction sequence, and 1-wire signaling (signal types and timing). HARDWARE COFIGURATIO The 1-wire bus has by definition only a single data line; therefore, it is important that each device on the bus is able to drive the bus at the appropriate time. To facilitate this, each device interfaces to the bus via an open drain or 3 state output. The 1-wire port of the (the DQ pin) is open drain with an internal circuit equivalent to that shown in Figure 9. HARDWARE COFIGURATIO Figure 9 V UP 1-wire PORT R X 4.7K 1-wire Bus DQ Pin R X 5 µa Typ. T X T X R X = RECEIVE T X = TRASMIT 100 Ω MOSFET The 1-wire bus requires a pull-up resistor of approximately 5 kω, and the idle state for the 1-wire bus is high. If for any reason a transaction needs to be suspended, the bus MUST be left in the idle state if the transaction is to resume. Infinite recovery time can occur between bits so long as the 1-wire bus is in the inactive (high) state during the recovery period. If the bus is held low for more than 480 µs, all components on the bus will be reset. TRASACTIO SEQUECE The transaction sequence for accessing the via the 1-wire port is as follows: Initialization ROM Command Function Command Data Transmitted/Received It is very important to follow this sequence every time the is accessed, as the will not respond if any steps in the sequence are out of order or missing. For example, the appropriate ROM command must be issued before the will respond to a function command. 8 of 20

9 IITIALIZATIO All transactions on the 1-wire bus begin with an initialization sequence. The initialization sequence consists of a reset pulse transmitted by the bus master followed by presence pulse(s) transmitted by the slave(s). The presence pulse lets the bus master know that slave devices (such as the ) are on the bus and are ready to operate. Timing for the reset and presence pulses is detailed in the 1-WIRE SIGALIG section. ROM COMMADS Once the bus master has detected a presence pulse, it must issue a ROM command. These commands operate on the unique 64 bit ROM codes of each slave device and can single out a specific device if many are present on the 1-wire bus, as well as allow the bus master to determine how many and what types of devices are present. There are five ROM commands, and each command is 8 bits long. The master device must issue the appropriate ROM command before continuing to the next step (i.e., issuing a function command) in the transaction sequence. A flowchart for operation of the ROM commands is shown in Figure 10. SEARCH ROM [F0h] When a system is initially powered up, the bus master may not know the number or type of slaves on the 1-wire bus or their 64 bit ROM codes. The Search ROM command allows the bus master to use a process of elimination to identify the 64 bit ROM codes of all the slave devices, which in turn allows the bus master to determine how many slaves are on the bus and their device types. For a detailed explanation of the how the Search ROM command operates, refer to the ibutton Book of Standards at READ ROM [33h] This command can only be used when there is one slave on the bus. It allows the bus master to read the slave s 64-bit ROM code without using the Search ROM procedure. If this command is used when there is more than one slave present on the bus, a data collision will occur when all the slaves attempt to respond at the same time. MATCH ROM [55h] The match ROM command followed by a 64 bit ROM code sequence allows the bus master to address a specific or other slave device on a multi-drop or single-drop bus. Only the slave that exactly matches the 64 bit ROM code sequence will respond to the function command issued by the master; all other slaves on the bus will wait for a reset pulse. SKIP ROM [CCh] The master can use this command to address all devices on the bus simultaneously without sending out any ROM code information. For example, the master can make all s on the bus perform simultaneous temperature conversions by issuing a Skip ROM command followed by a Convert T [44h] command. ote, however, that the Skip ROM command can only be used with the Read Scratchpad [BEh] command when there is one on the bus. In this case, the Skip ROM command saves time by allowing the bus master to access the device without sending its 64 bit ROM code. If the Skip ROM followed by a Read Scratchpad command is issued when there is more than one present on the bus, a data collision will occur when all the devices attempt to transmit data at the same time. ALARM SEARCH [ECh] The operation of this command is identical to the operation of the Search ROM command except that only s with a set alarm flag will respond. This command allows the master device to determine which s (if any) experienced an alarm condition during the most recent temperature conversion. Refer to the OPERATIO ALARM SIGALIG section for an explanation of alarm flag operation. 9 of 20

10 10 of 20 FUCTIO COMMADS After the bus master has used a ROM command to address the with which it wishes to communicate, the master can issue one of the function commands. These commands allow the master to write to and read from the s scratchpad memory, initiate temperature conversions and determine the power supply mode. The function commands, which are described below, are summarized in Table 4 and illustrated by the flowchart in Figure 11. WRITE SCRATCHPAD [4Eh] This command allows the master to write 3 bytes of data to the s scratchpad. The first byte is written into the T H register (byte 2 of the scratchpad), the second byte is written into the T L register (byte 3), and the third byte is written into the configuration register (byte 4). All three bytes MUST be written. READ SCRATCHPAD [BEh] This command allows the master to read the contents of the scratchpad. The data transfer starts with the least significant bit of byte 0 and continues through the scratchpad until the 9 th byte (byte 8, CRC) is read. If only part of the scratchpad contents is required, the master may issue a reset to terminate reading at any time. COVERT T [44h] The master uses this command to initiate a temperature conversion. o further data is required from the master after this command is issued. During the temperature conversion, s that use an external power supply will signal the conversion status as explained in the OPERATIO-MEASURIG TEMPERATURE section. After the temperature conversion is completed, the will remain idle. READ POWER SUPPL [B4h] The master device issues this command followed by a read time slot to determine if any s on the bus are using parasite power. During the read time slot, parasite powered s will pull the bus low, and externally powered s will let the bus remain high. Refer to the PARASITE POWER section for usage information for this command. FUCTIO COMMAD SET Table 4 Command Description Protocol 1-Wire Bus Activity After Command is Issued TEMPERATURE COVERSIO COMMADS Convert T Initiates temperature 44h transmits conversion conversion. status to master (not applicable for parasite-powered s). MEMOR COMMADS Read Scratchpad Reads the entire scratchpad BEh transmits up to 9 data Write Scratchpad Read Power Supply including the CRC byte. Writes data into scratchpad bytes 2, 3, and 4 (T H, T L, and configuration registers). Signals power supply mode to the master. bytes to master. 4 Eh Master transmits 3 data bytes to. B4h transmits supply status to master (1 bit). otes OTES: 1. For parasite-powered s, the bus master must enable a strong pull-up on DQ throughout the temperature conversion (>750 ms). o other activity may take place on the bus during this time. 2. The master can interrupt the transmission of data at any time by issuing a reset. 3. All three bytes must be written before a reset is issued

11 ROM COMMADS FLOW CHART Figure 10 MASTER TX RESET PULSE TX PRESECE PULSE MASTER TX ROM COMMAD 33h READ ROM COMMAD 55h F0h Ech CCh MATCH ROM SEARCH ROM ALARM SEARCH SKIP ROM COMMAD COMMAD COMMAD COMMAD TX FAMIL CODE 1 BTE MASTER TX BIT 0 ALARM CODITIO TX BIT 0 TX BIT 0 MASTER TX BIT 0 TX SERIAL UMBER 6 BTES BIT 0 MATCH BIT 0 MATCH TX CRC BTE MASTER TX BIT 1 TX BIT 1 TX BIT 1 MASTER TX BIT 1 BIT 1 MATCH BIT 1 MATCH TX BIT 63 MASTER TX BIT 63 TX BIT 63 MASTER TX BIT 63 BIT 63 MATCH BIT 63 MATCH MASTER TX FUCTIO COMMAD 11 of 20

12 FUCTIO COMMADS FLOW CHART Figure 11 MASTER TX FUCTIO COMMAD 4Eh WRITE SCRATCHPAD BEh READ SCRATCHPAD SETS ADDRESS COUTER TO 2 SETS ADDRESS COUTER TO 0 MASTER TX DATA BTE TO SCRATCHPAD MASTER RX DATA FROM SCRATCHPAD ADDRESS =4 MASTER TX RESET ADDRESS =7 ICREMETS ADDRESS TX ICREMETS SERIAL UMBER ADDRESS 6 BTES MASTER TX RESET MASTER RX 8-BIT CRC OF DATA MASTER TX RESET MASTER RX 1s TX PRESECE PULSE 12 of 20

13 FUCTIO COMMADS FLOW CHART Figure 11 (cont d) 44h COVERT TEMPERATURE B4h READ POWERSUPPL PARASITE POWER MASTER EABLES STROG PULL-UP COVERTS TEMPERATURE BEGIS COVERSIO MASTER DISABLES STROG PULL-UP MASTER TX RESET MASTER TX RESET MASTER TX RESET DEVICE BUS COVERTIG TEMPERATURE PARASITE POWERED MASTER RX 1 S MASTER RX 0 S MASTER RX 1 S MASTER RX 0 S 13 of 20

14 1-WIRE SIGALIG The uses a strict 1-wire communication protocol to insure data integrity. This protocol defines several signal types: reset pulse, presence pulse, write 0, write 1, read 0, and read 1. All of these signals, with the exception of the presence pulse, are initiated by the bus master. IITIALIZATIO PROCEDURE: RESET AD PRESECE PULSES All communication with the begins with an initialization sequence that consists of a reset pulse from the master followed by a presence pulse from the. This is illustrated in Figure 12. When the sends the presence pulse in response to the reset, it is indicating to the master that it is ready to send or receive data given the correct ROM command and function command. During the initialization sequence the bus master transmits (T X ) a reset pulse by pulling the 1-wire bus low for a minimum of 480 µs. The bus master then releases the bus and goes into receive mode (R X ). When the bus is released, the 5k pull-up resistor pulls the 1-wire bus high. When the detects this rising edge, it waits µs and then transmits a presence pulse by pulling the 1-wire bus low for µs. IITIALIZATIO TIMIG Figure 12 V PU MASTER T X RESET PULSE MASTER R X 480 µs minimum 480 µs minimum T X presence pulse waits µs µs 1-WIRE BUS GD LIE TPE LEGED Bus master pulling low pulling low Resistor pull-up READ/WRITE TIME SLOTS The bus master writes data to the during write time slots and reads data from the during read time slots. WRITE TIME SLOTS There are two types of write time slots: Write 1 time slots and Write 0 time slots. The bus master uses a Write 1-time slot to write a logic 1 to the and a Write 0 time slot to write a logic 0 to the. All write time slots must be a minimum of 60 µs in duration with a minimum of a 1 µs recovery time between individual write slots. Both types of write time slots are initiated by the master pulling the 1-wire bus low (see Figure 13). To generate a Write 1 time slot, after pulling the 1-wire bus low, the bus master must release the 1-wire bus within 15 µs. When the bus is released, the 5k pull-up resistor will pull the bus high. To generate a Write 0 time slot, after pulling the 1-wire bus low, the bus master must continue to hold the bus low for the duration of the time slot (at least 60 µs). The samples the 1-wire bus during a window that lasts from 15 µs to 60 µs after the master initiates the write time slot. If the bus is high during the sampling window, a 1 is written to the. If the line is low, a 0 is written to the. 14 of 20

15 READ/WRITE TIME SLOT TIMIG DIAGRAM Figure 13 START OF SLOT START OF SLOT MASTER WRITE 0 SLOT 60 µs < T X 0 < 120 MASTER WRITE 1 SLOT 1 µs < T REC < > 1 µs V PU 1-WIRE BUS GD Samples MI TP MAX Samples MI TP MAX 15 µs 15 µs 30 µs 15 µs 15 µs 30 µs V PU MASTER READ 0 SLOT MASTER READ 1 SLOT 1 µs < T REC < 1-WIRE BUS GD Master samples > 1 µs Master samples 15 µs 45 µs 15 µs LIE TPE LEGED Bus master pulling low Both bus master and pulling low pulling low Resistor pull-up READ TIME SLOTS The bus master generates read time slots when it needs to read data from the. All read time slots must be a minimum of 60 µs in duration with a minimum of a 1 µs recovery time between individual read slots. A read time slot is initiated by the master device by pulling the 1-wire bus low for a minimum of 1 µs and then releasing the bus (see Figure 13). After the master initiates the read time slot, the will begin transmitting a 1 or 0 on bus. The transmits a 1 by leaving the bus high and transmits a 0 by pulling the bus low. Output data from the is valid for 15 µs after the falling edge that initiated the read time slot. The master must therefore release the bus and then sample the state of the bus within 15 µs from the start of the read time slot. When transmitting a 0, the will release the bus by the end of the read time slot, and the bus will be pulled back to its high idle state by the pull-up resister. Figure 14 illustrates that the sum of T IIT, T RC, and T SAMPLE must be less than 15 µs. Figure 15 shows that system timing margin is maximized by keeping T IIT and T RC as short as possible and by locating the master sample time during read time slots towards the end of the 15 µs period. 15 of 20

16 DETAILED MASTER READ 1 TIMIG Figure 14 V PU 1-WIRE BUS VIH of Master GD T IT > 1 µs T RC Master samples 15 µs RECOMMEDED MASTER READ 1 TIMIG Figure 15 V PU 1-WIRE BUS VIH of Master GD T IT = small T RC = small 15 µs Master samples LIE TPE LEGED Bus master pulling low Resistor pull-up RELATED APPLICATIO OTES The following Application otes can be applied to the. These notes can be obtained from the Dallas Semiconductor Application ote Book, via the Dallas website at or through our faxback service at (214) Application ote 27: Understanding and Using Cyclic Redundancy Checks with Dallas Semiconductor Touch Memory Product Application ote 55: Extending the Contact Range of Touch Memories Application ote 74: Reading and Writing Touch Memories via Serial Interfaces Application ote 104: Minimalist Temperature Control Demo Application ote 106: Complex MicroLAs Application ote 108: MicroLA In the Long Run Sample 1-wire subroutines that can be used in conjunction with A74 can be downloaded from the Dallas website or out anonymous FTP Site. 16 of 20

17 OPERATIO EXAMPLE 1 In this example the bus master initiates a temperature conversion then reads the temperature from the (parasite power assumed). MASTER MODE DATA (LSB FIRST) COMMETS TX Reset Reset pulse ( µs). RX Presence Presence pulse. TX 55h Issue Match ROM command. TX <64-bit ROM code> Issue address for. TX 44h Issue Convert T command. TX <DQ LIE HIGH> DQ line is held high for at least a period of time greater than t conv by bus master to allow conversion to complete. TX Reset Reset pulse. RX Presence Presence pulse. TX 55h Issue Match ROM command. TX <64-bit ROM code> Issue address for. TX BEh Issue Read Scratchpad command. RX <9 data bytes> Read entire scratchpad plus CRC; the master now recalculates the CRC of the eight data bytes received from the scratchpad, compares the CRC calculated and the CRC read. If they match, the master continues; if not, this read operation is repeated. TX Reset Reset pulse. RX Presence Presence pulse, done. OPERATIO EXAMPLE 2 In this example the bus master writes to the scratchpad (parasite power and only one on the bus are assumed). MASTER MODE DATA (LSB FIRST) COMMETS TX Reset Reset pulse. RX Presence Presence pulse. TX CCh Skip ROM command. TX 4Eh Write Scratchpad command. TX <3 data bytes> Write three bytes to scratchpad (TH, TL, and config). TX Reset Reset pulse. RX Presence Presence pulse. TX CCh Skip ROM command. TX BEh Read Scratchpad command. RX <9 data bytes> Read entire scratchpad plus CRC. The master now recalculates the CRC of the eight data bytes received from the scratchpad, compares the CRC and the two other bytes read back from the scratchpad. If data match, the master continues; if not, repeat the sequence. TX Reset Reset pulse. RX Presence Presence pulse. 17 of 20

18 ABSOLUTE MAXIMUM RATIGS* Voltage on any pin relative to ground Operating temperature Storage temperature Soldering temperature 0.5V to +6.0V 55 C to +125 C 55 C to +125 C See J-STD-020A Specification *These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operation sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods of time may affect reliability. DC ELECTRICAL CHARACTERISTICS (-55 C to +125 C; V DD =3.0V to 5.5V) PARAMETER SMBOL CODITIO MI TP MAX UITS OTES Supply Voltage V DD Local Power V 1 Pullup Supply V PU V 1,2 Voltage Thermometer Error t ERR -10 C to ±2 C C -55 C to ± C Input Logic Low V IL V 1,4,5 Input Logic High V IH Local Power +2.2 The lower of V 1,6 Parasite Power or V DD Sink Current I L V I/O =0.4V -4.0 ma 1 Standby Current I DDS na 7,8 Active Current I DD V DD =5V ma 9 DQ Input Load I DQ 5 µa 10 Current Drift ±0.2 C 11 OTES: 1. All voltages are referenced to ground. 2. The Pullup Supply Voltage specification assumes that the pullup device (resistor or transistor) is ideal, and therefore the high level of the pullup is equal to V PU. In order to meet the V IH spec of the, the actual supply rail for the strong pullup transistor must include margin for the voltage drop across the transistor when it is turned on; thus: V PU_ACTUAL = V PU_IDEAL + V TRASISTOR. 3. See typical performance curve in Figure Logic low voltages are specified at a sink current of 4 ma. 5. To always guarantee a presence pulse under low voltage parasite power conditions, V ILMAX may have to be reduced to as low as 0.5V. 6. Logic high voltages are specified at a source current of 1 ma. 7. Standby current specified up to 70 C. Standby current typically is 5 µa at 125 C. 8. To minimize I DDS, DQ should be: GD DQ GD + 0.3V or V DD 0.3V DQ V DD. 9. Active current refers to supply current during active temperature conversions. 10. Input load is to ground. 11. Drift data is based on a 1000 hour stress test at 125 C with V DD = 5.5V. 18 of 20

19 AC ELECTRICAL CHARACTERISTICS (-55 C to +125 C; V DD =3.0V to 5.5V) PARAMETER SMBOL CODITIO MI TP MAX UITS OTES Temperature Conversion t COV 9-bit resolution ms 1 Time 10-bit resolution ms 1 11-bit resolution 375 ms 1 12-bit resolution 750 ms 1 Time to Strong Pullup On t SPO Start Convert T 10 µs Command Issued Time Slot t SLOT µs 1 Recovery Time t REC 1 µs 1 Write 0 Low Time r LOW µs 1 Write 1 Low Time t LOW µs 1 Read Data Valid t RDV 15 µs 1 Reset Time High t RSTH 480 µs 1 Reset Time Low t RSTL 480 µs 1,2 Presence Detect High t PDHIGH µs 1 Presence Detect Low t PDLOW µs 1 Capacitance C I/OUT 25 pf OTES: 1. Refer to timing diagrams in Figure Under parasite power, the max t RSTL before a power on reset occurs is 960 µs. TPICAL PERFORMACE CURVE Figure 17 DIGITAL THERMOMETER AD THERMOSTAT TEMPERATURE READIG ERROR TBA 19 of 20

20 TIMIG DIAGRAMS Figure of 20

DS18S20 High Precision 1-Wire Digital Thermometer

DS18S20 High Precision 1-Wire Digital Thermometer www.dalsemi.com FEATURES Unique 1-wire interface requires only one port pin for communication Each device has a unique 64-bit serial code stored in an on-board ROM Multi-drop capability simplifies distributed

More information

DS1822-PAR Econo 1-Wire Parasite-Power Digital Thermometer

DS1822-PAR Econo 1-Wire Parasite-Power Digital Thermometer www.maxim-ic.com FEATURES Unique 1-Wire interface requires only one port pin for communication Derives power from data line ( parasite power ) does not need a local power supply Multidrop capability simplifies

More information

DS18B20 Programmable Resolution 1-Wire Digital Thermometer

DS18B20 Programmable Resolution 1-Wire Digital Thermometer www.maxim-ic.com FEATURES Unique 1-Wire interface requires only one port pin for communication Each device has a unique 64-bit serial code stored in an onboard ROM Multidrop capability simplifies distributed

More information

DS1822 Econo-MicroLAN Digital Thermometer

DS1822 Econo-MicroLAN Digital Thermometer www.dalsemi.com FEATURES Unique 1 Wire TM interface requires only one port pin for communication Multidrop capability simplifies distributed temperature sensing applications Requires no external components

More information

DS1825 Programmable Resolution 1-Wire Digital Thermometer With 4-Bit ID

DS1825 Programmable Resolution 1-Wire Digital Thermometer With 4-Bit ID DS1825 Programmable Resolution 1-Wire Digital Thermometer With 4-Bit ID www.maxim-ic.com FEATURES Unique 1-Wire Interface Requires Only One Port Pin for Communication Each Device has a Unique 64-Bit Serial

More information

1 Wire TM Digital Thermometer

1 Wire TM Digital Thermometer DS1820 1 Wire TM Digital Thermometer FEATURES Unique 1 Wire TM interface requires only one port pin for communication Multidrop capability simplifies distributed temperature sensing applications Requires

More information

DS18B20 Programmable Resolution 1-Wire Digital Thermometer

DS18B20 Programmable Resolution 1-Wire Digital Thermometer www.dalsemi.com FEATURES Unique 1-Wire interface requires only one port pin for communication Multidrop capability simplifies distributed temperature sensing applications Requires no external components

More information

DS18S20 High-Precision 1-Wire Digital Thermometer

DS18S20 High-Precision 1-Wire Digital Thermometer 19-5474; Rev 8/10 High-Precision 1-Wire Digital Thermometer FEATURES Unique 1-Wire Interface Requires Only One Port Pin for Communication Each Device has a Unique 64-Bit Serial Code Stored in an On-Board

More information

DS18B20 Programmable Resolution 1-Wire Digital Thermometer

DS18B20 Programmable Resolution 1-Wire Digital Thermometer www.maxim-ic.com FEATURES Unique 1-Wire Interface Requires Only One Port Pin for Communication Each Device has a Unique 64-Bit Serial Code Stored in an On-Board ROM Multidrop Capability Simplifies Distributed

More information

DS2401. Silicon Serial Number FEATURES PIN ASSIGNMENT

DS2401. Silicon Serial Number FEATURES PIN ASSIGNMENT Silicon Serial umber FEATURES Upgrade and drop in replacement for DS2400 Extended 2.8 to 6.0 voltage range Multiple s can reside on a common 1 Wire TM bus Unique, factory lasered and tested 64 bit registration

More information

DS2430AP. 256 Bit 1 Wire TM EEPROM FEATURES PIN ASSIGNMENT

DS2430AP. 256 Bit 1 Wire TM EEPROM FEATURES PIN ASSIGNMENT 256 Bit 1 Wire TM EEPROM FEATURES 256 bit Electrically Erasable Programmable Read Only Memory (EEPROM) plus 64 bit one time programmable application register Unique, factory lasered and tested 64 bit registration

More information

Programmable Resolution 1-Wire Digital Thermometer

Programmable Resolution 1-Wire Digital Thermometer General Description The DS18B20 digital thermometer provides 9-bit to 12-bit Celsius temperature measurements and has an alarm function with nonvolatile user-programmable upper and lower trigger points.

More information

DS1821 Programmable Digital Thermostat and Thermometer

DS1821 Programmable Digital Thermostat and Thermometer ma www.maxim-ic.com FEATURES Requires no external components Unique 1-Wire interface requires only one port pin for communication Operates over a -55 C to +125 C (-67 F to +257 F) temperature range Functions

More information

DS2430A 256-Bit 1-Wire EEPROM

DS2430A 256-Bit 1-Wire EEPROM 256-Bit 1-Wire EEPROM www.maxim-ic.com FEATURES 256-bit Electrically Erasable Programmable Read Only Memory (EEPROM) plus 64-bit one-time programmable application register Unique, factory-lasered and tested

More information

DS k-Bit Protected 1-Wire EEPROM with SHA-1 Engine

DS k-Bit Protected 1-Wire EEPROM with SHA-1 Engine www. maxim-ic.com Abridged Data Sheet DS2432 1k-Bit Protected 1-Wire EEPROM with SHA-1 Engine FEATURES 1128 bits of 5V EEPROM memory partitioned into four pages of 256 bits, a 64-bit write-only secret

More information

DS Wire Time Chip with Interrupt

DS Wire Time Chip with Interrupt 1-Wire Time Chip with Interrupt www.maxim-ic.com FEATURES Real-time clock (RTC) with fully compatible 1-Wire MicroLA interface Uses the same binary time/date representation as the DS2404 but with 1 second

More information

DS1821 Programmable Digital Thermostat and Thermometer

DS1821 Programmable Digital Thermostat and Thermometer 19-6322; Rev 6/12 Programmable Digital Thermostat and Thermometer FEATURES Requires no external components Unique 1-Wire interface requires only one port pin for communication Operates over a -55 C to

More information

DS2405. Addressable Switch PIN ASSIGNMENT

DS2405. Addressable Switch PIN ASSIGNMENT www.maxim-ic.com FEATURES Open-drain PIO pin is controlled by matching 64-bit, laser-engraved registration number associated with each device Logic level of open drain output can be determined over 1-Wire

More information

DS2401 Silicon Serial Number

DS2401 Silicon Serial Number Silicon Serial Number www.maxim-ic.com FEATURES Upgrade and drop-in replacement for DS2400 Extended 2.8 to 6.0 voltage range Multiple s can reside on a common 1-Wire Net Unique, factory-lasered and tested

More information

Temperature Sensor. Overview. Features

Temperature Sensor. Overview. Features 1 DS18B20 Electronic Brick of Digital Temperature Sensor Overview What is an electronic brick? An electronic brick is an electronic module which can be assembled like Lego bricks simply by plugging in

More information

INTEGRATED CIRTUIT OF DIGITAL THERMOMETER OF INDUSTRIAL TEMPERATURE RANGE (functional equivalent of DS18B20 "Maxim-Dallas Semiconductor")

INTEGRATED CIRTUIT OF DIGITAL THERMOMETER OF INDUSTRIAL TEMPERATURE RANGE (functional equivalent of DS18B20 Maxim-Dallas Semiconductor) INTEGRATED CIRTUIT OF DIGITAL THERMOMETER OF INDUSTRIAL TEMPERATURE RANGE (functional equivalent of DS18B20 "Maxim-Dallas Semiconductor") The IN18B20D is digital thermometer of industrial temperature range

More information

DS2401 Silicon Serial Number

DS2401 Silicon Serial Number Silicon Serial Number www.maxim-ic.com FEATURES Upgrade and drop-in replacement for DS2400 Extended 2.8 to 6.0 voltage range Multiple s can reside on a common 1-Wire Net Unique, factory-lasered and tested

More information

DS1920 Temperature ibutton

DS1920 Temperature ibutton 19-4886; Rev 8/09 DS1920 Temperature ibutton SPECIAL FEATURES Digital Thermometer Measures Temperatures from -55 C to +100 C in Typically 0.2s Zero Standby Power 0.5 C Resolution, Digital Temperature Reading

More information

ABRIDGED DATA SHEET DS Kb Protected 1-Wire EEPROM with SHA-1 Engine FEATURES PIN CONFIGURATIONS ORDERING INFORMATION

ABRIDGED DATA SHEET DS Kb Protected 1-Wire EEPROM with SHA-1 Engine FEATURES PIN CONFIGURATIONS ORDERING INFORMATION 1Kb Protected 1-Wire EEPROM with SHA-1 Engine FEATURES 1128 Bits of 5V EEPROM Memory Partitioned Into Four Pages of 256 Bits, a 64-Bit Write-Only Secret, and Up to Five General-Purpose Read/Write Registers

More information

DS kbit Add-Only Memory

DS kbit Add-Only Memory 1 kbit Add-Only Memory www.dalsemi.com FEATURES 1024 bits Electrically Programmable Read Only Memory (EPROM) communicates with the economy of one signal plus ground Unique, factory-lasered and tested 64-bit

More information

DS1625. Digital Thermometer and Thermostat FEATURES PIN ASSIGNMENT

DS1625. Digital Thermometer and Thermostat FEATURES PIN ASSIGNMENT DS1625 Digital Thermometer and Thermostat FEATURES Temperature measurements require no external components Measures temperatures from 55 C to +125 C in 0.5 C increments. Fahrenheit equivalent is 67 F to

More information

DS Wire Digital Thermometer and Thermostat

DS Wire Digital Thermometer and Thermostat www.maxim-ic.com FEATURES Temperature measurements require no external components with ±1 C accuracy Measures temperatures from -55 C to +125 C; Fahrenheit equivalent is -67 F to +257 F Temperature resolution

More information

ORDERING INFORMATION. OPERATION Measuring Temperature A block diagram of the DS1621 is shown in Figure 1. DESCRIPTION ORDERING PACKAGE

ORDERING INFORMATION. OPERATION Measuring Temperature A block diagram of the DS1621 is shown in Figure 1. DESCRIPTION ORDERING PACKAGE AVAILABLE Digital Thermometer and Thermostat FEATURES Temperature measurements require no external components Measures temperatures from -55 C to +125 C in 0.5 C increments. Fahrenheit equivalent is -67

More information

DS75 Digital Thermometer and Thermostat

DS75 Digital Thermometer and Thermostat www.maxim-ic.com FEATURES Temperature Measurements Require No External Components Measures Temperatures from -55 C to +125 C (-67 F to +257 F) 2 C Accuracy Over a -25 C to +100 C Range Thermometer Resolution

More information

Digital Thermometer and Thermostat

Digital Thermometer and Thermostat General Description The DS75 digital thermometer and thermostat provides 9, 10, 11, or 12-bit digital temperature readings over a -55 C to +125 C range with ±2 C accuracy over a -25 C to +100 C range.

More information

DS2433 4Kb 1-Wire EEPROM

DS2433 4Kb 1-Wire EEPROM PRELIMINARY DS2433 4Kb 1-Wire EEPROM www.maxim-ic.com FEATURES 4096 Bits Electrically Erasable Programmable Read-Only Memory (EEPROM) Unique, Factory-Lasered and Tested 64-Bit Registration Number (8-Bit

More information

DS1994 4Kb Plus Time Memory ibutton

DS1994 4Kb Plus Time Memory ibutton 19-5049; 11/09 4Kb Plus Time Memory ibutton www.maxim-ic.com SPECIAL FEATURES 4096 bits of Read/Write onvolatile Memory 256-bit Scratchpad Ensures Integrity of Data Transfer Memory Partitioned into 256-bit

More information

DS1631/DS1631A/DS1731 High-Precision Digital Thermometer and Thermostat

DS1631/DS1631A/DS1731 High-Precision Digital Thermometer and Thermostat AVAILABLE High-Precision Digital Thermometer and Thermostat FEATURES DS1631 and DS1631A Provide ±0.5 C Accuracy over a 0 C to +70 C Range DS1731 Provides ±1 C Accuracy over a -10 C to +85 C Range DS1631A

More information

DS1992/DS1993 1Kbit/4Kbit Memory ibutton TM DS1994 4Kbit Plus Time Memory ibutton

DS1992/DS1993 1Kbit/4Kbit Memory ibutton TM DS1994 4Kbit Plus Time Memory ibutton DS1992/DS1993 1Kbit/4Kbit Memory ibutton TM DS1994 4Kbit Plus Time Memory ibutton SPECIAL FEATURES 4096 bits of read/write nonvolatile memory (DS1993 and DS1994) 1024 bits of read/write nonvolatile memory

More information

DS1991 MultiKey ibutton

DS1991 MultiKey ibutton MultiKey ibutton www.ibutton.com SPECIAL FEATURES 1,152-bit secure read/write, nonvolatile memory Secure memory cannot be deciphered without matching 64-bit password Memory is partitioned into 3 blocks

More information

DS Wire 8-Channel Addressable Switch

DS Wire 8-Channel Addressable Switch 19-5702; 12/10 www.maxim-ic.com FEATURES Eight Channels of Programmable I/O with Open-Drain Outputs On-Resistance of PIO Pulldown Transistor 100Ω (max); Off-Resistance 10MΩ (typ) Individual Activity Latches

More information

DS28EA00 DS28EA00 PIOB PIOA GND GND NOTE: SCHEMATIC SHOWS PIO PINS WIRED FOR SEQUENCE-DETECT FUNCTION.

DS28EA00 DS28EA00 PIOB PIOA GND GND NOTE: SCHEMATIC SHOWS PIO PINS WIRED FOR SEQUENCE-DETECT FUNCTION. Rev 2; 4/09 1-Wire Digital Thermometer with General Description The is a digital thermometer with 9-bit (0.5 C) to 12-bit (1/16 C) resolution and alarm function with nonvolatile (V), user-programmable

More information

ABRIDGED DATA SHEET PART TEMP RANGE PIN-PACKAGE V CC

ABRIDGED DATA SHEET PART TEMP RANGE PIN-PACKAGE V CC 219-0008; Rev 1; 3/12 ABRIDGED DATA SHEET General Description The combines 1024 bits of EEPROM with challenge-and-response authentication security implemented with the FIPS 180-3 Secure Hash Algorithm

More information

DeepCover Secure Authenticator ibutton with SHA-256

DeepCover Secure Authenticator ibutton with SHA-256 General Description DeepCover embedded security solutions cloak sensitive data under multiple layers of advanced physical security to provide the most secure key storage possible. The ibutton (DS1964S)

More information

DS2406X Dual Addressable Switch Plus 1kbit Memory

DS2406X Dual Addressable Switch Plus 1kbit Memory www.maxim-ic.com FEATURES Open drain PIO pins are controlled and their logic level can be determined over 1-Wire bus for closed-loop control Replaces and is fully compatible with DS2407 but no user-programmable

More information

DS28EC20 20Kb 1-Wire EEPROM

DS28EC20 20Kb 1-Wire EEPROM 19-6067; Rev 4; 3/12 GEERAL DESCRIPTIO The DS28EC20 is a 20480-bit, 1-Wire EEPROM organized as 80 memory pages of 256 bits each. An additional page is set aside for control functions. Data is written to

More information

PIN ASSIGNMENT PIN DESCRIPTION

PIN ASSIGNMENT PIN DESCRIPTION www.dalsemi.com FEATURES Temperature measurements require no external components Measures temperatures from -55 C to +120 C. Fahrenheit equivalent is -67 F to +248 F Thermometer accuracy is ±2.0 C Thermometer

More information

DS28E Kb Protected 1-Wire EEPROM with SHA-1 Engine

DS28E Kb Protected 1-Wire EEPROM with SHA-1 Engine www.maxim-ic.com GEERAL DESCRIPTIO The DS28E01-100 combines 1024 bits of EEPROM with challenge-and-response authentication security implemented with the ISO/IEC 10118-3 Secure Hash Algorithm (SHA-1). The

More information

NOT RECOMMENDED FOR NEW DESIGNS. DS2430A 256-Bit 1-Wire EEPROM

NOT RECOMMENDED FOR NEW DESIGNS. DS2430A 256-Bit 1-Wire EEPROM 19-5236; 4/10 www.maxim-ic.com FEATURES 256-bit Electrically Erasable Programmable Read Only Memory (EEPROM) plus 64-bit one-time programmable application register Unique, factory-lasered and tested 64-bit

More information

DS1626/DS1726 High-Precision 3-Wire Digital Thermometer and Thermostat

DS1626/DS1726 High-Precision 3-Wire Digital Thermometer and Thermostat www.maxim-ic.com DESCRIPTION The DS1626 and DS1726 digital thermometers/thermostats provide temperature measurements and stand-alone thermostat capability over a -55 C to +125 C range. The DS1626 offers

More information

DS1676 Total Elapsed Time Recorder, Erasable

DS1676 Total Elapsed Time Recorder, Erasable www.dalsemi.com Preliminary DS1676 Total Elapsed Time Recorder, Erasable FEATURES Records the total time that the Event Input has been active and the number of events that have occurred. Volatile Elapsed

More information

Digital Thermometer and Thermostat in SOT23

Digital Thermometer and Thermostat in SOT23 General Description The digital thermometer and thermostat provides temperature readings that indicate the device s temperature. Thermostat settings and temperature readings are all communicated to/from

More information

DS Wire 8-Channel Addressable Switch

DS Wire 8-Channel Addressable Switch www.maxim-ic.com 1-Wire 8-Channel Addressable Switch FEATURES Eight Channels of Programmable I/O with Open-Drain Outputs On-Resistance of PIO Pulldown Transistor 100 (max); Off-Resistance 10M (typ) Individual

More information

DS2751 Multichemistry Battery Fuel Gauge

DS2751 Multichemistry Battery Fuel Gauge www.maxim-ic.com FEATURES Available in Two Configurations - Internal 25m Sense Resistor - External User-Selectable Sense Resistor Current Measurement - 12-Bit Bidirectional Measurement - Internal Sense

More information

DS1977 Password-Protected 32kB EEPROM ibutton

DS1977 Password-Protected 32kB EEPROM ibutton www.maxim-ic.com ibutton DESCRIPTIO The is a 32kB EEPROM in a rugged, ibutton enclosure. Access to the memory can be password-protected with different passwords for read-only and full access. Data is transferred

More information

DS2223/DS2224. EconoRAM FEATURES PACKAGE OUTLINE. PIN CONNECTIONS Pin 1 GND Ground Pin 2 DQ Data In/Out Pin 3 V CC Supply Pin 4 GND Ground

DS2223/DS2224. EconoRAM FEATURES PACKAGE OUTLINE. PIN CONNECTIONS Pin 1 GND Ground Pin 2 DQ Data In/Out Pin 3 V CC Supply Pin 4 GND Ground DS2223/DS2224 EconoRAM FEATURES Low cost, general purpose, 256 bit memory DS2223 has 256 bit SRAM DS2224 has 32 bit ROM, 224 bit SRAM Reduces control, address and data interface to a single pin PACKAGE

More information

Digital Thermometer and Thermostat

Digital Thermometer and Thermostat General Description The DS75LV low-voltage (1.7V to 3.7V) digital thermometer and thermostat provides 9, 10, 11, or 12-bit digital temperature readings over a -55 C to +125 C range with ±2 C accuracy over

More information

DS2438 Smart Battery Monitor

DS2438 Smart Battery Monitor AVAILABLE Smart Battery Monitor FEATURES Unique 1-Wire interface requires only one port pin for communication Provides unique 64-bit serial number Eliminates thermistors by sensing battery temperature

More information

DS1624 Digital Thermometer and Memory

DS1624 Digital Thermometer and Memory Digital Thermometer and Memory FEATURES Temperature Measurements Require No External Components Measures Temperatures from -55 C to +125 C in 0.0625 C Increments Temperature is Read as a 12-Bit Value (2-Byte

More information

ABRIDGED DATA SHEET. DS28E Kb Protected 1-Wire EEPROM with SHA-1 Engine

ABRIDGED DATA SHEET. DS28E Kb Protected 1-Wire EEPROM with SHA-1 Engine General Description The combines 1024 bits of EEPROM with challenge-and-response authentication security implemented with the ISO/IEC 10118-3 Secure Hash Algorithm (SHA-1). The 1024-bit EEPROM array is

More information

SENSYLINK Microelectronics Co., LTD. (CT1820HT) Single-Wire Digital Temperature Sensor

SENSYLINK Microelectronics Co., LTD. (CT1820HT) Single-Wire Digital Temperature Sensor SENSYLINK Microelectronics (CT1820HT) Single-Wire Digital Temperature Sensor CT1820HT is a Digital Temperature Sensor with±0.5 C Accuracy Compatible with 1-wire Interface. It is ideally used in HVAC, Thermal

More information

DS1982 1Kb Add-Only ibutton

DS1982 1Kb Add-Only ibutton 19-4891; Rev 8/09 SPECIAL FEATURES 1024 bits Electrically Programmable Read- Only Memory (EPROM) communicates with the economy of one signal plus ground EPROM partitioned into four 256-bit pages for randomly

More information

Features. General Description. Applications. Typical Application Circuit

Features. General Description. Applications. Typical Application Circuit General Description The DS28E05 is a 112-byte user-programmable EEPROM organized as 7 pages of 16 bytes each. Memory pages can be individually set to write protected or EPROM emulation mode through protection

More information

DS 1682 Total Elapsed Time Recorder with Alarm

DS 1682 Total Elapsed Time Recorder with Alarm DS 1682 Total Elapsed Time Recorder with Alarm www.dalsemi.com FEATURES Records the total time that the Event Input has been active and the number of events that have occurred. Volatile Elapsed Time Counter

More information

V PUP Input Low Voltage V IL (Notes 2, 9) 0.5 V

V PUP Input Low Voltage V IL (Notes 2, 9) 0.5 V AVAILABLE DS24B33 General Description The DS24B33 is a 4096-bit, 1-Wire EEPROM organized as 16 memory pages of 256 bits each. Data is written to a 32-byte scratchpad, verified, and then copied to the EEPROM

More information

1024-Bit, 1-Wire EEPROM

1024-Bit, 1-Wire EEPROM General Description The DS2431 is a 1024-bit, 1-Wire EEPROM chip organized as four memory pages of 256 bits each. Data is written to an 8-byte scratchpad, verified, and then copied to the EEPROM memory.

More information

ABRIDGED DATA SHEET. S One Page of 28 Bytes User OTP EPROM S Irreversible Write Protection S Unique, Factory-Programmed 64-Bit Identification Number

ABRIDGED DATA SHEET. S One Page of 28 Bytes User OTP EPROM S Irreversible Write Protection S Unique, Factory-Programmed 64-Bit Identification Number 219-0009; Rev 2; 4/11 EVALUATIO KIT AVAILABLE ABRIDGED DATA SHEET General Description The combines secure challenge-and-response authentication functionality based on the FIPS 180-3 specified Secure Hash

More information

DS Wire Digital Thermometer and Real Time Clock

DS Wire Digital Thermometer and Real Time Clock www.maxim-ic.com FEATURES Measures temperatures from -55 C to +125 C; Fahrenheit equivalent is -67 F to 257 F Real time clock counts seconds, minutes, hours, date of the month, month, day of the week,

More information

User-configurable Resolution. 9 to 12 bits (0.5 C to C)

User-configurable Resolution. 9 to 12 bits (0.5 C to C) AT30TS75A 9- to 12-bit Selectable, ±0.5 C Accurate Digital Temperature Sensor DATASHEET See Errata in Section 12. Features Single 1.7V to 5.5V Supply Measures Temperature -55 C to +125 C Highly Accurate

More information

DS Bit 1-Wire EEPROM

DS Bit 1-Wire EEPROM DS2431 1024-Bit 1-Wire EEPROM www.maxim-ic.com GEERAL DESCRIPTIO The DS2431 is a 1024-bit, 1-Wire EEPROM chip organized as four memory pages of 256 bits each. Data is written to an 8-byte scratchpad, verified,

More information

DS1845 Dual NV Potentiometer and Memory

DS1845 Dual NV Potentiometer and Memory www.maxim-ic.com FEATURES Two linear taper potentiometers -010 one 10k, 100 position & one 10k, 256 position -050 one 10k, 100 position & one 50k, 256 postition -100 one 10k, 100 position & one 100k, 256

More information

DS1306. Serial Alarm Real Time Clock (RTC)

DS1306. Serial Alarm Real Time Clock (RTC) www.dalsemi.com FEATURES Real time clock counts seconds, minutes, hours, date of the month, month, day of the week, and year with leap year compensation valid up to 2100 96-byte nonvolatile RAM for data

More information

DS WIRE INTERFACE 11 DECOUPLING CAP GND

DS WIRE INTERFACE 11 DECOUPLING CAP GND Rev ; 4/3 Hex Nonvolatile Potentiometer with General Description The contains six 256-position nonvolatile (NV) potentiometers, 64 bytes of NV user EEPROM memory, and four programmable NV I/O pins. The

More information

Digital Thermometer and Thermostat

Digital Thermometer and Thermostat Rev 1; 3/08 Digital Thermometer and Thermostat General Description The low-voltage (1.7V to 3.7V) digital thermometer and thermostat provides 9-, 10-, 11-, or 12-bit digital temperature readings over a

More information

REMOTE TEMPERATURE MONITORING SYSTEM VIA INTERNET, USING A DS18B20 SENSOR

REMOTE TEMPERATURE MONITORING SYSTEM VIA INTERNET, USING A DS18B20 SENSOR REMOTE TEMPERATURE MONITORING SYSTEM VIA INTERNET, USING A DS18B20 SENSOR Irinel GEORGESCU *, Bogdan VASILESCU ** *Petroleum-Gas University, Bd. Bucureşti 39, Ploiesti 100680, irinelgeorgescu@gmail.com

More information

1024-Bit, 1-Wire EEPROM DS2431. Features

1024-Bit, 1-Wire EEPROM DS2431. Features 19-4675; Rev 8; 10/09 1024-Bit, 1-Wire EEPROM General Description The is a 1024-bit, 1-Wire EEPROM chip organized as four memory pages of 256 bits each. Data is written to an 8-byte scratchpad, verified,

More information

2-Wire, 5-Bit DAC with Three Digital Outputs

2-Wire, 5-Bit DAC with Three Digital Outputs Rev 1; 6/4 2-Wire, 5-Bit DAC with Three Digital Outputs General Description The is a 5-bit digital-to-analog converter (DAC) with three programmable digital outputs. The communicates through a 2-wire,

More information

DS28CM00. I²C/SMBus Silicon Serial Number

DS28CM00. I²C/SMBus Silicon Serial Number DS28CM00 I²C/SMBus Silicon Serial Number www.maxim-ic.com GENERAL DESCRIPTION The DS28CM00 is a low-cost, electronic registration number to provide an absolutely unique identity that can be determined

More information

User-configurable Resolution. 9 to 12 bits (0.5 C to C)

User-configurable Resolution. 9 to 12 bits (0.5 C to C) AT30TS74 9- to 12-bit Selectable, ±1.0 C Accurate Digital Temperature Sensor DATASHEET Features Single 1.7V to 5.5V Supply Measures Temperature From -55 C to +125 C Highly Accurate Temperature Measurements

More information

DS1855 Dual Nonvolatile Digital Potentiometer and Secure Memory

DS1855 Dual Nonvolatile Digital Potentiometer and Secure Memory Dual Nonvolatile Digital Potentiometer and Secure Memory FEATURES Two Linear Taper Potentiometers DS1855-010 (One 10kΩ, 100 Position and One 10kΩ, 256 Position) DS1855-020 (One 10kΩ, 100 Position and One

More information

DS1302. Trickle Charge Timekeeping Chip FEATURES PIN ASSIGNMENT PIN DESCRIPTION

DS1302. Trickle Charge Timekeeping Chip FEATURES PIN ASSIGNMENT PIN DESCRIPTION DS132 Trickle Charge Timekeeping Chip FEATURES Real time clock counts seconds, minutes, hours, date of the month, month, day of the week, and year with leap year compensation valid up to 21 31 x 8 RAM

More information

DS1992/DS1993/DS1994

DS1992/DS1993/DS1994 www.dalsemi.com SPECIAL FEATURES 4096 bits of read/write nonvolatile memory (DS1993 and DS1994) 1024 bits of read/write nonvolatile memory (DS1992) 256-bit scratchpad ensures integrity of data transfer

More information

Single-Wire, I/O Powered 1-Kbit (128 x 8) Serial EEPROM with a Unique, Factory-Programmed 64-Bit Serial Number

Single-Wire, I/O Powered 1-Kbit (128 x 8) Serial EEPROM with a Unique, Factory-Programmed 64-Bit Serial Number Single-Wire, I/O Powered 1-Kbit (128 x 8) Serial EEPROM with a Unique, Factory-Programmed 64-Bit Serial Number Features Low Voltage Operation: AT21CS01 is self-powered via the 1.7V to 3.6V pull up voltage

More information

DS2755 High-Accuracy Battery Fuel Gauge with Snapshot

DS2755 High-Accuracy Battery Fuel Gauge with Snapshot www.maxim-ic.com FEATURES Snapshot Mode Allows Instantaneous Power Measurement Accurate Current Measurement for Coulomb Counting (Current Accumulation) - 2% ±4μV over ±64mV Input Range - 2% ±200μA over

More information

DS1305. Serial Alarm Real Time Clock (RTC) FEATURES PIN ASSIGNMENT ORDERING INFORMATION

DS1305. Serial Alarm Real Time Clock (RTC) FEATURES PIN ASSIGNMENT ORDERING INFORMATION DS135 Serial Alarm Real Time Clock (RTC) FEATURES Real time clock counts seconds, minutes, hours, date of the month, month, day of the week, and year with leap year compensation valid up to 21 96 byte

More information

DS1305EN. Serial Alarm Real-Time Clock

DS1305EN. Serial Alarm Real-Time Clock Serial Alarm Real-Time Clock www.maxim-ic.com FEATURES Real-time clock (RTC) counts seconds, minutes, hours, date of the month, month, day of the week, and year with leap-year compensation valid up to

More information

Downloaded from thermochron.com

Downloaded from thermochron.com General Description The ibutton high-temperature logger (DS1922E) is a rugged, self-sufficient system that measures temperature and records the result in a protected memory section. The recording is done

More information

DS1305 Serial Alarm Real Time Clock (RTC)

DS1305 Serial Alarm Real Time Clock (RTC) Serial Alarm Real Time Clock (RTC) www.dalsemi.com FEATURES Real time clock counts seconds, minutes, hours, date of the month, month, day of the week, and year with leap year compensation valid up to 2100

More information

FM24CL04 4Kb FRAM Serial Memory

FM24CL04 4Kb FRAM Serial Memory 4Kb FRAM Serial Memory Features 4K bit Ferroelectric Nonvolatile RAM Organized as 512 x 8 bits Unlimited Read/Writes 45 Year Data Retention NoDelay Writes Advanced High-Reliability Ferroelectric Process

More information

TOP VIEW CLOCK GENERATOR A1 A2 GND CPU SPEED SELECT

TOP VIEW CLOCK GENERATOR A1 A2 GND CPU SPEED SELECT Rev 0; 6/04 9-Bit I 2 C Nonvolatile General Description The is a 9-bit nonvolatile (NV) I/O expander with 64 bytes of NV user memory controlled by an I 2 C TM - compatible serial interface. The offers

More information

DS1216B. SmartWatch/RAM 16K/64K FEATURES PIN ASSIGNMENT PIN DESCRIPTION

DS1216B. SmartWatch/RAM 16K/64K FEATURES PIN ASSIGNMENT PIN DESCRIPTION DS1216B SmartWatch/RAM 16K/64K FEATURES Keeps track of hundredths of seconds, seconds, minutes, hours, days, date of the month, months, and years Converts standard 2K x 8 and 8K x 8 CMOS static RAMs into

More information

DS1305EN. Serial Alarm Real-Time Clock

DS1305EN. Serial Alarm Real-Time Clock Serial Alarm Real-Time Clock www.maxim-ic.com FEATURES Real-time clock (RTC) counts seconds, minutes, hours, date of the month, month, day of the week, and year with leap-year compensation valid up to

More information

Digital Thermometers and Thermostats with SPI/3-Wire Interface

Digital Thermometers and Thermostats with SPI/3-Wire Interface 19-5629; Rev 0; 11/10 Digital Thermometers and Thermostats General Description The digital thermometers and thermostats with an SPI /3-wire interface provide temperature readings that indicate the device

More information

DS1345W 3.3V 1024k Nonvolatile SRAM with Battery Monitor

DS1345W 3.3V 1024k Nonvolatile SRAM with Battery Monitor 19-5587; Rev 10/10 www.maxim-ic.com FEATURES 10 years minimum data retention in the absence of external power Data is automatically protected during power loss Power supply monitor resets processor when

More information

DS1220AB/AD 16k Nonvolatile SRAM

DS1220AB/AD 16k Nonvolatile SRAM DS122AB/AD 16k Nonvolatile SRAM www.dalsemi.com FEATURES years minimum data retention in the absence of external power Data is automatically protected during power loss Directly replaces 2k x 8 volatile

More information

DS2761 High-Precision Li+ Battery Monitor

DS2761 High-Precision Li+ Battery Monitor High-Precision Li+ Battery Monitor www.maxim-ic.com FEATURES Lithium-Ion (Li+) Safety Circuit - Overvoltage Protection - Overcurrent/Short-Circuit Protection - Undervoltage Protection Zero Volt Battery

More information

Preliminary Data MOS IC. Type Ordering Code Package SDA Q67100-H5092 P-DIP-8-1

Preliminary Data MOS IC. Type Ordering Code Package SDA Q67100-H5092 P-DIP-8-1 Nonvolatile Memory 1-Kbit E 2 PROM SDA 2516-5 Preliminary Data MOS IC Features Word-organized reprogrammable nonvolatile memory in n-channel floating-gate technology (E 2 PROM) 128 8-bit organization Supply

More information

FM24C16B-GTR. 16Kb Serial 5V F-RAM Memory. Features. Pin Configuration. Description. Ordering Information NC NC NC VSS VDD WP SCL SDA.

FM24C16B-GTR. 16Kb Serial 5V F-RAM Memory. Features. Pin Configuration. Description. Ordering Information NC NC NC VSS VDD WP SCL SDA. Preliminary FM24C16B 16Kb Serial 5V F-RAM Memory Features 16K bit Ferroelectric Nonvolatile RAM Organized as 2,048 x 8 bits High Endurance (10 12 ) Read/Write Cycles 38 year Data Retention NoDelay Writes

More information

PART IN+ IN- TX_DISABLE TX_FAULT BIAS SET BIASMAX 2 APCSET 2 MODSET 2 MOD SET PC_MON BS_MON

PART IN+ IN- TX_DISABLE TX_FAULT BIAS SET BIASMAX 2 APCSET 2 MODSET 2 MOD SET PC_MON BS_MON Rev 1; 2/6 Dual, NV, Variable Resistors General Description The DS392 features a dual, nonvolatile (NV), low temperature-coefficient, variable digital resistor with 256 user-selectable positions. The DS392

More information

DS1846 NV Tri-Potentiometer, Memory, and MicroMonitor

DS1846 NV Tri-Potentiometer, Memory, and MicroMonitor www.maxim-ic.com FEATURES Three linear taper potentiometers Two 10k, 100-position One 100k, 256-position 248 bytes of user EEPROM memory Monitors microprocessor power supply, voltage sense, and external

More information

FM24C16C-GTR. 16Kb Serial 5V F-RAM Memory. Features. Description. Pin Configuration NC NC NC VSS VDD WP SCL SDA. Ordering Information.

FM24C16C-GTR. 16Kb Serial 5V F-RAM Memory. Features. Description. Pin Configuration NC NC NC VSS VDD WP SCL SDA. Ordering Information. Preliminary FM24C16C 16Kb Serial 5V F-RAM Memory Features 16K bit Ferroelectric Nonvolatile RAM Organized as 2,048 x 8 bits High Endurance (10 12 ) Read/Write Cycles 36 year Data Retention at +75 C NoDelay

More information

DS1249Y/AB 2048k Nonvolatile SRAM

DS1249Y/AB 2048k Nonvolatile SRAM 19-5631; Rev 11/10 www.maxim-ic.com FEATURES 10 years minimum data retention in the absence of external power Data is automatically protected during power loss Unlimited write cycles Low-power CMOS operation

More information

DS1265Y/AB 8M Nonvolatile SRAM

DS1265Y/AB 8M Nonvolatile SRAM 19-5616; Rev 11/10 www.maxim-ic.com 8M Nonvolatile SRAM FEATURES 10 years minimum data retention in the absence of external power Data is automatically protected during power loss Unlimited write cycles

More information

DS1306 Serial Alarm Real-Time Clock

DS1306 Serial Alarm Real-Time Clock Serial Alarm Real-Time Clock www.maxim-ic.com FEATURES Real-Time Clock (RTC) Counts Seconds, Minutes, Hours, Date of the Month, Month, Day of the Week, and Year with Leap-Year Compensation Valid Up to

More information

DS1615 Temperature Recorder

DS1615 Temperature Recorder DS1615 Temperature Recorder www.dalsemi.com FEATURES Digital thermometer measures temperature -40 C to +85 C in 0.5 C increments (-40 F to +183.2 F in 0.9 F increments) Digital thermometer provides ±2

More information