Virtual Memory: Systems

Size: px
Start display at page:

Download "Virtual Memory: Systems"

Transcription

1 Virtual Memory: Systems 5-23 / 8-23: Introduc2on to Computer Systems 7 th Lecture, Mar. 22, 22 Instructors: Todd C. Mowry & Anthony Rowe

2 Today Virtual memory ques7ons and answers Simple memory system example Bonus: Case study: Core i7/linux memory system Bonus: Memory mapping 2

3 Virtual memory reminder/review Programmer s view of virtual memory Each process has its own private linear address space Cannot be corrupted by other processes System view of virtual memory Uses memory efficiently by caching virtual memory pages Efficient only because of locality Simplifies memory management and programming Simplifies protec2on by providing a convenient interposi2oning point to check permissions 3

4 Recall: Address Transla7on With a Page Table Page table base register (PTBR) n- Virtual address Virtual page number (VPN) p p- Virtual page offset (VPO) Page table address for process Page table Valid Physical page number (PPN) Valid bit = : page not in memory (page fault) m- Physical page number (PPN) Physical address p p- Physical page offset (PPO) 4

5 Recall: Address Transla7on: Page Hit CPU Chip CPU VA MMU 2 PTEA PTE 3 PA Cache/ Memory 4 Data 5 ) Processor sends virtual address to MMU 2-3) MMU fetches PTE from page table in memory 4) MMU sends physical address to cache/memory 5) Cache/memory sends data word to processor 5

6 Ques7on # Are the PTEs cached like other memory accesses? Yes (and no: see next ques7on) 6

7 Page tables in memory, like other data PTE CPU Chip CPU VA MMU PTEA PA PTEA hit PTEA miss PA miss PTE PTEA PA Memory PA hit Data Data L cache VA: virtual address, PA: physical address, PTE: page table entry, PTEA = PTE address 7

8 Ques7on #2 Isn t it slow to have to go to memory twice every 7me? Yes, it would be so, real MMUs don t 8

9 Speeding up Transla7on with a TLB Page table entries (PTEs) are cached in L like any other memory word PTEs may be evicted by other data references PTE hit s2ll requires a small L delay Solu7on: TranslaAon Lookaside Buffer (TLB) Small, dedicated, super- fast hardware cache of PTEs in MMU Contains complete page table entries for small number of pages 9

10 TLB Hit CPU Chip TLB 2 PTE VPN 3 CPU VA MMU PA 4 Cache/ Memory Data 5 A TLB hit eliminates a memory access

11 TLB Miss CPU Chip TLB 4 2 PTE VPN 3 CPU VA MMU PTEA PA Cache/ Memory 5 Data 6 A TLB miss incurs an addi7onal memory access (the PTE) Fortunately, TLB misses are rare. Why?

12 Ques7on #3 Isn t the page table huge? How can it be stored in RAM? Yes, it would be so, real page tables aren t simple arrays 2

13 Mul7- Level Page Tables Suppose: 4KB (2 2 ) page size, 64- bit address space, 8- byte PTE Level 2 Tables Problem: Would need a 32, TB page table! 2 64 * 2-2 * 2 3 = 2 55 bytes Level Table... Common solu7on: Mul2- level page tables Example: 2- level page table Level table: each PTE points to a page table (always memory resident) Level 2 table: each PTE points to a page (paged in and out like any other data)... 3

14 A Two- Level Page Table Hierarchy Level page table Level 2 page tables Virtual memory VP PTE PTE PTE 2 (null) PTE 3 (null) PTE 4 (null) PTE 5 (null) PTE 6 (null) PTE 7 (null) PTE... PTE 23 PTE... PTE VP 23 VP VP 247 Gap 2K allocated VM pages for code and data 6K unallocated VM pages PTE 8 (K - 9) null PTEs 23 null PTEs 32 bit addresses, 4KB pages, 4- byte PTEs PTE unallocated pages VP unallocated pages allocated VM page for the stack 4

15 Transla7ng with a k- level Page Table n-! VIRTUAL ADDRESS! p-!! VPN! VPN 2!...! VPN k! VPO! Level! page table! Level 2! page table!...!...! Level k! page table! PPN! m-! p-!! PPN! PPO! PHYSICAL ADDRESS! 5

16 Ques7on #4 Shouldn t fork() be really slow, since the child needs a copy of the parent s address space? Yes, it would be so, fork() doesn t really work that way 6

17 Sharing Revisited: Shared Objects Process virtual memory Physical memory Process 2 virtual memory Process maps the shared object. Shared object 7

18 Sharing Revisited: Shared Objects Process virtual memory Physical memory Process 2 virtual memory Process 2 maps the shared object. No7ce how the virtual addresses can be different. Shared object 8

19 Sharing Revisited: Private Copy- on- write (COW) Objects Process virtual memory Physical memory Process 2 virtual memory Two processes mapping a private copy- on- write (COW) object. Private copy-on-write area Area flagged as private copy- on- write PTEs in private areas are flagged as read- only Private copy-on-write object 9

20 Sharing Revisited: Private Copy- on- write (COW) Objects Process virtual memory Physical memory Copy-on-write Private copy-on-write object Process 2 virtual memory Write to private copy-on-write page Instruc7on wri7ng to private page triggers protec7on fault. Handler creates new R/W page. Instruc7on restarts upon handler return. Copying deferred as long as possible! 2

21 The fork Func7on Revisited fork provides private address space for each process To create virtual address for new process Create exact copies of parent page tables Flag each page in both processes (parent and child) as read- only Flag writeable areas in both processes as private COW On return, each process has exact copy of virtual memory Subsequent writes create new physical pages using COW mechanism Perfect approach for common case of fork() followed by exec() Why? 2

22 Today Virtual memory ques7ons and answers Simple memory system example Bonus: Case study: Core i7/linux memory system Bonus: Memory mapping 22

23 Review of Symbols Basic Parameters N = 2 n : Number of addresses in virtual address space M = 2 m : Number of addresses in physical address space P = 2 p : Page size (bytes) Components of the virtual address (VA) VPO: Virtual page offset VPN: Virtual page number TLBI: TLB index TLBT: TLB tag Components of the physical address (PA) PPO: Physical page offset (same as VPO) PPN: Physical page number CO: Byte offset within cache line CI: Cache index CT: Cache tag 23

24 Simple Memory System Example Addressing 4- bit virtual addresses 2- bit physical address Page size = 64 bytes VPN Virtual Page Number VPO Virtual Page Offset PPN Physical Page Number PPO Physical Page Offset 24

25 Simple Memory System Page Table Only show first 6 entries (out of 256) VPN PPN Valid VPN PPN Valid A B 4 C 5 6 D 2D 6 E 7 F D 25

26 Simple Memory System TLB 6 entries 4- way associa7ve TLBT TLBI VPN VPO Set Tag PPN Valid Tag PPN Valid Tag PPN Valid Tag PPN Valid 3 9 D D 2 4 A D A

27 Simple Memory System Cache 6 lines, 4- byte block size Physically addressed Direct mapped CT CI CO PPN PPO Idx Tag Valid B B B2 B3 Idx Tag Valid B B B2 B A D 2 B A 2D 93 5 DA 3B 3 36 B B D 8F 9 C 2 5 D F D D E B D3 7 6 C2 DF 3 F 4 27

28 Address Transla7on Example # Virtual Address: x3d4 TLBT TLBI VPN VPO VPN xf TLBI x3 TLBT x3 TLB Hit? Y Page Fault? N PPN: xd Physical Address CT CI CO PPN PPO CO CI x5 CT xd Hit? Y Byte: x36 28

29 Address Transla7on Example #2 Virtual Address: xcf TLBT TLBI VPN VPO VPN x7 TLBI x3 TLBT x TLB Hit? N Page Fault? Y PPN: TBD Physical Address CT CI CO PPN PPO CO CI CT Hit? Byte: 29

30 Address Transla7on Example #3 Virtual Address: x2 TLBT TLBI VPN VPO VPN x TLBI TLBT x TLB Hit? N Page Fault? N PPN: x28 Physical Address CT CI CO PPN PPO CO CI x8 CT x28 Hit? N Byte: Mem 3

31 Today Virtual memory ques7ons and answers Simple memory system example Bonus: Case study: Core i7/linux memory system Bonus: Memory mapping 3

32 Intel Core i7 Memory System Processor package Core x4 Registers Instruc7on fetch MMU (addr transla7on) L d- cache 32 KB, 8- way L i- cache 32 KB, 8- way L d- TLB 64 entries, 4- way L i- TLB 28 entries, 4- way L2 unified cache 256 KB, 8- way L2 unified TLB 52 entries, 4- way QuickPath interconnect GB/s each To other cores To I/O bridge L3 unified cache 8 MB, 6- way (shared by all cores) DDR3 Memory controller 3 x 64 GB/s 32 GB/s total (shared by all cores) Main memory 32

33 Review of Symbols Basic Parameters N = 2 n : Number of addresses in virtual address space M = 2 m : Number of addresses in physical address space P = 2 p : Page size (bytes) Components of the virtual address (VA) TLBI: TLB index TLBT: TLB tag VPO: Virtual page offset VPN: Virtual page number Components of the physical address (PA) PPO: Physical page offset (same as VPO) PPN: Physical page number CO: Byte offset within cache line CI: Cache index CT: Cache tag 33

34 End- to- end Core i7 Address Transla7on VPN TLB miss CPU 36 2 VPO 32 4 TLBT TLBI Virtual address (VA)... TLB hit 32/64 Result L hit L d- cache (64 sets, 8 lines/set)... L2, L3, and main memory L miss L TLB (6 sets, 4 entries/set) CR3 9 9 VPN VPN2 PTE 9 9 VPN3 VPN4 PTE PTE PTE 4 2 PPN PPO Physical address (PA) CT CI CO Page tables 34

35 Core i7 Level - 3 Page Table Entries 63 XD 62 Unused Page table physical base address Unused G PS A CD WT U/S R/W P= Available for OS (page table loca7on on disk) P= Each entry references a 4K child page table P: Child page table present in physical memory () or not (). R/W: Read- only or read- write access access permission for all reachable pages. U/S: user or supervisor (kernel) mode access permission for all reachable pages. WT: Write- through or write- back cache policy for the child page table. CD: Caching disabled or enabled for the child page table. A: Reference bit (set by MMU on reads and writes, cleared by sohware). PS: Page size either 4 KB or 4 MB (defined for Level PTEs only). G: Global page (don t evict from TLB on task switch) Page table physical base address: 4 most significant bits of physical page table address (forces page tables to be 4KB aligned) 35

36 Core i7 Level 4 Page Table Entries 63 XD 62 Unused Page physical base address Unused G D A CD WT U/S R/W P= Available for OS (page loca7on on disk) P= Each entry references a 4K child page P: Child page is present in memory () or not () R/W: Read- only or read- write access permission for child page U/S: User or supervisor mode access WT: Write- through or write- back cache policy for this page CD: Cache disabled () or enabled () A: Reference bit (set by MMU on reads and writes, cleared by sohware) D: Dirty bit (set by MMU on writes, cleared by sohware) G: Global page (don t evict from TLB on task switch) Page physical base address: 4 most significant bits of physical page address (forces pages to be 4KB aligned) 36

37 Core i7 Page Table Transla7on 9 VPN 9 VPN 2 9 VPN 3 VPN Virtual VPO address CR3 Physical address of L PT 4 / L PT Page global directory L PTE 4 / L2 PT Page upper directory L2 PTE 4 / L3 PT Page middle directory L3 PTE 4 / L4 PT Page table L4 PTE / 2 Offset into physical and virtual page 52 GB region per entry GB region per entry 2 MB region per entry 4 KB region per entry Physical address of page 4 / 4 2 Physical PPO address PPN 37

38 Cute Trick for Speeding Up L Access CT Tag Check Physical address (PA) CT CI CO PPN PPO Virtual address (VA) Address Transla7on VPN VPO 36 2 No Change Observa7on Bits that determine CI iden2cal in virtual and physical address Can index into cache while address transla2on taking place Generally we hit in TLB, so PPN bits (CT bits) available next Virtually indexed, physically tagged Cache carefully sized to make this possible CI L Cache 38

39 Today Virtual memory ques7ons and answers Simple memory system example Bonus: Case study: Core i7/linux memory system Bonus: Memory mapping 39

40 Memory Mapping VM areas ini7alized by associa7ng them with disk objects. Process is known as memory mapping. Area can be backed by (i.e., get its ini7al values from) : Regular file on disk (e.g., an executable object file) Ini2al page bytes come from a sec2on of a file Anonymous file (e.g., nothing) First fault will allocate a physical page full of 's (demand- zero page) Once the page is wripen to (diraed), it is like any other page Dirty pages are copied back and forth between memory and a special swap file. 4

41 Demand paging Key point: no virtual pages are copied into physical memory un7l they are referenced! Known as demand paging Crucial for 7me and space efficiency 4

42 User- Level Memory Mapping void *mmap(void *start, int len, int prot, int flags, int fd, int offset) Map len bytes star7ng at offset offset of the file specified by file descrip7on fd, preferably at address start start: may be for pick an address prot: PROT_READ, PROT_WRITE,... flags: MAP_ANON, MAP_PRIVATE, MAP_SHARED,... Return a pointer to start of mapped area (may not be start) 42

43 User- Level Memory Mapping void *mmap(void *start, int len, int prot, int flags, int fd, int offset) len bytes len bytes start (or address chosen by kernel) offset (bytes) Disk file specified by file descriptor fd Process virtual memory 43

44 Using mmap to Copy Files Copying without transferring data to user space. #include "csapp.h" /* * mmapcopy - uses mmap to copy * file fd to stdout */ void mmapcopy(int fd, int size) { } /* Ptr to mem-mapped VM area */ char *bufp; bufp = Mmap(NULL, size, PROT_READ, MAP_PRIVATE, fd, ); Write(, bufp, size); return; /* mmapcopy driver */ int main(int argc, char **argv) { struct stat stat; int fd; } /* Check for required cmdline arg */ if (argc!= 2) { printf("usage: %s <filename>\n, argv[]); exit(); } /* Copy the input arg to stdout */ fd = Open(argv[], O_RDONLY, ); Fstat(fd, &stat); mmapcopy(fd, stat.st_size); exit(); 44

45 Virtual Memory of a Linux Process Different for each process IdenAcal for each process Process- specific data structs (ptables, task and mm structs, kernel stack) Physical memory Kernel code and data Kernel virtual memory %esp User stack brk Memory mapped region for shared libraries Run7me heap (malloc) Process virtual memory x848 (32) x4 (64) Unini7alized data (.bss) Ini7alized data (.data) Program text (.text) 45

46 Linux Organizes VM as Collec7on of Areas Process virtual memory vm_area_struct task_struct mm_struct vm_end mm pgd vm_start vm_prot mmap vm_flags Shared libraries vm_next pgd: Page global directory address Points to L page table vm_prot: Read/write permissions for this area vm_flags Pages shared with other processes or private to this process vm_end vm_start vm_prot vm_flags vm_next vm_end vm_start vm_prot vm_flags vm_next Data Text 46

47 Linux Page Fault Handling vm_area_struct Process virtual memory vm_end vm_start vm_prot vm_flags vm_next vm_end vm_start vm_prot vm_flags shared libraries data read 3 read Segmentation fault: accessing a non- exis7ng page Normal page fault vm_next vm_end vm_start vm_prot vm_flags vm_next text 2 write Protec7on excep7on: e.g., viola7ng permission by wri7ng to a read- only page (Linux reports as Segmenta7on fault) 47

48 The execve Func7on Revisited User stack Private, demand-zero To load and run a new program a.out in the current process using execve: libc.so.data.text Memory mapped region for shared libraries Shared, file-backed Free vm_area_struct s and page tables for old areas a.out.data.text Runtime heap (via malloc) Uninitialized data (.bss) Initialized data (.data) Program text (.text) Private, demand-zero Private, demand-zero Private, file-backed Create vm_area_struct s and page tables for new areas Programs and ini2alized data backed by object files..bss and stack backed by anonymous files. Set PC to entry point in.text Linux will fault in code and data pages as needed. 48

Virtual Memory: Systems

Virtual Memory: Systems Virtual Memory: Systems 5-23: Introduction to Computer Systems 8 th Lecture, March 28, 27 Instructor: Franz Franchetti & Seth Copen Goldstein Recap: Hmmm, How Does This Work?! Process Process 2 Process

More information

Foundations of Computer Systems

Foundations of Computer Systems 8-6 Foundations of Computer Systems Lecture 5: Virtual Memory Concepts and Systems October 8, 27 8-6 SE PL OS CA Required Reading Assignment: Chapter 9 of CS:APP (3 rd edition) by Randy Bryant & Dave O

More information

Virtual Memory. Spring Instructors: Aykut and Erkut Erdem

Virtual Memory. Spring Instructors: Aykut and Erkut Erdem Virtual Memory Spring 22 Instructors: Aykut and Erkut Erdem Acknowledgement: The course slides are adapted from the slides prepared by R.E. Bryant, D.R. O Hallaron, G. Kesden and Markus Püschel of Carnegie-

More information

Memory System Case Studies Oct. 13, 2008

Memory System Case Studies Oct. 13, 2008 Topics 15-213 Memory System Case Studies Oct. 13, 2008 P6 address translation x86-64 extensions Linux memory management Linux page fault handling Memory mapping Class15+.ppt Intel P6 (Bob Colwell s Chip,

More information

Pentium/Linux Memory System March 17, 2005

Pentium/Linux Memory System March 17, 2005 15-213 The course that gives CMU its Zip! Topics Pentium/Linux Memory System March 17, 2005 P6 address translation x86-64 extensions Linux memory management Linux page fault handling Memory mapping 17-linuxmem.ppt

More information

Virtual Memory III /18-243: Introduc3on to Computer Systems 17 th Lecture, 23 March Instructors: Bill Nace and Gregory Kesden

Virtual Memory III /18-243: Introduc3on to Computer Systems 17 th Lecture, 23 March Instructors: Bill Nace and Gregory Kesden Virtual Memory III 15-213/18-243: Introduc3on to Computer Systems 17 th Lecture, 23 March 2010 Instructors: Bill Nace and Gregory Kesden (c) 1998-2010. All Rights Reserved. All work contained herein is

More information

P6/Linux Memory System Nov 11, 2009"

P6/Linux Memory System Nov 11, 2009 P6/Linux Memory System Nov 11, 2009" REMEMBER" 2! 3! Intel P6" P6 Memory System" DRAM" external system bus (e.g. PCI)" L2" cache" cache bus! bus interface unit" inst" TLB" instruction" fetch unit" L1"

More information

P6 memory system P6/Linux Memory System October 31, Overview of P6 address translation. Review of abbreviations. Topics. Symbols: ...

P6 memory system P6/Linux Memory System October 31, Overview of P6 address translation. Review of abbreviations. Topics. Symbols: ... 15-213 P6/Linux ory System October 31, 00 Topics P6 address translation Linux memory management Linux fault handling memory mapping DRAM bus interface unit instruction fetch unit processor package P6 memory

More information

Intel P The course that gives CMU its Zip! P6/Linux Memory System November 1, P6 memory system. Review of abbreviations

Intel P The course that gives CMU its Zip! P6/Linux Memory System November 1, P6 memory system. Review of abbreviations 15-213 The course that gives CMU its Zip! P6/Linux ory System November 1, 01 Topics P6 address translation Linux memory management Linux fault handling memory mapping Intel P6 Internal Designation for

More information

Intel P6 (Bob Colwell s Chip, CMU Alumni) The course that gives CMU its Zip! Memory System Case Studies November 7, 2007.

Intel P6 (Bob Colwell s Chip, CMU Alumni) The course that gives CMU its Zip! Memory System Case Studies November 7, 2007. class.ppt 15-213 The course that gives CMU its Zip! ory System Case Studies November 7, 07 Topics P6 address translation x86-64 extensions Linux memory management Linux fault handling ory mapping Intel

More information

Operating Systems: Internals and Design. Chapter 8. Seventh Edition William Stallings

Operating Systems: Internals and Design. Chapter 8. Seventh Edition William Stallings Operating Systems: Internals and Design Chapter 8 Principles Virtual Memory Seventh Edition William Stallings Operating Systems: Internals and Design Principles You re gonna need a bigger boat. Steven

More information

Virtual Memory. Alan L. Cox Some slides adapted from CMU slides

Virtual Memory. Alan L. Cox Some slides adapted from CMU slides Alan L. Cox alc@rice.edu Some slides adapted from CMU 5.23 slides Objectives Be able to explain the rationale for VM Be able to explain how VM is implemented Be able to translate virtual addresses to physical

More information

Page Which had internal designation P5

Page Which had internal designation P5 Intel P6 Internal Designation for Successor to Pentium Which had internal designation P5 Fundamentally Different from Pentium 1 Out-of-order, superscalar operation Designed to handle server applications

More information

This lecture. Virtual Memory. Virtual memory (VM) CS Instructor: Sanjeev Se(a

This lecture. Virtual Memory. Virtual memory (VM) CS Instructor: Sanjeev Se(a Virtual Memory Instructor: Sanjeev Se(a This lecture (VM) Overview and mo(va(on VM as tool for caching VM as tool for memory management VM as tool for memory protec(on Address transla(on 2 Virtual Memory

More information

Foundations of Computer Systems

Foundations of Computer Systems 18-600 Foundations of Computer Systems Lecture 16: Dynamic Memory Allocation October 23, 2017 18-600 SE PL OS CA Required Reading Assignment: Chapter 9 of CS:APP (3 rd edition) by Randy Bryant & Dave O

More information

Virtual Memory. Samira Khan Apr 27, 2017

Virtual Memory. Samira Khan Apr 27, 2017 Virtual Memory Samira Khan Apr 27, 27 Virtual Memory Idea: Give the programmer the illusion of a large address space while having a small physical memory So that the programmer does not worry about managing

More information

Virtual Memory: Concepts

Virtual Memory: Concepts Virtual Memory: Concepts 5-23 / 8-23: Introduc=on to Computer Systems 6 th Lecture, Mar. 8, 24 Instructors: Anthony Rowe, Seth Goldstein, and Gregory Kesden Today VM Movaon and Address spaces ) VM as a

More information

Virtual Memory: Concepts

Virtual Memory: Concepts Virtual Memory: Concepts Instructor: Dr. Hyunyoung Lee Based on slides provided by Randy Bryant and Dave O Hallaron Today Address spaces VM as a tool for caching VM as a tool for memory management VM as

More information

Systems Programming and Computer Architecture ( ) Timothy Roscoe

Systems Programming and Computer Architecture ( ) Timothy Roscoe Systems Group Department of Computer Science ETH Zürich Systems Programming and Computer Architecture (252-6-) Timothy Roscoe Herbstsemester 26 AS 26 Virtual Memory 8: Virtual Memory Computer Architecture

More information

198:231 Intro to Computer Organization. 198:231 Introduction to Computer Organization Lecture 14

198:231 Intro to Computer Organization. 198:231 Introduction to Computer Organization Lecture 14 98:23 Intro to Computer Organization Lecture 4 Virtual Memory 98:23 Introduction to Computer Organization Lecture 4 Instructor: Nicole Hynes nicole.hynes@rutgers.edu Credits: Several slides courtesy of

More information

Carnegie Mellon. Bryant and O Hallaron, Computer Systems: A Programmer s Perspective, Third Edition

Carnegie Mellon. Bryant and O Hallaron, Computer Systems: A Programmer s Perspective, Third Edition Carnegie Mellon Virtual Memory: Concepts 5-23: Introduction to Computer Systems 7 th Lecture, October 24, 27 Instructor: Randy Bryant 2 Hmmm, How Does This Work?! Process Process 2 Process n Solution:

More information

Computer Systems. Virtual Memory. Han, Hwansoo

Computer Systems. Virtual Memory. Han, Hwansoo Computer Systems Virtual Memory Han, Hwansoo A System Using Physical Addressing CPU Physical address (PA) 4 Main memory : : 2: 3: 4: 5: 6: 7: 8:... M-: Data word Used in simple systems like embedded microcontrollers

More information

Carnegie Mellon. 16 th Lecture, Mar. 20, Instructors: Todd C. Mowry & Anthony Rowe

Carnegie Mellon. 16 th Lecture, Mar. 20, Instructors: Todd C. Mowry & Anthony Rowe Virtual Memory: Concepts 5 23 / 8 23: Introduction to Computer Systems 6 th Lecture, Mar. 2, 22 Instructors: Todd C. Mowry & Anthony Rowe Today Address spaces VM as a tool lfor caching VM as a tool for

More information

Virtual Memory II. CSE 351 Autumn Instructor: Justin Hsia

Virtual Memory II. CSE 351 Autumn Instructor: Justin Hsia Virtual Memory II CSE 35 Autumn 27 Instructor: Justin Hsia Teaching Assistants: Lucas Wotton Michael Zhang Parker DeWilde Ryan Wong Sam Gehman Sam Wolfson Savanna Yee Vinny Palaniappan https://xkcd.com/495/

More information

14 May 2012 Virtual Memory. Definition: A process is an instance of a running program

14 May 2012 Virtual Memory. Definition: A process is an instance of a running program Virtual Memory (VM) Overview and motivation VM as tool for caching VM as tool for memory management VM as tool for memory protection Address translation 4 May 22 Virtual Memory Processes Definition: A

More information

Processes and Virtual Memory Concepts

Processes and Virtual Memory Concepts Processes and Virtual Memory Concepts Brad Karp UCL Computer Science CS 37 8 th February 28 (lecture notes derived from material from Phil Gibbons, Dave O Hallaron, and Randy Bryant) Today Processes Virtual

More information

Virtual Memory II. CSE 351 Autumn Instructor: Justin Hsia

Virtual Memory II. CSE 351 Autumn Instructor: Justin Hsia Virtual Memory II CSE 35 Autumn 26 Instructor: Justin Hsia Teaching Assistants: Chris Ma Hunter Zahn John Kaltenbach Kevin Bi Sachin Mehta Suraj Bhat Thomas Neuman Waylon Huang Xi Liu Yufang Sun https://xkcd.com/495/

More information

CSE 153 Design of Operating Systems

CSE 153 Design of Operating Systems CSE 53 Design of Operating Systems Winter 28 Lecture 6: Paging/Virtual Memory () Some slides modified from originals by Dave O hallaron Today Address spaces VM as a tool for caching VM as a tool for memory

More information

Virtual Memory: Concepts

Virtual Memory: Concepts Virtual Memory: Concepts 5-23: Introduction to Computer Systems 7 th Lecture, March 2, 27 Instructors: Franz Franchetti & Seth Copen Goldstein Hmmm, How Does This Work?! Process Process 2 Process n Solution:

More information

Virtual Memory II CSE 351 Spring

Virtual Memory II CSE 351 Spring Virtual Memory II CSE 351 Spring 2018 https://xkcd.com/1495/ Virtual Memory (VM) Overview and motivation VM as a tool for caching Address translation VM as a tool for memory management VM as a tool for

More information

University of Washington Virtual memory (VM)

University of Washington Virtual memory (VM) Virtual memory (VM) Overview and mo-va-on VM as tool for caching VM as tool for memory management VM as tool for memory protec-on Address transla-on Processes Defini=on: A process is an instance of a running

More information

CS 153 Design of Operating Systems

CS 153 Design of Operating Systems CS 153 Design of Operating Systems Spring 18 Lectre 17: Advanced Paging Instrctor: Chengy Song Slide contribtions from Nael Ab-Ghazaleh, Harsha Madhyvasta and Zhiyn Qian Some slides modified from originals

More information

CS24: INTRODUCTION TO COMPUTING SYSTEMS. Spring 2018 Lecture 24

CS24: INTRODUCTION TO COMPUTING SYSTEMS. Spring 2018 Lecture 24 CS24: INTRODUCTION TO COMPUTING SYSTEMS Spring 2018 Lecture 24 LAST TIME Extended virtual memory concept to be a cache of memory stored on disk DRAM becomes L4 cache of data stored on L5 disk Extend page

More information

Virtual Memory Nov 9, 2009"

Virtual Memory Nov 9, 2009 Virtual Memory Nov 9, 2009" Administrivia" 2! 3! Motivations for Virtual Memory" Motivation #1: DRAM a Cache for Disk" SRAM" DRAM" Disk" 4! Levels in Memory Hierarchy" cache! virtual memory! CPU" regs"

More information

virtual memory. March 23, Levels in Memory Hierarchy. DRAM vs. SRAM as a Cache. Page 1. Motivation #1: DRAM a Cache for Disk

virtual memory. March 23, Levels in Memory Hierarchy. DRAM vs. SRAM as a Cache. Page 1. Motivation #1: DRAM a Cache for Disk 5-23 March 23, 2 Topics Motivations for VM Address translation Accelerating address translation with TLBs Pentium II/III system Motivation #: DRAM a Cache for The full address space is quite large: 32-bit

More information

Virtual Memory. CS61, Lecture 15. Prof. Stephen Chong October 20, 2011

Virtual Memory. CS61, Lecture 15. Prof. Stephen Chong October 20, 2011 Virtual Memory CS6, Lecture 5 Prof. Stephen Chong October 2, 2 Announcements Midterm review session: Monday Oct 24 5:3pm to 7pm, 6 Oxford St. room 33 Large and small group interaction 2 Wall of Flame Rob

More information

Lecture 19: Virtual Memory: Concepts

Lecture 19: Virtual Memory: Concepts CSCI-UA.2-3 Computer Systems Organization Lecture 9: Virtual Memory: Concepts Mohamed Zahran (aka Z) mzahran@cs.nyu.edu http://www.mzahran.com Some slides adapted (and slightly modified) from: Clark Barrett

More information

CSE 351. Virtual Memory

CSE 351. Virtual Memory CSE 351 Virtual Memory Virtual Memory Very powerful layer of indirection on top of physical memory addressing We never actually use physical addresses when writing programs Every address, pointer, etc

More information

Roadmap. Java: Assembly language: OS: Machine code: Computer system:

Roadmap. Java: Assembly language: OS: Machine code: Computer system: Roadmap C: car *c = malloc(sizeof(car)); c->miles = ; c->gals = 7; float mpg = get_mpg(c); free(c); Assembly language: Machine code: get_mpg: pushq movq... popq ret %rbp %rsp, %rbp %rbp Java: Car c = new

More information

Virtual Memory Oct. 29, 2002

Virtual Memory Oct. 29, 2002 5-23 The course that gives CMU its Zip! Virtual Memory Oct. 29, 22 Topics Motivations for VM Address translation Accelerating translation with TLBs class9.ppt Motivations for Virtual Memory Use Physical

More information

A Few Problems with Physical Addressing. Virtual Memory Process Abstraction, Part 2: Private Address Space

A Few Problems with Physical Addressing. Virtual Memory Process Abstraction, Part 2: Private Address Space Process Abstraction, Part : Private Motivation: why not direct physical memory access? Address translation with pages Optimizing translation: translation lookaside buffer Extra benefits: sharing and protection

More information

CS 153 Design of Operating Systems

CS 153 Design of Operating Systems CS 53 Design of Operating Systems Spring 8 Lectre 6: Paging Instrctor: Chengy Song Slide contribtions from Nael Ab-Ghazaleh, Harsha Madhyvasta and Zhiyn Qian Some slides modified from originals by Dave

More information

Virtual Memory. Motivations for VM Address translation Accelerating translation with TLBs

Virtual Memory. Motivations for VM Address translation Accelerating translation with TLBs Virtual Memory Today Motivations for VM Address translation Accelerating translation with TLBs Fabián Chris E. Bustamante, Riesbeck, Fall Spring 2007 2007 A system with physical memory only Addresses generated

More information

Opera&ng Systems ECE344

Opera&ng Systems ECE344 Opera&ng Systems ECE344 Lecture 8: Paging Ding Yuan Lecture Overview Today we ll cover more paging mechanisms: Op&miza&ons Managing page tables (space) Efficient transla&ons (TLBs) (&me) Demand paged virtual

More information

Understanding the Design of Virtual Memory. Zhiqiang Lin

Understanding the Design of Virtual Memory. Zhiqiang Lin CS 6V8-05: System Security and Malicious Code Analysis Understanding the Design of Virtual Memory Zhiqiang Lin Department of Computer Science University of Texas at Dallas February 27 th, 202 Outline Basic

More information

Motivations for Virtual Memory Virtual Memory Oct. 29, Why VM Works? Motivation #1: DRAM a Cache for Disk

Motivations for Virtual Memory Virtual Memory Oct. 29, Why VM Works? Motivation #1: DRAM a Cache for Disk class8.ppt 5-23 The course that gives CMU its Zip! Virtual Oct. 29, 22 Topics Motivations for VM Address translation Accelerating translation with TLBs Motivations for Virtual Use Physical DRAM as a Cache

More information

CISC 360. Virtual Memory Dec. 4, 2008

CISC 360. Virtual Memory Dec. 4, 2008 CISC 36 Virtual Dec. 4, 28 Topics Motivations for VM Address translation Accelerating translation with TLBs Motivations for Virtual Use Physical DRAM as a Cache for the Disk Address space of a process

More information

Virtual Memory. Physical Addressing. Problem 2: Capacity. Problem 1: Memory Management 11/20/15

Virtual Memory. Physical Addressing. Problem 2: Capacity. Problem 1: Memory Management 11/20/15 Memory Addressing Motivation: why not direct physical memory access? Address translation with pages Optimizing translation: translation lookaside buffer Extra benefits: sharing and protection Memory as

More information

CS24: INTRODUCTION TO COMPUTING SYSTEMS. Spring 2015 Lecture 25

CS24: INTRODUCTION TO COMPUTING SYSTEMS. Spring 2015 Lecture 25 CS24: INTRODUCTION TO COMPUTING SYSTEMS Spring 2015 Lecture 25 LAST TIME: PROCESS MEMORY LAYOUT! Explored how Linux uses IA32! All processes have a similar layout Each process has its own page table structure

More information

CS24: INTRODUCTION TO COMPUTING SYSTEMS. Spring 2015 Lecture 23

CS24: INTRODUCTION TO COMPUTING SYSTEMS. Spring 2015 Lecture 23 CS24: INTRODUCTION TO COMPUTING SYSTEMS Spring 205 Lecture 23 LAST TIME: VIRTUAL MEMORY! Began to focus on how to virtualize memory! Instead of directly addressing physical memory, introduce a level of

More information

CS24: INTRODUCTION TO COMPUTING SYSTEMS. Spring 2018 Lecture 23

CS24: INTRODUCTION TO COMPUTING SYSTEMS. Spring 2018 Lecture 23 CS24: INTRODUCTION TO COMPUTING SYSTEMS Spring 208 Lecture 23 LAST TIME: VIRTUAL MEMORY Began to focus on how to virtualize memory Instead of directly addressing physical memory, introduce a level of indirection

More information

Random-Access Memory (RAM) Systemprogrammering 2007 Föreläsning 4 Virtual Memory. Locality. The CPU-Memory Gap. Topics

Random-Access Memory (RAM) Systemprogrammering 2007 Föreläsning 4 Virtual Memory. Locality. The CPU-Memory Gap. Topics Systemprogrammering 27 Föreläsning 4 Topics The memory hierarchy Motivations for VM Address translation Accelerating translation with TLBs Random-Access (RAM) Key features RAM is packaged as a chip. Basic

More information

Random-Access Memory (RAM) Systemprogrammering 2009 Föreläsning 4 Virtual Memory. Locality. The CPU-Memory Gap. Topics! The memory hierarchy

Random-Access Memory (RAM) Systemprogrammering 2009 Föreläsning 4 Virtual Memory. Locality. The CPU-Memory Gap. Topics! The memory hierarchy Systemprogrammering 29 Föreläsning 4 Topics! The memory hierarchy! Motivations for VM! Address translation! Accelerating translation with TLBs Random-Access (RAM) Key features! RAM is packaged as a chip.!

More information

Main Points. Address Transla+on Concept. Flexible Address Transla+on. Efficient Address Transla+on

Main Points. Address Transla+on Concept. Flexible Address Transla+on. Efficient Address Transla+on Address Transla+on Main Points Address Transla+on Concept How do we convert a virtual address to a physical address? Flexible Address Transla+on Segmenta+on Paging Mul+level transla+on Efficient Address

More information

Virtual Memory. Computer Systems Principles

Virtual Memory. Computer Systems Principles Virtual Memory Computer Systems Principles Objectives Virtual Memory What is it? How does it work? Virtual Memory Address Translation /7/25 CMPSCI 23 - Computer Systems Principles 2 Problem Lots of executing

More information

VM as a cache for disk

VM as a cache for disk Virtualization Virtual Memory Computer Systems Organization (Spring 2017) CSCI-UA 201, Section 3 Instructor: Joanna Klukowska Virtualization of a resource: presenting a user with a different view of that

More information

PROCESS VIRTUAL MEMORY PART 2. CS124 Operating Systems Winter , Lecture 19

PROCESS VIRTUAL MEMORY PART 2. CS124 Operating Systems Winter , Lecture 19 PROCESS VIRTUAL MEMORY PART 2 CS24 Operating Systems Winter 25-26, Lecture 9 2 Virtual Memory Abstraction Last time, officially introduced concept of virtual memory Programs use virtual addresses to refer

More information

CIS Operating Systems Memory Management Cache and Demand Paging. Professor Qiang Zeng Spring 2018

CIS Operating Systems Memory Management Cache and Demand Paging. Professor Qiang Zeng Spring 2018 CIS 3207 - Operating Systems Memory Management Cache and Demand Paging Professor Qiang Zeng Spring 2018 Process switch Upon process switch what is updated in order to assist address translation? Contiguous

More information

Memory Management. Fundamentally two related, but distinct, issues. Management of logical address space resource

Memory Management. Fundamentally two related, but distinct, issues. Management of logical address space resource Management Fundamentally two related, but distinct, issues Management of logical address space resource On IA-32, address space may be scarce resource for a user process (4 GB max) Management of physical

More information

Lecture 8: Memory Management

Lecture 8: Memory Management Lecture 8: Memory Management CSE 120: Principles of Opera>ng Systems UC San Diego: Summer Session I, 2009 Frank Uyeda Announcements PeerWise ques>ons due tomorrow. Project 2 is due on Friday. Milestone

More information

virtual memory Page 1 CSE 361S Disk Disk

virtual memory Page 1 CSE 361S Disk Disk CSE 36S Motivations for Use DRAM a for the Address space of a process can exceed physical memory size Sum of address spaces of multiple processes can exceed physical memory Simplify Management 2 Multiple

More information

CIS Operating Systems Memory Management Cache. Professor Qiang Zeng Fall 2017

CIS Operating Systems Memory Management Cache. Professor Qiang Zeng Fall 2017 CIS 5512 - Operating Systems Memory Management Cache Professor Qiang Zeng Fall 2017 Previous class What is logical address? Who use it? Describes a location in the logical memory address space Compiler

More information

@2010 Badri Computer Architecture Assembly II. Virtual Memory. Topics (Chapter 9) Motivations for VM Address translation

@2010 Badri Computer Architecture Assembly II. Virtual Memory. Topics (Chapter 9) Motivations for VM Address translation Virtual Memory Topics (Chapter 9) Motivations for VM Address translation 1 Motivations for Virtual Memory Use Physical DRAM as a Cache for the Disk Address space of a process can exceed physical memory

More information

CIS Operating Systems Memory Management Cache. Professor Qiang Zeng Fall 2015

CIS Operating Systems Memory Management Cache. Professor Qiang Zeng Fall 2015 CIS 5512 - Operating Systems Memory Management Cache Professor Qiang Zeng Fall 2015 Previous class What is logical address? Who use it? Describes a location in the logical address space Compiler and CPU

More information

seven Virtual Memory Introduction

seven Virtual Memory Introduction Virtual Memory seven Exercise Goal: You will study how Linux implements virtual memory. A general architecture-independent memory model is the basis of all Linux virtual memory implementations, though

More information

CSE 120 Principles of Operating Systems

CSE 120 Principles of Operating Systems CSE 120 Principles of Operating Systems Spring 2018 Lecture 10: Paging Geoffrey M. Voelker Lecture Overview Today we ll cover more paging mechanisms: Optimizations Managing page tables (space) Efficient

More information

Applications of. Virtual Memory in. OS Design

Applications of. Virtual Memory in. OS Design Applications of Virtual Memory in OS Design Nima Honarmand Introduction Virtual memory is a powerful level of indirection Indirection: IMO, the most powerful concept in Computer Science Fundamental Theorem

More information

Recall: Address Space Map. 13: Memory Management. Let s be reasonable. Processes Address Space. Send it to disk. Freeing up System Memory

Recall: Address Space Map. 13: Memory Management. Let s be reasonable. Processes Address Space. Send it to disk. Freeing up System Memory Recall: Address Space Map 13: Memory Management Biggest Virtual Address Stack (Space for local variables etc. For each nested procedure call) Sometimes Reserved for OS Stack Pointer Last Modified: 6/21/2004

More information

Virtual Memory I. CSE 351 Winter Instructor: Mark Wyse

Virtual Memory I. CSE 351 Winter Instructor: Mark Wyse http://rebrn.com/re/bad-chrome-6282/ Virtual Memory I CSE 35 Winter 28 Instructor: Mark Wyse Teaching Assistants: Kevin Bi Parker DeWilde Emily Furst Sarah House Waylon Huang Vinny Palaniappan Administrative

More information

CSE 560 Computer Systems Architecture

CSE 560 Computer Systems Architecture This Unit: CSE 560 Computer Systems Architecture App App App System software Mem I/O The operating system () A super-application Hardware support for an Page tables and address translation s and hierarchy

More information

Another View of the Memory Hierarchy. Lecture #25 Virtual Memory I Memory Hierarchy Requirements. Memory Hierarchy Requirements

Another View of the Memory Hierarchy. Lecture #25 Virtual Memory I Memory Hierarchy Requirements. Memory Hierarchy Requirements CS61C L25 Virtual I (1) inst.eecs.berkeley.edu/~cs61c CS61C : Machine Structures Lecture #25 Virtual I 27-8-7 Scott Beamer, Instructor Another View of the Hierarchy Thus far{ Next: Virtual { Regs Instr.

More information

CSCI 4061: Virtual Memory

CSCI 4061: Virtual Memory 1 CSCI 4061: Virtual Memory Chris Kauffman Last Updated: Thu Dec 7 12:52:03 CST 2017 2 Logistics: End Game Date Lecture Outside Mon 12/04 Lab 13: Sockets Tue 12/05 Sockets Thu 12/07 Virtual Memory Mon

More information

Virtual Memory. CS 351: Systems Programming Michael Saelee

Virtual Memory. CS 351: Systems Programming Michael Saelee Virtual Memory CS 351: Systems Programming Michael Saelee registers cache (SRAM) main memory (DRAM) local hard disk drive (HDD/SSD) remote storage (networked drive / cloud) previously: SRAM

More information

Compsci 104. Duke University. Input/Output. Instructors: Alvin R. Lebeck. Some Slides provided by Randy Bryant and Dave O Hallaron and G.

Compsci 104. Duke University. Input/Output. Instructors: Alvin R. Lebeck. Some Slides provided by Randy Bryant and Dave O Hallaron and G. Input/Output Instructors: Alvin R. Lebeck Some Slides provided by Randy Bryant and Dave O Hallaron and G. Kedem 1 Administrivia HW #7 up, Due Monday Dec 5 (no late submissions) Work on processor project,

More information

Memory Hierarchy Requirements. Three Advantages of Virtual Memory

Memory Hierarchy Requirements. Three Advantages of Virtual Memory CS61C L12 Virtual (1) CS61CL : Machine Structures Lecture #12 Virtual 2009-08-03 Jeremy Huddleston Review!! Cache design choices: "! Size of cache: speed v. capacity "! size (i.e., cache aspect ratio)

More information

Virtual Memory. Daniel Sanchez Computer Science & Artificial Intelligence Lab M.I.T. November 15, MIT Fall 2018 L20-1

Virtual Memory. Daniel Sanchez Computer Science & Artificial Intelligence Lab M.I.T. November 15, MIT Fall 2018 L20-1 Virtual Memory Daniel Sanchez Computer Science & Artificial Intelligence Lab M.I.T. L20-1 Reminder: Operating Systems Goals of OS: Protection and privacy: Processes cannot access each other s data Abstraction:

More information

CSE 120 Principles of Operating Systems Spring 2017

CSE 120 Principles of Operating Systems Spring 2017 CSE 120 Principles of Operating Systems Spring 2017 Lecture 12: Paging Lecture Overview Today we ll cover more paging mechanisms: Optimizations Managing page tables (space) Efficient translations (TLBs)

More information

Virtual Memory. Daniel Sanchez Computer Science & Artificial Intelligence Lab M.I.T. April 12, 2018 L16-1

Virtual Memory. Daniel Sanchez Computer Science & Artificial Intelligence Lab M.I.T. April 12, 2018 L16-1 Virtual Memory Daniel Sanchez Computer Science & Artificial Intelligence Lab M.I.T. L16-1 Reminder: Operating Systems Goals of OS: Protection and privacy: Processes cannot access each other s data Abstraction:

More information

Memory Management Day 2. SWE3015 Sung- hun Kim

Memory Management Day 2. SWE3015 Sung- hun Kim Memory Management Day 2 SWE3015 Sung- hun Kim VIRTUAL MEMORY IMPLEMENTATION 2 Linux 32 bit address space layout Process Address Space 3/39 Linux 64 bit address space layout Process Address Space 4/39 Process

More information

Lecture 21: Virtual Memory. Spring 2018 Jason Tang

Lecture 21: Virtual Memory. Spring 2018 Jason Tang Lecture 21: Virtual Memory Spring 2018 Jason Tang 1 Topics Virtual addressing Page tables Translation lookaside buffer 2 Computer Organization Computer Processor Memory Devices Control Datapath Input Output

More information

Virtual Memory. Patterson & Hennessey Chapter 5 ELEC 5200/6200 1

Virtual Memory. Patterson & Hennessey Chapter 5 ELEC 5200/6200 1 Virtual Memory Patterson & Hennessey Chapter 5 ELEC 5200/6200 1 Virtual Memory Use main memory as a cache for secondary (disk) storage Managed jointly by CPU hardware and the operating system (OS) Programs

More information

University*of*Washington*

University*of*Washington* Roadmap C: car c = malloc(sizeof(car)); c->miles = 100; c->gals = 17; float mpg = get_mpg(c); free(c); Assembly language: Machine code: Computer system: get_mpg: pushq movq... popq ret %rbp %rsp, %rbp

More information

Virtual Memory I. CSE 351 Spring Instructor: Ruth Anderson

Virtual Memory I. CSE 351 Spring Instructor: Ruth Anderson Virtual Memory I CSE 35 Spring 27 Instructor: Ruth Anderson Teaching Assistants: Dylan Johnson Kevin Bi Linxing Preston Jiang Cody Ohlsen Yufang Sun Joshua Curtis Administrivia Midterms Graded If you did

More information

CS 318 Principles of Operating Systems

CS 318 Principles of Operating Systems CS 318 Principles of Operating Systems Fall 2018 Lecture 10: Virtual Memory II Ryan Huang Slides adapted from Geoff Voelker s lectures Administrivia Next Tuesday project hacking day No class My office

More information

Memory Management. Disclaimer: some slides are adopted from book authors slides with permission 1

Memory Management. Disclaimer: some slides are adopted from book authors slides with permission 1 Memory Management Disclaimer: some slides are adopted from book authors slides with permission 1 CPU management Roadmap Process, thread, synchronization, scheduling Memory management Virtual memory Disk

More information

How to create a process? What does process look like?

How to create a process? What does process look like? How to create a process? On Unix systems, executable read by loader Compile time runtime Ken Birman ld loader Cache Compiler: generates one object file per source file Linker: combines all object files

More information

Virtual Memory. CS 3410 Computer System Organization & Programming

Virtual Memory. CS 3410 Computer System Organization & Programming Virtual Memory CS 3410 Computer System Organization & Programming These slides are the product of many rounds of teaching CS 3410 by Professors Weatherspoon, Bala, Bracy, and Sirer. Where are we now and

More information

CS 61C: Great Ideas in Computer Architecture. Virtual Memory III. Instructor: Dan Garcia

CS 61C: Great Ideas in Computer Architecture. Virtual Memory III. Instructor: Dan Garcia CS 61C: Great Ideas in Computer Architecture Virtual Memory III Instructor: Dan Garcia 1 Agenda Review of Last Lecture Goals of Virtual Memory Page Tables TranslaFon Lookaside Buffer (TLB) Administrivia

More information

CSE 451: Operating Systems Winter Page Table Management, TLBs and Other Pragmatics. Gary Kimura

CSE 451: Operating Systems Winter Page Table Management, TLBs and Other Pragmatics. Gary Kimura CSE 451: Operating Systems Winter 2013 Page Table Management, TLBs and Other Pragmatics Gary Kimura Moving now from Hardware to how the OS manages memory Two main areas to discuss Page table management,

More information

Memory Mapping. Sarah Diesburg COP5641

Memory Mapping. Sarah Diesburg COP5641 Memory Mapping Sarah Diesburg COP5641 Memory Mapping Translation of address issued by some device (e.g., CPU or I/O device) to address sent out on memory bus (physical address) Mapping is performed by

More information

Memory Management. Disclaimer: some slides are adopted from book authors slides with permission 1

Memory Management. Disclaimer: some slides are adopted from book authors slides with permission 1 Memory Management Disclaimer: some slides are adopted from book authors slides with permission 1 Recap Paged MMU: Two main Issues Translation speed can be slow TLB Table size is big Multi-level page table

More information

CS 61C: Great Ideas in Computer Architecture. Lecture 23: Virtual Memory. Bernhard Boser & Randy Katz

CS 61C: Great Ideas in Computer Architecture. Lecture 23: Virtual Memory. Bernhard Boser & Randy Katz CS 61C: Great Ideas in Computer Architecture Lecture 23: Virtual Memory Bernhard Boser & Randy Katz http://inst.eecs.berkeley.edu/~cs61c Agenda Virtual Memory Paged Physical Memory Swap Space Page Faults

More information

Address Translation. Jinkyu Jeong Computer Systems Laboratory Sungkyunkwan University

Address Translation. Jinkyu Jeong Computer Systems Laboratory Sungkyunkwan University Address Translation Jinkyu Jeong (jinkyu@skku.edu) Computer Systems Laboratory Sungkyunkwan University http://csl.skku.edu Today s Topics How to reduce the size of page tables? How to reduce the time for

More information

Learning Outcomes. An understanding of page-based virtual memory in depth. Including the R3000 s support for virtual memory.

Learning Outcomes. An understanding of page-based virtual memory in depth. Including the R3000 s support for virtual memory. Virtual Memory 1 Learning Outcomes An understanding of page-based virtual memory in depth. Including the R3000 s support for virtual memory. 2 Memory Management Unit (or TLB) The position and function

More information

Learning Outcomes. An understanding of page-based virtual memory in depth. Including the R3000 s support for virtual memory.

Learning Outcomes. An understanding of page-based virtual memory in depth. Including the R3000 s support for virtual memory. Virtual Memory Learning Outcomes An understanding of page-based virtual memory in depth. Including the R000 s support for virtual memory. Memory Management Unit (or TLB) The position and function of the

More information

Chapter 6: Demand Paging

Chapter 6: Demand Paging ADRIAN PERRIG & TORSTEN HOEFLER ( 5-006-00 ) Networks and Operating Systems Chapter 6: Demand Paging Source: http://redmine.replicant.us/projects/replicant/wiki/samsunggalaxybackdoor If you miss a key

More information

Computer Structure. X86 Virtual Memory and TLB

Computer Structure. X86 Virtual Memory and TLB Computer Structure X86 Virtual Memory and TLB Franck Sala Slides from Lihu and Adi s Lecture 1 Virtual Memory Provides the illusion of a large memory Different machines have different amount of physical

More information

VIRTUAL MEMORY II. Jo, Heeseung

VIRTUAL MEMORY II. Jo, Heeseung VIRTUAL MEMORY II Jo, Heeseung TODAY'S TOPICS How to reduce the size of page tables? How to reduce the time for address translation? 2 PAGE TABLES Space overhead of page tables The size of the page table

More information

Problem 9. VM address translation. (9 points): The following problem concerns the way virtual addresses are translated into physical addresses.

Problem 9. VM address translation. (9 points): The following problem concerns the way virtual addresses are translated into physical addresses. Problem 9. VM address translation. (9 points): The following problem concerns the way virtual addresses are translated into physical addresses. The memory is byte addressable. Memory accesses are to 1-byte

More information

CIS Operating Systems Memory Management Address Translation for Paging. Professor Qiang Zeng Spring 2018

CIS Operating Systems Memory Management Address Translation for Paging. Professor Qiang Zeng Spring 2018 CIS 3207 - Operating Systems Memory Management Address Translation for Paging Professor Qiang Zeng Spring 2018 Previous class What is logical address? Who use it? Describes a location in the logical memory

More information