The Concept of Sample Rate. Digitized amplitude and time

Size: px
Start display at page:

Download "The Concept of Sample Rate. Digitized amplitude and time"

Transcription

1 Data Acquisition Basics Data acquisition is the sampling of continuous real world information to generate data that can be manipulated by a computer. Acquired data can be displayed, analyzed, and stored on a computer. A PC can be used to provide data acquisition of real world information such as voltage, current, temperature, pressure, or sound. The components of data acquisition systems include appropriate sensors, filters, signal conditioning, data acquisition devices, and application software. Ultimately data analysis can only be as good as the input data, so acquisition is responsible for providing high quality data. The Concept of Sample Rate The most important concepts of data acquisition have to do with digitizing the data so a modern digital computer (a PC) can use it. For example, you may have read data on a meter with a needle that moves backand-forth. This is an analog representation of the data. The needle moves smoothly to any position. You may also be accustomed to reading data on a digital meter that displays the data as numbers. This is a digital representation of the data, with changes in discrete steps where any step smaller than the resolution of the data acquisition device cannot be represented. Not only is the data digitized in amplitude, but it is also digitized in time. Where the analog meter always shows the current input value, the digital meter does not. The digital meter is updated at a constant rate. It reads the value and displays it, perhaps ten times per second. Although the actual input value may change between readings, the meter does not change. The displayed value only changes when the next reading is made, every 100 milliseconds. All modern data acquisition digitizes the data. The data is digitized in amplitude and time. It is easy to overlook the affect of the time digitizing, but it can be much more important than the amplitude digitizing. Consider an input signal that changes from 0 to 10 Volts in once second. A digital meter with three digits can resolve a change of 10 millivolts. If it updates only 10 times per second it will change one Volt at each sample. This is the equivalent of having only one digit of resolution, because the change from one sample to the next is a change of one digit in the most significant or left-most digit. Digitized amplitude and time Copyright 2009

2 How to Determine the Speed You Need 2 From the above discussion, it is clear that you need to determine the sample rate of a data acquisition system with care, but how do you choose? For slowly changing signals, like temperature, the only consideration is to provide a new reading so that the data is reasonably up-to-date. If the temperature is read only once per minute it may not accurately display the temperature of an oven that is heating rapidly. A faster sample rate is necessary. In some applications it is necessary to accurately represent an input waveform. An electrocardiogram, for example, must be reproduced with considerable precision because some of the important things a doctor looks for are small changes. To accurately display such a waveform you can look at the fastest rate-ofchange in the signal, expressed in Volts per second. In the example above of the digital meter, the signal changed at one Volt per second (which is much slower than an electrocardiogram). In order to detect a change as small as 1% of the 10 Volt signal it is necessary to sample 100 times per second. In order to detect a change of 0.1% of the 10 Volt signal it is necessary to sample 1000 times per second. The electrocardiogram signal changes rapidly in a short time, so it may be necessary to sample 100 to 1000 times per second, even though the heart rate is about once per second. Aliasing In many applications the accurate representation of the waveform is not very important, but representing all frequency components of the signal is important. Without going into the math, the Nyquist theorem states that the sample rate must be at least twice the highest frequency in order to measure all the frequencies present. In fact if the sample rate is too slow you not only don t measure the highest frequency, but lower frequencies are created in the data that didn t exist in the input signal! The diagram below shows a high frequency original signal with a sample rate a little below the frequency of the original signal (shown as red lines). When the read lines are connected to show the signal they represent (green lines), a much lower frequency emerges, the signal created by aliasing. Aliased signal In a vibration signal, the frequency of vibration is almost always very important. If the sample rate is so slow that the data shows frequencies that didn t really exist, the data is completely wrong. Instead of calculating the fastest rate of change in the signal, you determine the highest frequency component that will cause a

3 change. Thus for some signals, especially vibration, the avoidance of aliasing is the main factor you need to consider for sample rate. Filters An electronic filter can be used to separate wanted signal from noise. Since there is the possibility of frequencies higher than half the sample rate (often due to noise), a filter is almost always used in vibration measurement applications. If the filter is ideal (which it never is) the sample rate must be at least twice the cut-off frequency of the filter, the frequency above which no signal can pass through. Since real filters allow some signals to pass through above the cut-off frequency, the sample rate must be greater than twice the cut-off frequency. It is complicated to figure the necessary frequency, but it is often 4 to 10 times the cut-off frequency, depending upon the filter characteristics. 3 Ideal and practical filters Polled and Interrupt Acquisition Data acquisition software can be simple and straight-forward when sample rates are slow. Polled (or asynchronous) acquisition can be used, in which the application determines when to sample data from the data acquisition device, one sample at-a-time. This does not work with high-speed data, because of the overhead involved in acquiring each sample. Interrupt driven (or synchronous or buffered) acquisition acquires data in blocks, acquiring many samples at once with virtually the same overhead as for one sample in polled acquisition. Interrupt acquisition can give sample rates 10 to 1000 times faster than polled. Also the time between samples is much more precise. Along with these benefits there is more complexity, whether writing data acquisition software or simply configuring it. The following explains how to configure a data acquisition application that does interrupt driven acquisition. Acquired data can be analog inputs, digital inputs, or counter/timer inputs. Outputs work in a similar fashion.

4 Blocks and Buffers 4 In order to capture data rapidly and at precisely timed intervals, the low level data acquisition driver does the work, putting one sample after another into a portion of the PC s RAM referred to as a buffer. The application takes the data out of the buffer, not one sample at-a-time, but in blocks of many samples. Diagram of data acquisition device. The low level data acquisition driver talks directly to the hardware, manipulating the registers of a plug-in data acquisition board, or talking to the communication port of the data acquisition device. The driver is written to be small and fast so it can rapidly put data into the buffer. In the application you specify a block size and sample rate. The low level driver fills the buffer at the specified sample rate. The application must wait until enough data is acquired to fill one block. Then it can process all the data from the entire block. After that it must wait until the next block of data is full before it can process any more data. In interrupt driven data acquisition there are two independent processes, the data acquisition driver reading data and putting it into the buffer, and the application taking data out of the buffer and processing it. Each process has its speed limitation. Typically the driver can put data into the buffer faster than the application can process it. If the data acquisition device is running at its maximum rate the buffer may eventually fill because the application does not process the blocks of data fast enough. When the buffer fills with unprocessed data there are two options. The application can stop processing and display a warning message, or data in the buffer can be overwritten. It is rarely acceptable to overwrite data, so most data acquisition applications stop when the buffer fills. What the operator of the application sees is that the application runs for a while then stops and says the sample rate is too fast. If the buffer is very large it could take many minutes before the buffer fills and the application stops. In order to give the operator an indication that the buffer is filling it is desirable to have an indicator showing the status of the buffer. As the buffer fills with unprocessed data the status moves from 0% to 100% full. Data Acquisition Devices with Buffers Many data acquisition devices have their own data buffers, separate from the buffer in RAM discussed above. The data acquisition driver can transfer data from the buffer on the data acquisition device to the buffer in RAM in blocks. This speeds up the data acquisition into the buffer.

5 5 Diagram of data acquisition device with buffer. Having a buffer on the data acquisition device increases the speed for the same reason that the buffer in RAM increases the speed. The overhead of processing one sample in the driver is the same for processing many samples. This is especially critical in Windows. When the buffer is in the device the same issues arise as with a buffer in RAM. The data is processed in blocks, and the buffer can overflow. Typically the data acquisition driver is activated by interrupts generated by the data acquisition device. If the device has no buffer the PC must be interrupted each time a sample is available. The interrupt causes the processor in the PC to stop what it is doing and execute the driver program. The driver must transfer the data from the data acquisition device to the RAM buffer and return to allow the PC to resume what it was doing before another interrupt occurs. In Windows this can reliably run up to about 1000 samples per second. If another application is running or if the application does a lot of processing the speed may be limited to much less. If the data acquisition device has a buffer, many samples may be transferred during each interrupt. With a buffer of just 1000 samples a maximum speed of 1,000,000 samples per second is possible (if the device can run that fast), or at slower speeds the application can perform complex processing, or another application can run simultaneously without losing data. In Windows other applications or drivers may run without your knowledge. Having a buffer on the data acquisition device is very valuable. Time Delays As you can see, although interrupt data acquisition allows much faster sampling rates, there is an inherent delay between the reading of the data and the processing of it. The data appears on the screen or is logged to disk after the delay. In addition there is a small delay due to the processing in the application. Most drivers and applications--including DASYLab--work together in such a way that the time reported for the data sample is the actual time that it was acquired, not when it was put into the buffer, and not when it was processed by the application. The following table shows the time delay to fill a block of data and the time delay before the data appears on disk for an application that is logging data to disk. Not included is the delay due to the file buffer, which is set outside the application. This additional delay is not noticeable unless power is lost. Data still in the file buffer (or for that matter, the RAM buffer) and not yet written to disk is lost during a power outage. The table assumes there is a delay of 0.1 seconds for the application to process the data. Depending upon what the application is configured to do, this could be much larger, perhaps one second or more.

6 Time delay after sampling an input 6 Sample Rate Block Size Buffer Delay Delay to Disk (Hz) (Samples) (Seconds) (Seconds) 10,000 10, ,000 1, ,000 10, ,000 1, , , , For data acquisition devices with their own on-board buffer, the delay is the same as the chart above as long as the size of the buffer is less than the block size of the application. If the device buffer is set smaller than the block size in the application the application will have to wait for the device buffer to fill before it can process any data. Many data acquisition devices can transfer small amounts of data from the device buffer to the RAM buffer to avoid this problem when sample rates are slow. Be sure that the RAM buffer is larger than the device buffer or the RAM buffer could overflow, stopping data acquisition, even when the sample rate is quite slow. Time Delay Between Channels When acquiring data from a data acquisition device there is normally a time delay between channels. Most data acquisition devices use a multiplexer to sample one input after the other in sequence. As a result the channels are not read simultaneously. With some drivers and data acquisition devices the time between channels is spaced evenly throughout the entire sampling interval to give the maximum settling time for the amplifier after switching between channels. With other drivers and data acquisition devices the time between channels is kept to a minimum by scanning through the channels at maximum speed then waiting for the next sample interval. Because the channels are nearly simultaneous this is sometimes called pseudosimultaneous acquisition. When data is logged to disk it is usually time stamped with the time of acquisition of the first channel. It appears that all the channels were sampled at the same time, which is not true. In fact the data on the disk is sampled as shown in the following tables. Sample Times, Sample Rate 100 Hz, 4 Channels, Time in ms Evenly Spaced Acquisition Sample Channel 1 Channel 2 Channel 3 Channel ms 2.5 ms 5 ms 7.5 ms 2 10 ms 12.5 ms 15 ms 17.5 ms 3 20 ms 22.5 ms 25 ms 27.5 ms Pseudosimultaneous Acquisition Sample Channel 1 Channel 2 Channel 3 Channel ms 0.01 ms 0.02 ms 0.03 ms ms ms ms ms ms ms ms ms

7 This table shows the time delay in the actual acquisition of the data. It does not include the delay due to filling the buffer and processing the data by the application that is described above. In the pseudosimultaneous acquisition example the time between channels is 10 us. The particular data acquisition device determines this. The time is normally determined by the maximum sample rate. A maximum rate of 100,000 samples per second yields a time between samples of 10 us. 7 Burst and Continuous Acquisition Continuous acquisition of data at rates over 100,000 samples per second can be achieved in Windows software. At these rates data can only be streamed to disk in binary format. If any processing of the data in the application is desired, if the acquisition device is limited in speed, or if data rates above this are desired it is necessary to capture data in a burst. Data acquisition in bursts is always done synchronously so the sample rate is precise. The RAM buffer is filled with a burst of data while the application is inactive and not using any processor resources. Once the buffer is full the application takes over and processes the data. The acquisition burst may be restarted manually, or in some software it can start again automatically. There is a gap between each burst while the application processes the data during which no data is captured. You must specify ahead of time the number of samples to take in a burst. The maximum number of samples is limited by the amount of RAM in the PC. In continuous mode the number of samples is essentially unlimited, or is limited to the amount of disk space when logging data to disk. Burst mode acquisition is even faster when the data acquisition device has its own buffer. The rate of acquisition is limited only by the speed of the device and the size of its buffer. Usually PC's have more RAM than data acquisition devices, so more samples can be taken in burst mode into the PC RAM, but the speed is slower. Streaming to Disk Many data acquisition software applications offer a compromise between continuous acquisition and burst acquisition. Streaming to disk moves data very efficiently from the data acquisition device to a disk drive. It is much faster than continuous acquisition because no other processing or display is done. It is slower than burst acquisition, but the amount of data that can be captured is limited by the space available on the disk, rather than in memory. Counter/Timer Inputs All the inputs discussed up to now have been analog inputs. There are applications where fast switching digital signals need to be counted or the frequency needs to be measured. This is often most conveniently done with a hardware counter/timer. A hardware counter/timer can count more than 10 million digital pulses per second. The application software reads the number of pulses counted. This happens at the sample rate specified for inputs. When doing synchronous data acquisition the pulse count is read into the buffer by the driver, just as with analog inputs. The application software reads data out of the buffer in blocks, just as with analog inputs. The pulse count may be read slowly, for example at 100 samples per second, even though the pulses are counted at a fast rate, for example 1,000,000 pulses per second. In this example each time the pulse count is read (each sample) there will be about 10,000 pulses.

8 8 If you want to measure the total number of pulses, you should set up the application software to calculate the total number of pulses from all the samples, adding the number from each sample. This can be done in DASYLab. If you want to measure the frequency, the application software must divide the number of pulses during each sample by the length of the sample interval. This can be done in DASYLab by selecting "Frequency" in the counter/timer module: frequency = (number of pulses) / (sample interval) You must pay attention to how precisely you want to resolve the frequency by choosing the sample rate compared to the pulse rate. For example, if the sample rate is 1,000 samples per second and the pulses being measured are 10,000 Hz, there are 10 pulses in each sample. The frequency can only be resolved to 10% of 10,000 Hz (resolution of 1,000 Hz) because changes in frequency are discrete. There are either 9 or 10 or 11 pulses in a sample, yielding frequencies of 9,090 Hz, 10,000 Hz, or 11,111 Hz. There are two ways to resolve the frequency to a finer precision: 1) reduce the sample rate so more pulses are measured in each sample, or 2) average the resulting frequency. Either way is equivalent. Reducing the sample frequency to 100 Hz or averaging 10 samples resolves the frequency to 1%, because there are 100 pulses in the sample (case 1) or in the average (case 2). It is more common to use the second method, because other factors may determine the sample frequency, such as the rate at which analog inputs need to be sampled. Noise Noise is unwanted interference that affects the signal and may distort the information. Noise comes from a variety of sources. Some comes from inside a circuit or device, and some comes from outside. Noise gets into a circuit from outside through two fundamentally different ways: Radiated - like an antenna Conducted - on wires Radiated Noise Radiated noise travels through the air as radio waves. In order to couple into a circuit or pass through an enclosure efficiently, the dimensions of the circuit or the hole in the enclosure must be close to the wavelength of the noise or much larger. Here are wavelengths for various frequencies (in a vacuum): 1 KHz 190 miles 1 MHz 1000 feet 1 GHz 1 foot You can see that for most circuits the radiated noise is mainly a problem above 100 MHz, although AM radio stations (near 1 MHz) can induce significant noise in a circuit. Metal enclosures and shielded cables are effective at reducing radiated noise. Filters on the power inputs and signal inputs can reduce conducted noise. Conducted Noise Conducted noise gets into a circuit on wires. These can be the signal wires picking up the measured signal, or they can be the power supply wires. Battery operated devices avoid most noise from the power supply wires. In addition to high frequency noise there is power line frequency noise, which is usually 50Hz or 60Hz. Two paths into your system are directly from the power line in power supplies and from coupling between signal wires and the power lines that run throughout most buildings.

9 9 The conducting noise is reduced by shielding or filtering. Shielding keeps the noise out, and filtering reduces it when all of it can t be kept out of a circuit. If the signal being measured changes slowly, like temperature, the filter can have a low cut-off frequency. This makes it relatively easy to measure microvolt level signals from thermocouples. Signals such as accelerometers are often measured at 10 KHz, so the filtering cannot reduce as much noise. Summary Analysis can only be as good as the input data. Careful acquisition is responsible for providing high quality data. This paper looked at example architecture s impact on sampling rate. Some other topics covered are common types of noise and techniques that are effective ways to reduce unwanted signals.

Techniques to Reduce Measurement Errors in Challenging Environments

Techniques to Reduce Measurement Errors in Challenging Environments Techniques to Reduce Measurement Errors in Challenging Environments Jon Semancik VTI Instruments Corp. 2031 Main Street Irvine, CA 92614 949-955-1894 jsemancik@vtiinstruments.com INTRODUCTION Test engineers

More information

ECONseries Low Cost USB DAQ

ECONseries Low Cost USB DAQ ECONseries Low Cost USB Data Acquisition Modules ECONseries Low Cost USB DAQ The ECONseries is a flexible yet economical series of multifunction data acquisition modules. You choose the number of analog

More information

Multiplexing (Recap)

Multiplexing (Recap) Multiplexing (Recap) Multiplexing How to transfer data between two sites once there is a digital link between them? Analog to Digital (A2D) conversion Human voice is a continuous signal in the range 0-4

More information

Advanced NI-DAQmx Programming Techniques with LabVIEW

Advanced NI-DAQmx Programming Techniques with LabVIEW Advanced NI-DAQmx Programming Techniques with LabVIEW Agenda Understanding Your Hardware Data Acquisition Systems Data Acquisition Device Subsystems Advanced Programming with NI-DAQmx Understanding Your

More information

plc operation Topics: The computer structure of a PLC The sanity check, input, output and logic scans Status and memory types 686 CPU

plc operation Topics: The computer structure of a PLC The sanity check, input, output and logic scans Status and memory types 686 CPU plc operation - 8.1 Topics: The computer structure of a PLC The sanity check, input, output and logic scans Status and memory types Objectives: Understand the operation of a PLC. For simple programming

More information

DaqBoard/1000. Series 16-Bit, 200-kHz PCI Data Acquisition Boards

DaqBoard/1000. Series 16-Bit, 200-kHz PCI Data Acquisition Boards 16-Bit, 200-kHz PCI Data Acquisition Boards Features 16-bit, 200-kHz A/D converter 8 differential or 16 single-ended analog inputs (software selectable per channel) Up to four boards can be installed into

More information

LabMax-Pro PC data collection

LabMax-Pro PC data collection LabMax-Pro PC data collection Table of Contents 1. The Question 2. Setting up data logging ahead of time 3. Exporting data after it s already been collected 4. Importing and exporting data from the LabMax-Pro

More information

A Publication of Intel Corporation. September/October 1985 INTEL BRINGS HARMONY TO THE FACTORYFLOOR

A Publication of Intel Corporation. September/October 1985 INTEL BRINGS HARMONY TO THE FACTORYFLOOR A Publication of Intel Corporation September/October 1985 INTEL BRINGS HARMONY TO THE FACTORYFLOOR ApPLICATION NOTE Megabits to Megabytes: Bubble Memory System Design and Board Layout by Steven K. Knapp

More information

LabVIEW Basics I: Introduction Course

LabVIEW Basics I: Introduction Course www.ni.com/training LabVIEW Basics I Page 1 of 4 LabVIEW Basics I: Introduction Course Overview The LabVIEW Basics I course prepares you to develop test and measurement, data acquisition, instrument control,

More information

A variety of ECONseries modules provide economical yet flexible solutions. Waveform Generation

A variety of ECONseries modules provide economical yet flexible solutions. Waveform Generation ECONseries BUS: USB Type: Economy, Mini-Instruments ECONseries Economy USB Mini-Instruments Flexible Yet Economical A variety of low-cost ECONseries modules are available to provide flexible yet economical

More information

CHAPTER IV Computerized Data-acquisition Systems

CHAPTER IV Computerized Data-acquisition Systems CHAPTER IV Computerized Data-acquisition Systems The signal outputting a sensor is usually an analog signal. Post-processing methods involve, however, complex mathematical formulations. The data recorded

More information

DT Channel Analog Input USB DAQ Module. Key Features:

DT Channel Analog Input USB DAQ Module. Key Features: DT9844 32-Channel Analog Input USB DAQ Module Ultra High-Accuracy: 20-bits, 0.01% Very High-Speed: 1 MHz sampling Low Noise, Low Crosstalk: -80dB @ 1kHz, 500kHz settling ±500V Tri-sectional Isolation:

More information

Mehta Tech, Inc. TRANSCAN IED For Multi-Function, Multi-Speed Recording

Mehta Tech, Inc. TRANSCAN IED For Multi-Function, Multi-Speed Recording Mehta Tech, Inc. TRANSCAN IED For Multi-Function, Multi-Speed Recording Two independent, simultaneously operating recorders in one package Triggering on input quantities and calculated values, such as

More information

Glossary of Data Acquisition Terms Data Translation

Glossary of Data Acquisition Terms Data Translation Glossary of Data Acquisition Terms Data Translation A Accelerometer A device that senses acceleration. Typically, crystals that emit a voltage proportional to the acceleration. Accuracy The combination

More information

Spectramag-6 Six-Channel Spectrum Analyser for Magnetic Field and Vibration Surveys. For innovation in magnetic measuring instruments

Spectramag-6 Six-Channel Spectrum Analyser for Magnetic Field and Vibration Surveys. For innovation in magnetic measuring instruments Spectramag-6 Six-Channel Spectrum Analyser for Magnetic Field and Vibration Surveys For innovation in magnetic measuring instruments Spectramag-6 Six-Channel Spectrum Analyser for Magnetic Field and Vibration

More information

Computer Performance

Computer Performance Computer Performance Microprocessor At the centre of all modern personal computers is one, or more, microprocessors. The microprocessor is the chip that contains the CPU, Cache Memory (RAM), and connects

More information

Modems, DSL, and Multiplexing. CS158a Chris Pollett Feb 19, 2007.

Modems, DSL, and Multiplexing. CS158a Chris Pollett Feb 19, 2007. Modems, DSL, and Multiplexing CS158a Chris Pollett Feb 19, 2007. Outline Finish up Modems DSL Multiplexing The fastest modems Last day, we say the combinations and phases used to code symbols on a 2400

More information

BE/EE189 Design and Construction of Biodevices Lecture 5. BE/EE189 Design and Construction of Biodevices - Caltech

BE/EE189 Design and Construction of Biodevices Lecture 5. BE/EE189 Design and Construction of Biodevices - Caltech BE/EE189 Design and Construction of Biodevices Lecture 5 LabVIEW Programming Data acquisition DAQ system Signals and signal conditioning Nyquist frequency NI ELVIS II NI-DAQmx and DAQ assistant LabVIEW

More information

Product description for ED1600 generic Sigfox Module

Product description for ED1600 generic Sigfox Module Product description for ED1600 generic Sigfox Module The ED1600 Sigfox Module is mainly developed for container tracking purposes. To avoid the development of many different types of modules and just as

More information

Features. RoHS COMPLIANT 2002/95/EC

Features. RoHS COMPLIANT 2002/95/EC PCIE-1730 32-ch TTL and 32-ch Isolated Digital I/O PCI Express Card 32-ch isolated DI/O (16-ch digital input, 16-ch digital output) 32-ch TTL DI/O (16-ch digital input,16-ch digital output) High output

More information

A Walk Through the MSA Software Spectrum Analyzer Mode 12/12/09

A Walk Through the MSA Software Spectrum Analyzer Mode 12/12/09 A Walk Through the MSA Software Spectrum Analyzer Mode 12/12/09 This document is intended to familiarize you with the basic features of the MSA and its software, operating as a Spectrum Analyzer, without

More information

QUASAR ELECTRONICS KIT No Hi-Fi PREAMPLIFIER WITH REMOTE CONTROL

QUASAR ELECTRONICS KIT No Hi-Fi PREAMPLIFIER WITH REMOTE CONTROL QUASAR ELECTRONICS KIT No. 1070 Hi-Fi PREAMPLIFIER WITH REMOTE CONTROL General Description This is a hi-fi STEREO preamplifier based on a single integrated circuit which employs a revolutionary new method

More information

TFS 2100 Traveling Wave Fault Location System

TFS 2100 Traveling Wave Fault Location System Traveling Wave Fault Location System The most accurate overhead transmission and distribution line fault locator Accuracy: ±150m typical regardless the line length Unaffected by fault resistance Suitable

More information

Analog Input Sample Rate

Analog Input Sample Rate ECONseries Low Cost USB Data Acquisition Modules Overview The ECONseries is a flexible yet economical series of multifunction DAQ modules. You chse the number of analog I/O and digital I/O channels, the

More information

Features Summary. Input Ranges

Features Summary. Input Ranges DT9844 32-Channel Analog Input USB DAQ Module Overview The DT9844 is a high-accuracy (20-bit resolution), high- speed (1 MS/s sample rate) USB data acquisition module offering unparalleled performance.

More information

LabVIEW programming II

LabVIEW programming II FYS3240 PC-based instrumentation and microcontrollers LabVIEW programming II Spring 2016 Lecture #3 Bekkeng 18.01.2016 Dataflow programming With a dataflow model, nodes on a block diagram are connected

More information

DT9837. High Performance USB Module for Sound & Vibration Analysis. DT9837 Features

DT9837. High Performance USB Module for Sound & Vibration Analysis. DT9837 Features DT9837 High Performance USB Module for Sound & Vibration nalysis DT9837 Features 4 simultaneous, 24-bit Delta-Sigma channels for high resolution measurements. Support for four IEPE inputs, including current

More information

ET4254 Communications and Networking 1

ET4254 Communications and Networking 1 Topic 2 Aims:- Communications System Model and Concepts Protocols and Architecture Analog and Digital Signal Concepts Frequency Spectrum and Bandwidth 1 A Communications Model 2 Communications Tasks Transmission

More information

Input/Output Management

Input/Output Management Chapter 11 Input/Output Management This could be the messiest aspect of an operating system. There are just too much stuff involved, it is difficult to develop a uniform and consistent theory to cover

More information

VIBbox 64-Channel Sound & Vibration Solution

VIBbox 64-Channel Sound & Vibration Solution VIBbox 64-Channel Sound & Vibration Solution VIBbox is a high-accuracy, high channel count, dynamic signal analyzer system for sound and vibration applications. VIBbox packages four DT9857E modules in

More information

A variety of ECONseries modules provide economical yet flexible solutions

A variety of ECONseries modules provide economical yet flexible solutions Economy USB Mini-Instruments Flexible Yet Economical A variety of low-cost modules are available to provide flexible yet economical solutions. Choose the number of analog I/O and digital I/O channels,

More information

With a digital input we can read two states, a high or low. A switch can be open or closed.

With a digital input we can read two states, a high or low. A switch can be open or closed. Page 1 of 6 PRODUCT INFORMATION B&B ELECTRONICS Data Acquisition Basics Data Acquisition hardware devices provide an interface between electrical signals a computer can read or can output to control things

More information

ACTION ELECTRONICS. P110 Operating Instructions

ACTION ELECTRONICS. P110 Operating Instructions ACTION ELECTRONICS P110 Operating Instructions 1. Quick Start Guide Your P110 comes fully programmed & ready to go, there is no setup required although for more detailed setup refer to section 2. Installation

More information

ChartView Out-of-the-Box Setup, Acquisition, & Real-Time Display Software

ChartView Out-of-the-Box Setup, Acquisition, & Real-Time Display Software Out-of-the-Box Setup, Acquisition, & Real-Time Display Software ChartView Software Display and record data in minutes, with no programming Display strip charts in real time Make on-screen measurements

More information

Homework Assignment 9 LabVIEW tutorial

Homework Assignment 9 LabVIEW tutorial Homework Assignment 9 LabVIEW tutorial Due date: Wednesday, December 8 (midnight) For this homework assignment, you will complete a tutorial on the LabVIEW data acquistion software. This can be done on

More information

Keysight Technologies Viewing Graphical Results on a DMM Display. Application Note

Keysight Technologies Viewing Graphical Results on a DMM Display. Application Note Keysight Technologies Viewing Graphical Results on a DMM Display Application Note Introduction Digital multimeters measure and display various parameters such as voltage, current, resistance, and temperature

More information

ECONseries Low Cost USB DAQ

ECONseries Low Cost USB DAQ ECONseries Low Cost USB Data Acquisition Modules ECONseries Low Cost USB DAQ The ECONseries is a flexible yet economical series of multifunction data acquisition modules. You choose the number of analog

More information

Bluetooth Stereo Headset icombi TM AH20 User s Manual

Bluetooth Stereo Headset icombi TM AH20 User s Manual Bluetooth Stereo Headset icombi TM AH20 User s Manual icombi AH20 Index 1. Product introduction 2. What is included in icombi AH20 package 3. Headset features 4. Battery charging 5. Headset pairing and

More information

Introduction to Test Driven Development (To be used throughout the course)

Introduction to Test Driven Development (To be used throughout the course) Introduction to Test Driven Development (To be used throughout the course) Building tests and code for a software radio Concepts Stages in a conventional radio Stages in a software radio Goals for the

More information

Model IMP-22G2,H Low Cost Slave Clock Impulser Converts your slave clock to a working timepiece without modifying its original mechanism.

Model IMP-22G2,H Low Cost Slave Clock Impulser Converts your slave clock to a working timepiece without modifying its original mechanism. Model IMP-22G2,H Low Cost Slave Clock Impulser Converts your slave clock to a working timepiece without modifying its original mechanism. The PIEXX IMP-22G2, H allows you to put your slave clock back into

More information

Experiment 3. Getting Start with Simulink

Experiment 3. Getting Start with Simulink Experiment 3 Getting Start with Simulink Objectives : By the end of this experiment, the student should be able to: 1. Build and simulate simple system model using Simulink 2. Use Simulink test and measurement

More information

VIBBOX. 32, 48, or 64-Channel Sound & Vibration Solution Expansion to 256 Channels. Key Feature of Each VIBbox: Table 1. Key Features of VIBbox Models

VIBBOX. 32, 48, or 64-Channel Sound & Vibration Solution Expansion to 256 Channels. Key Feature of Each VIBbox: Table 1. Key Features of VIBbox Models VIBBOX 32, 48, or 64-Channel Sound & Vibration Solution Expansion to 256 Channels VIBbox is a high-accuracy, high channel count, dynamic signal analyzer system for sound and vibration applications. Each

More information

Come & Join Us at VUSTUDENTS.net

Come & Join Us at VUSTUDENTS.net Come & Join Us at VUSTUDENTS.net For Assignment Solution, GDB, Online Quizzes, Helping Study material, Past Solved Papers, Solved MCQs, Current Papers, E-Books & more. Go to http://www.vustudents.net and

More information

PMC-12AI Channel, 12-Bit Analog Input PMC Board. With 1,500 KSPS Input Conversion Rate

PMC-12AI Channel, 12-Bit Analog Input PMC Board. With 1,500 KSPS Input Conversion Rate PMC-12AI64 64-Channel, 12-Bit Analog Input PMC Board With 1,500 KSPS Input Conversion Rate Features Include: 64 Single-ended or 32 Differential 12-Bit Scanned Analog Input Channels Sample Rates to 1,500

More information

Digital Media. Daniel Fuller ITEC 2110

Digital Media. Daniel Fuller ITEC 2110 Digital Media Daniel Fuller ITEC 2110 Daily Question: Digital Audio What values contribute to the file size of a digital audio file? Email answer to DFullerDailyQuestion@gmail.com Subject Line: ITEC2110-09

More information

Product Information Sheet PDA14 2 Channel, 14-Bit Waveform Digitizer APPLICATIONS FEATURES OVERVIEW

Product Information Sheet PDA14 2 Channel, 14-Bit Waveform Digitizer APPLICATIONS FEATURES OVERVIEW Product Information Sheet PDA 2 Channel, -Bit Waveform Digitizer FEATURES 2 Channels at up to 100 MHz Sample Rate Bits of Resolution Bandwidth from DC-50 MHz 512 Megabytes of On-Board Memory 500 MB/s Transfer

More information

Integrity Instruments Application Notes. Release 1

Integrity Instruments Application Notes. Release 1 Integrity Instruments Application Notes Release 1 What is EIA/TIA/RS-485 What is EIA/TIA/RS-422 Half Duplex and Full Duplex Communication Asynchronous Communicatin Grounding EIA/TIA/RS-485/422 Shielding

More information

CompuScope Ultra-fast waveform digitizer card for PCI bus. APPLICATIONS. We offer the widest range of

CompuScope Ultra-fast waveform digitizer card for PCI bus.   APPLICATIONS. We offer the widest range of We offer the widest range of high-speed and high-resolution digitizers available on the market CompuScope 1602 Ultra-fast waveform digitizer card for PCI bus today. Our powerful PC-based instrumentation

More information

LCD Display. Other I/O. LCD display Flash ROM SPI EPROM Keyboard (PS/2) UART connectors DAC ADC. 2-line, 16 character LCD display

LCD Display. Other I/O. LCD display Flash ROM SPI EPROM Keyboard (PS/2) UART connectors DAC ADC. 2-line, 16 character LCD display Other I/O LCD display Flash ROM SPI EPROM Keyboard (PS/2) UART connectors DAC ADC LCD Display 2-line, 16 character LCD display 4-bit interface Relatively easy to use once you have it mapped into your processor

More information

Introduction. Aspects of System Level ESD Testing. Test Environment. System Level ESD Testing Part II: The Test Setup

Introduction. Aspects of System Level ESD Testing. Test Environment. System Level ESD Testing Part II: The Test Setup System Level ESD Testing Part II: The Test Setup Introduction This is the second in a series of articles on system level ESD testing. In the first article the current waveform for system level ESD testing

More information

Hello, and welcome to this presentation of the STM32 Touch Sensing Controller (TSC) which enables the designer to simply add touch sensing

Hello, and welcome to this presentation of the STM32 Touch Sensing Controller (TSC) which enables the designer to simply add touch sensing Hello, and welcome to this presentation of the STM32 Touch Sensing Controller (TSC) which enables the designer to simply add touch sensing functionality to any application. 1 Over recent years, Touch Sensing

More information

Hands-on Lab 2: LabVIEW NI-DAQ Basics 2

Hands-on Lab 2: LabVIEW NI-DAQ Basics 2 Hands-on Lab 2: LabVIEW NI-DAQ Basics 2 Recall that the final objective is position regulation using computer-controlled state feedback. Computer control requires both software, like LabVIEW and hardware,

More information

Blade & Vibration Monitor Model Hood Technology Corporation 30 August 2009 Blade & Vibration Monitor Model Overview

Blade & Vibration Monitor Model Hood Technology Corporation 30 August 2009 Blade & Vibration Monitor Model Overview Hood Technology Corporation 30 August 2009 Blade & Vibration Monitor Model 5000 Overview This system accommodates the signals from many different types of non -contacting blade tip sensors including: light

More information

S&C IntelliRupter PulseCloser Fault Interrupter Overhead Source-Transfer Application

S&C IntelliRupter PulseCloser Fault Interrupter Overhead Source-Transfer Application Overhead Source-Transfer Application Detailed Functional Specification Guide 1.0 GENERAL 1.01 The automated distribution fault-interrupting system shall conform to the following specification. 1.02 The

More information

Temperature measurement board, optically isolated, 16/8/4 channels for thermocouples, Pt100, RTD, 18-bit

Temperature measurement board, optically isolated, 16/8/4 channels for thermocouples, Pt100, RTD, 18-bit Temperature measurement board, optically isolated, 16/8/ channels for thermocouples, Pt100, RTD, 18-bit APCI-3200 Up to 16 channels for thermocouples or 8 inputs for resistance temperature detectors (RTD)

More information

CPCI-16HSDI. 16-Bit, Six-Channel Sigma-Delta Analog Input Board. With 1.1 MSPS Sample Rate per Channel, and Two Independent Clocks.

CPCI-16HSDI. 16-Bit, Six-Channel Sigma-Delta Analog Input Board. With 1.1 MSPS Sample Rate per Channel, and Two Independent Clocks. 02/01/01 CPCI-16HSDI 16-Bit, Six-Channel Sigma-Delta Analog Input Board With 1.1 MSPS Sample Rate per Channel, and Two Independent Clocks Features Include: Sigma-Delta Conversion; No External Antialiasing

More information

Common Mode Noise The Often Neglected Tenth Power Problem

Common Mode Noise The Often Neglected Tenth Power Problem A White Paper from the Experts in Business-Critical Continuity Common Mode Noise The Often Neglected Tenth Power Problem by Michael Boyle Executive Summary Computers and other electronic equipment play

More information

Analog, Digital Signals; Computer Structure

Analog, Digital Signals; Computer Structure Analog, Digital Signals; Computer Structure David M. Auslander Mechanical Engineering University of California at Berkeley Copyright 2007, D.M.Auslander Signal Impedance Relationship of current and voltage

More information

Answers to Chapter 2 Review Questions. 2. To convert controller signals into external signals that are used to control the machine or process

Answers to Chapter 2 Review Questions. 2. To convert controller signals into external signals that are used to control the machine or process Answers to Chapter 2 Review Questions 1. To accept signals from the machine or process devices and to convert them into signals that can be used by the controller 2. To convert controller signals into

More information

Data Acquisition Specifications a Glossary Richard House

Data Acquisition Specifications a Glossary Richard House NATIONAL INSTRUMENTS The Software is the Instrument Application Note 092 Introduction Data Acquisition Specifications a Glossary Richard House This application note consists of comprehensive descriptions

More information

PCI-16HSDI: 16-Bit, Six-Channel Sigma-Delta Analog Input PMC Board. With 1.1 MSPS Sample Rate per Channel, and Two Independent Clocks

PCI-16HSDI: 16-Bit, Six-Channel Sigma-Delta Analog Input PMC Board. With 1.1 MSPS Sample Rate per Channel, and Two Independent Clocks PMC-16HSDI 16-Bit, Six-Channel Sigma-Delta Analog Input PMC Board With 1.1 MSPS Sample Rate per Channel, and Two Independent Clocks Available also in PCI, cpci and PC104-Plus form factors as: PCI-16HSDI:

More information

DT MS/s High-Speed, Isolated Simultaneous USB Data Acquisition Module. Overview. Key Features. Bandwidth of the DT9862

DT MS/s High-Speed, Isolated Simultaneous USB Data Acquisition Module. Overview. Key Features. Bandwidth of the DT9862 DT9862 10 MS/s High-Speed, Isolated Simultaneous USB Data Acquisition Module Overview The DT9862 is a high-speed, high-performance USB data acquisition module that provide throughput rates up to 10 MS/s

More information

12AI Channel, 12-Bit Analog Input PMC Board. With 1,500 KSPS Input Conversion Rate

12AI Channel, 12-Bit Analog Input PMC Board. With 1,500 KSPS Input Conversion Rate 64-Channel, 12-Bit Analog Input PMC Board With 1,500 KSPS Input Conversion Rate Available in PMC, PCI, cpci and PC104-Plus and PCI Express form factors as: PMC-12AI64: PCI-12AI64: cpci-12ai64: PC104P-12AI64:

More information

Ultrasonic Extrusion and Drawing

Ultrasonic Extrusion and Drawing Ultrasonic Extrusion and Drawing Ultrasonic Plastic Extrusion Ultrasonic Metal Extrusion Ultrasonic Glass Extrusion Ultrasonic Food Product Extrusion Ultrasonic Tube Extrusion Ultrasonic Profile Extrusion

More information

DT7837. ARM Module for Embedded Applications. Overview. Key Features. Supported Operating Systems

DT7837. ARM Module for Embedded Applications. Overview. Key Features. Supported Operating Systems DT7837 ARM Module for Embedded Applications Overview The DT7837 is a high accuracy dynamic signal acquisition module for noise, vibration, and acoustic measurements with an embedded Cortex-A8 600 MHz ARM

More information

OVEN INDUSTRIES, INC.

OVEN INDUSTRIES, INC. OVEN INDUSTRIES, INC. OPERATING MANUAL MODEL 5C7-195 THERMOELECTRIC MODULE TEMPERATURE CONTROLLER TABLE OF CONTENTS Page Features...1 Description...2 Block Diagram...2 Mechanical Package Drawing...3 RS232

More information

DT7837 ARM Module for Embedded Applications

DT7837 ARM Module for Embedded Applications DT7837 ARM Module for Embedded Applications The DT7837 is a high accuracy dynamic signal acquisition module for noise, vibration, and acoustic measurements with an embedded Cortex-A8 600MHz ARM processor.

More information

Wireless TV Chin Guard Headphone TX-99

Wireless TV Chin Guard Headphone TX-99 Technaxx * User Manual Wireless TV Chin Guard Headphone TX-99 With this comfortable and good-fitting headphone you can enjoy listening to television or music at your preferred volume without disturbing

More information

DRTS 3 PLUS Advanced Protection Relay Test Set and Measurement System

DRTS 3 PLUS Advanced Protection Relay Test Set and Measurement System Advanced Protection Relay Test Set and Measurement System Multi-tasking equipment designed for testing protection relays, energy meters, transducers Particularly designed to test RTU (remote terminal unit)

More information

Objectives. Learn how computers are connected. Become familiar with different types of transmission media

Objectives. Learn how computers are connected. Become familiar with different types of transmission media Objectives Learn how computers are connected Become familiar with different types of transmission media Learn the differences between guided and unguided media Learn how protocols enable networking 2 Objectives

More information

CENG-336 Introduction to Embedded Systems Development. Timers

CENG-336 Introduction to Embedded Systems Development. Timers CENG-336 Introduction to Embedded Systems Development Timers Definitions A counter counts (possibly asynchronous) input pulses from an external signal A timer counts pulses of a fixed, known frequency

More information

Display. Supply voltage. Input current. Encoder supply. Output current. Power losses. Memory

Display. Supply voltage. Input current. Encoder supply. Output current. Power losses. Memory Datasheet SIMATIC S7-1200, CPU 1214C, COMPACT CPU, AC/DC/RLY, ONBOARD I/O: 14 DI 24V DC; 10 DO RELAY 2A; 2 AI 0-10V DC, POWER SUPPLY: AC 85-264 V AC AT 47-63 HZ, PROGRAM/DATA MEMORY: 75 KB Display with

More information

INSTRUCTION MANUAL STATION CONTROLLER SC1000 MOTOR PROTECTION ELECTRONICS, INC.

INSTRUCTION MANUAL STATION CONTROLLER SC1000 MOTOR PROTECTION ELECTRONICS, INC. INSTRUCTION MANUAL STATION CONTROLLER SC1000 MOTOR PROTECTION ELECTRONICS, INC. 2464 Vulcan Road, Apopka, Florida 32703 Phone: (407) 299-3825 Fax: (407) 294-9435 Revision Date: 9-11-08 Applications: Simplex,

More information

General information. Display. Supply voltage. Input current. Encoder supply. Power losses

General information. Display. Supply voltage. Input current. Encoder supply. Power losses Data sheet SIMATIC S7-1200, CPU 1215C, COMPACT CPU, DC/DC/RELAY, 2 PROFINET PORT, ONBOARD I/O: 14 DI 24V DC; 10 DO RELAY 2A, 2 AI 0-10V DC, 2 AO 0-20MA DC, POWER SUPPLY: DC 20.4-28.8 V DC, PROGRAM/DATA

More information

6 10/100/1000TX + 2G Fiber Industrial Ethernet Switch User Manual

6 10/100/1000TX + 2G Fiber Industrial Ethernet Switch User Manual 6 10/100/1000TX + 2G Fiber Industrial Ethernet Switch User Manual FCC Warning This Equipment has been tested and found to comply with the limits for a Class-A digital device, pursuant to Part 15 of the

More information

NMEA Multiplexer Owner s Handbook. Document Number: Date: February 2005

NMEA Multiplexer Owner s Handbook. Document Number: Date: February 2005 NMEA Multiplexer Owner s Handbook Document Number: 81250-1 Date: February 2005 Copyright Raymarine (UK) Ltd 2005 i Preface Congratulations on having bought a Raymarine NMEA Multiplexer. This enables you

More information

How Analog and Digital Recording and CDs Work Adapted from by Marshall Brain

How Analog and Digital Recording and CDs Work Adapted from  by Marshall Brain How Analog and Digital Recording and CDs Work Adapted from www.howstuffworks.com by Marshall Brain In the Beginning: Etching Tin Thomas Edison is credited with creating the first device for recording and

More information

Infineon C167CR microcontroller, 256 kb external. RAM and 256 kb external (Flash) EEPROM. - Small single-board computer (SBC) with an

Infineon C167CR microcontroller, 256 kb external. RAM and 256 kb external (Flash) EEPROM. - Small single-board computer (SBC) with an Microcontroller Basics MP2-1 week lecture topics 2 Microcontroller basics - Clock generation, PLL - Address space, addressing modes - Central Processing Unit (CPU) - General Purpose Input/Output (GPIO)

More information

Module 6: INPUT - OUTPUT (I/O)

Module 6: INPUT - OUTPUT (I/O) Module 6: INPUT - OUTPUT (I/O) Introduction Computers communicate with the outside world via I/O devices Input devices supply computers with data to operate on E.g: Keyboard, Mouse, Voice recognition hardware,

More information

ES Knock Intensity Detection Board. KID_SU KID Signal Unit User Manual

ES Knock Intensity Detection Board. KID_SU KID Signal Unit User Manual ES1380.2 Knock Intensity Detection Board KID_SU KID Signal Unit User Manual Copyright The data in this document may not be altered or amended without special notification from ETAS GmbH. ETAS GmbH undertakes

More information

output devices. connected to the controller. data communications link. relay systems. user program. MECH1500Quiz1ReviewVersion2 Name: Class: Date:

output devices. connected to the controller. data communications link. relay systems. user program. MECH1500Quiz1ReviewVersion2 Name: Class: Date: Class: Date: MECH1500Quiz1ReviewVersion2 True/False Indicate whether the statement is true or false. 1. The number and type of I/Os cannot be changed in a fixed PLC. 2. In a PLC system, there is a physical

More information

AWP-24 Wave Height Gauge. Acquiring Minimum Noise Data Application Note

AWP-24 Wave Height Gauge. Acquiring Minimum Noise Data Application Note AWP24 Wave Height Gauge Acquiring Minimum Noise Data Application Note Issue: 10 Status: Released 14September2009 Prepared by Akamina Technologies Inc Akamina Technologies 91 Norice St,Ottawa,OntarioK2G

More information

General information. Display. Supply voltage. Input current. Encoder supply. Output current

General information. Display. Supply voltage. Input current. Encoder supply. Output current Data sheet SIMATIC S7-1200, CPU 1214C, COMPACT CPU, DC/DC/RELAY, ONBOARD I/O: 14 DI 24V DC; 10 DO RELAY 2A; 2 AI 0-10V DC, POWER SUPPLY: DC 20.4-28.8 V DC, PROGRAM/DATA MEMORY: 75 KB General information

More information

AN-1055 APPLICATION NOTE

AN-1055 APPLICATION NOTE AN-155 APPLICATION NOTE One Technology Way P.O. Box 916 Norwood, MA 262-916, U.S.A. Tel: 781.329.47 Fax: 781.461.3113 www.analog.com EMC Protection of the AD7746 by Holger Grothe and Mary McCarthy INTRODUCTION

More information

Physical Layer V What does the physical layer provide?

Physical Layer V What does the physical layer provide? SEMESTER 1 Chapter 8 Physical Layer V 4.0 90 Points 8.1.1 What does the physical layer provide? What are the four elements of delivering frames across the media? 8.1.2 What are the three basic forms of

More information

Precision Voltage Measurement. Instruments. Applications. Voltage Inputs. High-Stability, Low Drift Voltage References. Key Design Features

Precision Voltage Measurement. Instruments. Applications. Voltage Inputs. High-Stability, Low Drift Voltage References. Key Design Features VOLTpoint Precision Voltage Measurement Instruments Precision Voltage Measurement VOLTpoint is a family of precision instruments designed for measuring a wide range of voltage inputs; ideally suited for

More information

Sensor technology for mobile robots

Sensor technology for mobile robots Laser application, vision application, sonar application and sensor fusion (6wasserf@informatik.uni-hamburg.de) Outline Introduction Mobile robots perception Definitions Sensor classification Sensor Performance

More information

Main objectives or functions can be modelled like different blocks or components that can be observed in Figure 1. Figure 1: HOPE System Architecture

Main objectives or functions can be modelled like different blocks or components that can be observed in Figure 1. Figure 1: HOPE System Architecture Overall Approach HOPE system can be modelled as a distributed system where many agents (subsystem located in each patient 's home) are connected to a main agent, the HOPE server, using IP communication

More information

Sampling & Sequencing. Combining MIDI and audio

Sampling & Sequencing. Combining MIDI and audio Sampling & Sequencing Combining MIDI and audio 1 2 Introduction To create audio assets we often want to combine MIDI data with audio How to combine multiple audio assets to create a single artefact? How

More information

A loss-resistant method of seismic data transmission over wireless data networks

A loss-resistant method of seismic data transmission over wireless data networks Seismic data transmission A loss-resistant method of seismic data transmission over wireless data networks Henry C. Bland ABSTRACT A recent continuous seismic monitoring effort employed a wireless network

More information

THE latest generation of microprocessors uses a combination

THE latest generation of microprocessors uses a combination 1254 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 30, NO. 11, NOVEMBER 1995 A 14-Port 3.8-ns 116-Word 64-b Read-Renaming Register File Creigton Asato Abstract A 116-word by 64-b register file for a 154 MHz

More information

REMOTE PAGER SYSTEM RACEAIR TM QUICK START GUIDE

REMOTE PAGER SYSTEM RACEAIR TM QUICK START GUIDE RACEAIR TM REMOTE PAGER SYSTEM Introduction: Computech s RaceAir Remote Competition Weather Station with the Data Pager System consists of; the RaceAir Remote Sensor Assembly, the Computer Interface, the

More information

Internetworking Models The OSI Reference Model

Internetworking Models The OSI Reference Model Internetworking Models When networks first came into being, computers could typically communicate only with computers from the same manufacturer. In the late 1970s, the Open Systems Interconnection (OSI)

More information

Gotchas for USB Measurement

Gotchas for USB Measurement Gotchas for USB Measurement USB provides test engineers with an inexpensive, easy-to-use, highspeed bus-integration standard for computer-based measurement systems. The standard, however, does not mandate

More information

Let`s get SIRIUS! SIRIUS Overview. SIRIUS from Dewesoft. SIRIUS Overview. The new hardware generation makes your measurement more precise!

Let`s get SIRIUS! SIRIUS Overview. SIRIUS from Dewesoft. SIRIUS Overview. The new hardware generation makes your measurement more precise! Overview NEW dual ADC Overview Let`s get! The new hardware generation makes your measurement more precise! Dual core Input from Dewesoft This new technology solves the often faced problem that the signal

More information

AudioLiquid Converter User Guide

AudioLiquid Converter User Guide AudioLiquid Converter User Guide Acon Digital Media GmbH AudioLiquid Converter User Guide All rights reserved. No parts of this work may be reproduced in any form or by any means - graphic, electronic,

More information

External Triggering Options

External Triggering Options 380 Main Street Dunedin, FL 34698 (727) 733-2447 (727) 733-3962 fax External Triggering Options Our S2000 and S1024DW Spectrometers provide four methods of acquiring data. In the Normal Mode, Ocean Optics

More information

PCI-ADC. PCI Multi-function Analogue/Digital Interface Card. User Manual

PCI-ADC. PCI Multi-function Analogue/Digital Interface Card. User Manual PCI-ADC PCI Multi-function Analogue/Digital Interface Card User Manual PCI-ADC User Manual Document Part N 0127-0193 Document Reference PCI-ADC\..\0127-0193.doc Document Issue Level 1.0 Manual covers

More information

Student Quick Reference Guide

Student Quick Reference Guide Student Quick Reference Guide How to use this guide The Chart Student Quick Reference Guide is a resource for PowerLab systems in the classroom laboratory. The topics in this guide are arranged to help

More information

PACKAGE CONTENTS SPECIFICATIONS

PACKAGE CONTENTS SPECIFICATIONS PACKAGE CONTENTS After receiving the product, please inventory the contents to ensure you have all the proper parts, as listed below. If anything is missing or damaged, please contact Monoprice Customer

More information