AN3964 Application note

Size: px
Start display at page:

Download "AN3964 Application note"

Transcription

1 Application note STM32L1x temperature sensor example Introduction This application note describes a method of implementing a simple application for temperature measurement using the STM32L-DISCOVERY and 32L152CDISCOVERY boards. The solution described in this document uses the integrated temperature sensor of the STM32L1x microcontroller. The factory or user calibration method is described to improve the accuracy of the temperature sensor. The demonstration application does not require any additional hardware. Once the STM32L-DISCOVERY and 32L152CDISCOVERY are updated with the associated firmware and is powered-up through a USB cable connected to the host PC, the application is ready to display the temperature of the STM32L1x microcontroller. The temperature sensor example firmware is included in the STM32L1x discovery firmware package (STSW-STM32072) available from Reference documents STM32L-DISCOVERY and 32L152CDISCOVERY user manual (UM1079) Getting started with software development toolchains for the STM32L-DISCOVERY and 32L152CDISCOVERY boards (UM1451) STM32L1x current consumption measurement and touch sensing demonstration (AN3413) Ultra-low-power STM32L15xx6/8/B datasheet Ultra-low-power STM32L151xC and STM32L152xC datasheet Ultra-low-power STM32L151xD and STM32L152xD datasheet Ultra-low-power STM32L162xD datasheet STM32L100xx, STM32L151xx, STM32L152xx and STM32L162xx advanced ARM-based 32-bit MCUs reference manual(rm0038) The above documents are available at Table 1. Application products and firmware Type MCU evaluation tools MCU software Part numbers and product categories STM32L-DISCOVERY, 32L152CDISCOVERY STSW-STM32072 July 2013 DocID Rev 3 1/14

2 Contents AN3964 Contents 1 Application overview Temperature sensor Temperature measurement and data processing Application example description Getting started Setting up the board Using the demonstration application Temperature sensor calibration Estimation of temperature sensor engineering tolerance Software description STM32L1x peripherals used by the application STM32L15x standard firmware library configuration Conclusion Revision history /14 DocID Rev 3

3 List of tables List of tables Table 1. Application products and firmware Table 2. Document revision history DocID Rev 3 3/14 3

4 List of figures AN3964 List of figures Figure 1. Example LCD display Figure 2. Transfer characteristics of the temperature sensor /14 DocID Rev 3

5 Application overview 1 Application overview This section describes how the temperature sensor works and how the temperature measurement is performed by the STM32L1x microcontroller embedded on the STM32L- DISCOVERY or 32L152CDISCOVERY. A brief description of how the example temperature measurement application was implemented follows afterwards. STM32L1xxDISCOVERY stands either for STM32L-DISCOVERY or 32L152CDISCOVERY evaluation kit throughout the document. 1.1 Temperature sensor Note: The temperature sensor integrated in the STM32L1x microcontroller provides an analog output voltage proportional to the chip junction temperature of the device. Please note that the temperature information provided by sensor is the thermal chip junction temperature (actual temperature of semiconductor surface) and may differ from the ambient temperature. Please see section Thermal characteristics of product datasheet for more details. The integrated temperature sensor provides reasonably linear characteristics with a deviation typically of ± 1% from linear asymptotic functions and a temperature range equal to that of the device ( 40 C to 85 C) with a maximum junction temperature of 150 C. The sensor provides good linearity but quite poor interchangeability and must be calibrated to obtain good overall accuracy. If the application is designed to only measure the relative temperature variations, the temperature sensor does not need to be calibrated. 1.2 Temperature measurement and data processing The temperature sensor is internally connected to Channel 16 (ADC_IN16) of the ADC (analog-to-digital converter) in the STM32L1x and is used to sample and convert the temperature sensor output voltage. The raw ADC data must be further processed to display the temperature in a standardized unit of measurement (Celsius, Farenheit or Kelvin). The ADC reference voltage (V DDA = V REF+ ) is connected to the 3 V V DD power supply of the STM32L1xxDISCOVERY boards. If the V DD value is not accurately known, as in case of battery-operated applications, it must be measured to obtain a correct overall ADC conversion range (see below section for details). Temperature measurement on battery-operated devices The power supply voltage applied to the microcontroller is subject to change on devices directly powered from a battery. The value converted by the ADC follows the drift of the battery voltage if the ADC reference voltage is tied to V DDA, which is the case for devices in low pin-count packages. The supply voltage needs to be known to compensate for such voltage drift. The actual supply voltage (V DDA ) can be determined by using the embedded DocID Rev 3 5/14 13

6 Application overview AN3964 internal voltage reference (V REFINT ). The value sampled by the ADC (Val_V REFINT ) on ADC_IN17 internal reference input can be expressed by the following formula: Val_V REFINT = V REFINT 2 12 V REF+ = V REFINT 4096 V DDA The accurate embedded internal reference voltage (V REFINT ) is individually sampled by the ADC, and the converted value for each device (Val_V REFINT_CAL ) is stored during the manufacturing process in the protected memory area at address VREFINT_CAL specified in the product datasheet. The internal reference voltage calibration data is a 12-bit unsigned number (right-aligned bits, stored in 2 bytes) acquired by the STM32L1x ADC referenced to V VREF_MEAS = V REF+ = 3V ± 0.01V The total accuracy of the factory measured calibration data is then provided with an accuracy of ± 5 mv (refer to the datasheet for more details). We can determine the actual V DDA voltage by using the formula above as follows: V DDA = 3 Val_V REFINT_CAL Val_V REFINT The temperature sensor data, ValTS_bat, are sampled with the ADC scale referenced to the actual V DDA value determined at the previous steps. Since the temperature sensor factory calibration data are acquired with the ADC scale set to 3 V, we need to normalize ValTS_bat to get the temperature sensor data (ValTS) as it would be acquired with ADC scale set to 3 V. ValTS_bat can be normalized by using the formula below: ValTS = 3 ValTS_bat V DDA If the ADC is referenced to the 3 V power supply (which is the case of the STM32L1 Discovery) such a normalization is not needed and the sampled temperature data can be directly used to determine the temperature as described in Section 2.2.1: Temperature sensor calibration. 1.3 Application example description Every 2 seconds the application acquires 16 samples from the temperature sensor voltage. The ADC raw data are filtered and averaged using an interquartile mean algorithm to reduce noise from the power supply system and the result is recalculated into standard units of temperature measurement ( C, in this example). The LCD display is updated every 2 seconds either by ADC raw data or by the current temperature value in degrees Celsius. The user can switch between both temperature data representations by pressing the user button. To demonstrate the low power capabilities of the STM32L1x ultra-low power microcontroller, the CPU is switched to Stop mode with the RTC (real-time clock) wake-up set to 2 seconds within the time interval between temperature sensor data measurements. The ADC data acquisition and data transfers are managed by direct memory access (DMA) while the CPU is in Low-power Sleep mode. The CPU is in Run mode at 16 MHz based on the HSI oscillator clock) only during the initialization phase and during the data processing period. 6/14 DocID Rev 3

7 Application overview Figure 1. Example LCD display DocID Rev 3 7/14 13

8 Getting started AN Getting started Before getting started, the firmware must be updated and hardware configured as described in the following sections. 2.1 Setting up the board Updating the firmware The STM32L1x program memory needs to be updated with the firmware associated with this application note. For information on how to update the firmware, please read the readme.txt file in the project folder. Used hardware components This application example uses the hardware components available on the STM32L1xxDISCOVERY boards: the embedded peripherals of the STM32L1x microcontroller, the 6-digit LCD glass display and the user push-button. No additional components are required. STM32L1xxDISCOVERY hardware settings The I DD jumper JP1 must be placed in the ON position. Both jumpers on CN3 must be fitted to enable communication between the STM32L1x microcontroller and the ST-Link debugging tool through the serial wire debug (SWD) interface. Note: All solder bridges must be in their default state as described in UM Using the demonstration application It is very easy to start using the demonstration firmware. When powered up, the temperature sensor application example first displays a welcome message before immediately displaying the current temperature in degrees Celsius with a 2-second refresh rate. When the User button is pressed once, the display shows the mean value of an array of 16 samples acquired by the ADC. One more press of the User button toggles between displaying the current temperature in degrees Celsius or the averaged value. The averaged value can be used later as a calibration point with a known temperature to improve overall accuracy of the temperature measurements Temperature sensor calibration The temperature sensor calibration data are stored during the manufacturing process in the protected memory area from where the user can read it and use it to improve the accuracy of the temperature measurements. The two-point calibration data is measured during production: At ambient temperature (30 C ± 5 C): TS_CAL1 At hot temperature (110 C ± 5 C): TS_CAL2. Refer to the product datasheet for the memory address where calibration data are stored. 8/14 DocID Rev 3

9 Getting started The temperature sensor calibration data is a 12-bit unsigned number (stored in 2 bytes) acquired by the STM32L1x ADC with a 3 V (± 10 mv) reference voltage. The factory calibration data are tested for validity when the example application is initialized. If data is present in the memory, it is used for temperature calculation. Otherwise, the user calibration data stored during user calibration in EEPROM memory area is tested and used instead. If the user calibration data is not available either, the default values are used for calculation. The factory calibration or user calibration data provides good accuracy of the temperature measurement. The use of the default calibration data, which is statistically based on the typical characteristics of the temperature sensor, may provide less accurate temperature estimations due to significant variations of the temperature sensor characteristics during the manufacturing process. It is recommended to use either the factory calibration data or to perform the two-point calibration of the temperature sensor, which respects the individual characteristics of the temperature sensor, to obtain reasonably accurate measurements. Figure 2. Transfer characteristics of the temperature sensor C2 TS voltage (mv) C1 Temperature (K) MS31894V1 The temperature can be evaluated from the digital value, ValTS, sampled by the ADC using linear approximation. It can be applied if the coordinates of two calibration points C1 and C2 are known as shown in Figure 2. The current temperature can be evaluated as follows where the cold temperature coordinate pair is designated as (TC1, ValC1) and the hot temperature pair as (TC2, ValC2): Temp = ( TC2 TC1) ( ValC2 ValC1) ( ValTS ValC1) + TC1 Using the factory calibration data the formula can be rewritten as follows: Temp = 80 ( TS_CAL2 TS_CAL1) ( ValTS TS_CAL1) + 30 DocID Rev 3 9/14 13

10 Getting started AN Estimation of temperature sensor engineering tolerance The two-point calibration method significantly improves the accuracy of the measurement as can be seen in Figure 2. The bias of the temperature measurement is mainly given by two sources; the temperature margin of the calibration points and the linearity of the sensor. Other sources of bias such as the ADC reference voltage margin can be effectively reduced. It can be neglected for factory calibrated values measured with the 3 V (± 10 mv) reference voltage. The engineering tolerance of the temperature estimation is illustrated in Figure 2 where it is limited by the two boundary lines of the minimum biased values (green) and the maximum biased values (blue). The area between the calibration points has a constant tolerance with a slight increase of the tolerance outside. For this reason, the recommended position of the calibration points should be as close as possible to the maximum and minimum values of the measurement range. 10/14 DocID Rev 3

11 Software description 3 Software description 3.1 STM32L1x peripherals used by the application This application example uses the following STM32L1x peripherals with the settings described below. For more information, please refer to the STM32L151xx datasheet. Analog-to-digital converter (ADC) The ADC performs analog-to-digital conversions of the internal reference voltage (4 samples) and of the temperature sensor voltage (16 samples) driven by DMA. ADC resolution: 12-bit ADC conversion mode: Scan mode driven by DMA ADC sampling time: 384 cycles SysTick timer The SysTick timer is used only to generate the delay needed for display refresh and is disabled during temperature measurements. General-purpose inputs/outputs (GPIOs) Ports C and E are connected to the User push-button and the LEDs. PB1 is set as an input floating pin with interrupt connected to User push-button PB7 (green LD3) and PB6 (blue LD4) are set as an output push-pull. During low power modes, I/Os are placed in analog input mode to reduce power consumption except for a few pins related to the hardware interface (PB7 - green LD3 and PB6 - blue LD4). It means that all Schmitt triggers on unused standard I/O pins are disabled to reduce power consumption. LCD controller The several functions available in the firmware library for the liquid crystal display (LCD) are used to initialize, clear, display strings and scroll messages needed in the application code. Clocks The high-speed internal (HSI) RC oscillator is selected as the main clock source. The application manages the peripheral clocks depending on the selected power saving mode. When the device enters Stop mode, the HSI oscillator is switched OFF and the LSE crystal oscillator feeds the RTC until the device is woken up by an external event (RTC wakeup or USER button pushed). When exiting Stop mode, the MCU switches back the system clock from the defailt MSI oscillator to the HSI oscillator. DocID Rev 3 11/14 13

12 Conclusion AN STM32L15x standard firmware library configuration The stm32l1xx_conf.h file of the STM32L1x standard firmware library allows you to configure the library by enabling the peripheral functions used by the application. The header files of the library modules are included in the stm32l1xx_conf.h file as listed below: #include stm32l1xx_adc.h #include stm32l1xx_exti.h #include stm32l1xx_flash.h #include stm32l1xx_gpio.h #include stm32l1xx_syscfg.h #include stm32l1xx_lcd.h #include stm32l1xx_pwr.h #include stm32l1xx_rcc.h #include stm32l1xx_rtc.h #include misc.h The corresponding library modules must be included in the project for successful compilation and linking. 4 Conclusion This application note shows how to use the internal temperature sensor embedded in your STM32L1x microcontroller. The firmware example associated with this application note allows you to explore the temperature sensing capability of STM32L1x microcontrollers and at the same time demonstrate its ultra low-power features. It can be used as a starting point for your own development. 12/14 DocID Rev 3

13 Revision history 5 Revision history Table 2. Document revision history Date Revision Changes 27-Sep Initial release. 04-Jul Added 32L152CDISCOVERY and related information. Addeed reference to STSW-STM32072 firmware. Replaced STM32L by STM32L1x in the whole document. Updated memory address in Section 1.2: Temperature measurement and data processing. Updated Section 2.2.1: Temperature sensor calibration to add Section : Temperature measurement on battery-operated devices. Changed reference voltage in Section 2.3: Estimation of temperature sensor engineering tolerance. Updated Section : Clocks. 16-Jul Updated Table 1: Application products and firmware. DocID Rev 3 13/14 13

14 Please Read Carefully: Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ( ST ) reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice. All ST products are sold pursuant to ST s terms and conditions of sale. Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein. UNLESS OTHERWISE SET FORTH IN ST S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. ST PRODUCTS ARE NOT AUTHORIZED FOR USE IN WEAPONS. NOR ARE ST PRODUCTS DESIGNED OR AUTHORIZED FOR USE IN: (A) SAFETY CRITICAL APPLICATIONS SUCH AS LIFE SUPPORTING, ACTIVE IMPLANTED DEVICES OR SYSTEMS WITH PRODUCT FUNCTIONAL SAFETY REQUIREMENTS; (B) AERONAUTIC APPLICATIONS; (C) AUTOMOTIVE APPLICATIONS OR ENVIRONMENTS, AND/OR (D) AEROSPACE APPLICATIONS OR ENVIRONMENTS. WHERE ST PRODUCTS ARE NOT DESIGNED FOR SUCH USE, THE PURCHASER SHALL USE PRODUCTS AT PURCHASER S SOLE RISK, EVEN IF ST HAS BEEN INFORMED IN WRITING OF SUCH USAGE, UNLESS A PRODUCT IS EXPRESSLY DESIGNATED BY ST AS BEING INTENDED FOR AUTOMOTIVE, AUTOMOTIVE SAFETY OR MEDICAL INDUSTRY DOMAINS ACCORDING TO ST PRODUCT DESIGN SPECIFICATIONS. PRODUCTS FORMALLY ESCC, QML OR JAN QUALIFIED ARE DEEMED SUITABLE FOR USE IN AEROSPACE BY THE CORRESPONDING GOVERNMENTAL AGENCY. Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST. ST and the ST logo are trademarks or registered trademarks of ST in various countries. Information in this document supersedes and replaces all information previously supplied. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners STMicroelectronics - All rights reserved STMicroelectronics group of companies Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America 14/14 DocID Rev 3

AN2261 APPLICATION NOTE

AN2261 APPLICATION NOTE APPLICATION NOTE GPIO ports configuration in ST30 devices INTRODUCTION The General Purpose IO (GPIO) Ports of ST30 devices are programmable by software in several modes:, Output, Alternate Function,, Output

More information

Description SPC564A-DISP. March 2014 DocID Rev 3 1/5

Description SPC564A-DISP. March 2014 DocID Rev 3 1/5 SPC564A-DISP: Discovery+ evaluation board Description Data brief - production data Features SPC564A70L7 32-bit 150 MHz e200z4 Power Architecture core, 2Mbyte on-chip in an LQFP176 package. Board Supply:

More information

STM32 embedded target for MATLAB and Simulink release 3.1. Summary for STM32 embedded target for MATLAB and Simulink release 3.1:

STM32 embedded target for MATLAB and Simulink release 3.1. Summary for STM32 embedded target for MATLAB and Simulink release 3.1: Release note STM32 embedded target for MATLAB and Simulink release 3.1 Introduction This release note is related to STM32 embedded target for MATLAB and Simulink (STM32- MAT/TARGET). It is updated periodically

More information

ST21NFCB. Near field communication controller. Features. RF communications. Hardware features. Communication interfaces. Electrical characteristics

ST21NFCB. Near field communication controller. Features. RF communications. Hardware features. Communication interfaces. Electrical characteristics Near field communication controller Data brief Features NFC operating modes supported: Card emulation Reader / Writer Peer-to-peer communication Hardware features FBGA WFBGA 64-pin 36 Kbytes of EEPROM

More information

AN4321 Application note

AN4321 Application note Application note Getting started with the SPC56L-Discovery Introduction SPC56L-Discovery evaluation kit is based on the 32-bit microcontrollers SPC56EL70L5. The SPC56L-Discovery is an evaluation board

More information

AN3996 Application Note

AN3996 Application Note Application Note Adjustable LED blinking speed using STM8SVLDISCOVERY Application overview This application note provides a short description of the demonstration firmware Discover which is preprogrammed

More information

AN3279 Application Note

AN3279 Application Note Application Note Adjustable LED blinking speed using STM8S-DISCOVERY touch sensing key Application overview This application note provides a short description of how to use the touch sensing key to change

More information

AN2667 Application note

AN2667 Application note Application note STM8A GPIO application examples Introduction This document is intended to provide two practical application examples of the GPIO peripheral use in the STM8A device. The examples are: Toggling

More information

LD A very low drop adjustable positive voltage regulator. Description. Features

LD A very low drop adjustable positive voltage regulator. Description. Features 7 A very low drop adjustable positive voltage regulator Description Datasheet - production data Features P ² PAK Output current limit Low-dropout voltage: typically 400 mv at 7 A output current Output

More information

STEVAL-CCM002V1. TFT-LCD panel demonstration board based on the STM32 as LCD controller. Features. Description

STEVAL-CCM002V1. TFT-LCD panel demonstration board based on the STM32 as LCD controller. Features. Description TFT-LCD panel demonstration board based on the STM32 as LCD controller Data brief Features Displays images on a TFT-LCD using the STM32 as LCD controller Includes a slideshow of images to demonstrate static

More information

ST10F271B/E, ST10F272B/E Errata sheet

ST10F271B/E, ST10F272B/E Errata sheet Errata sheet BAG silicon version Introduction Note: This errata sheet describes all the functional and electrical problems known in the BAG silicon version of ST10F271B, ST10F271E, ST10F272B and ST10F272E

More information

AN4274 Application note

AN4274 Application note Application note The serial communication driver between the ST7580 and the STM32Fx By Vincenzo Mormina Introduction This document describes the serial communication driver between the ST7580 and the STM32Fx.

More information

Main components USB charging controller with integrated power switch

Main components USB charging controller with integrated power switch DN0019 Design note Smart dual-port USB charger with STCC2540 Designs from our labs describe tested circuit designs from ST labs which provide optimized solutions for specific applications. For more information

More information

STEVAL-SPBT4ATV3. USB dongle for the Bluetooth class 1 SPBT2632C1A.AT2 module. Features. Description

STEVAL-SPBT4ATV3. USB dongle for the Bluetooth class 1 SPBT2632C1A.AT2 module. Features. Description USB dongle for the Bluetooth class 1 SPBT2632C1A.AT2 module Features Based on V3.0 Bluetooth class 1 module, SPBT2632C1A.AT2 USB interface and power supply Supported reprogrammability via USB interface

More information

UM1719 User manual. The STPM3x evaluation software. Introduction

UM1719 User manual. The STPM3x evaluation software. Introduction User manual The STPM3x evaluation software Introduction The STPM3x evaluation software is a graphical user interface to read, configure and calibrate the STPM3x energy metering ICs, suitable for parallel

More information

STEVAL-PCC010V1. ST802RT1A Ethernet PHY demonstration board with STM32F107 controller add-on board. Features. Description

STEVAL-PCC010V1. ST802RT1A Ethernet PHY demonstration board with STM32F107 controller add-on board. Features. Description ST802RT1A Ethernet PHY demonstration board with STM32F107 controller add-on board Data brief Features ST802RT1A Ethernet PHY demonstration board: ST802RT1A fast Ethernet physical layer transceiver On-board

More information

AN4113 Application note

AN4113 Application note Application note Managing the Driver Enable signal for RS-485 and IO-Link communications with the STM32F05x USART Introduction RS-485 and IO-Link are half-duplex communication protocols that offer easy

More information

Description of STM8 LIN software package (STSW-STM8A-LIN) release 4.1. Table 1. Release information. STM8 LIN package

Description of STM8 LIN software package (STSW-STM8A-LIN) release 4.1. Table 1. Release information. STM8 LIN package Release note Description of STM8 LIN software package (STSW-STM8A-LIN) release 4.1 Introduction The STM8 LIN package implements the LIN 2.x (2.1 and 2.0) and LIN 1.3 protocols to drive USART/UART1 (named

More information

UM0693 User manual. 1 Introduction. STM8L101-EVAL demonstration firmware

UM0693 User manual. 1 Introduction. STM8L101-EVAL demonstration firmware User manual STM8L101-EVAL demonstration firmware 1 Introduction Note: This document describes the demonstration firmware running on the STM8L101-EVAL evaluation board. You can use it to evaluate the capabilities

More information

ST33F1M, ST33F1M0, ST33F896, ST33F768, ST33F640, ST33F512

ST33F1M, ST33F1M0, ST33F896, ST33F768, ST33F640, ST33F512 ST33F1M, ST33F1M0, ST33F896, ST33F768, ST33F640, ST33F512 Secure MCU with 32-bit ARM SC300 CPU, SWP interface, NESCRYPT cryptoprocessor and high-density Flash memory Data brief Micromodule DFN8 package

More information

AN4308 Application note

AN4308 Application note Application note Methods of STCC2540, STCC5011, STCC5021 control Introduction By Ondrej Plachy The STCC2540 and STCC5011/STCC5021 (STCCxxxx in text below) devices are combinations of a current limited

More information

EMIF03-SIM06F3. 3-line IPAD, EMI filter including ESD protection. Description. Features. Application. Complies with the following standards:

EMIF03-SIM06F3. 3-line IPAD, EMI filter including ESD protection. Description. Features. Application. Complies with the following standards: 3-line IPAD, EMI filter including ESD protection Description Datasheet production data The EMIF03-SIM06F3 chip is a highly integrated audio filter device designed to suppress EMI/RFI noise in all systems

More information

AN4440 Application note

AN4440 Application note Application note RFFE HVDAC control Pascal Paillet Introduction The purpose of this application note is to familiarize mobile phone designers with RFFE HVDAC control. Common tasks are explained and more

More information

AN2676 Application note

AN2676 Application note Application note STM8A reset application examples Introduction This document is one of a set of application notes giving examples of how to use the various blocks of the STM8A microcontroller family and

More information

AN2672 Application note

AN2672 Application note Application note I²C application examples Introduction The I 2 C peripheral is very flexible, supporting standard interrupts in both 10-bit and 7-bit addressing modes. As a result, generated events are

More information

AN3980 Application note

AN3980 Application note Application note STM32 firmware library for dspin L6470 1 Introduction This application note describes the implementation of the STM32 firmware library for the dspin stepper motor control product (L6470).

More information

UM0792 User manual. Demonstration firmware for the DMX-512 communication protocol transmitter based on the STM32F103Zx.

UM0792 User manual. Demonstration firmware for the DMX-512 communication protocol transmitter based on the STM32F103Zx. User manual Demonstration firmware for the DMX-512 communication protocol transmitter based on the STM32F103Zx Introduction This document describes how to use the demonstration firmware for the DMX-512

More information

AN2825 Application Note

AN2825 Application Note Application Note S-Touch STMPE811 resistive touchscreen controller advanced features Introduction This application note provides details on the advanced features of the S-Touch STMPE811 touchscreen controllers.

More information

STM3220G-SK/KEI. Keil starter kit for STM32F2 series microcontrollers (STM32F207IG MCU) Features. Description

STM3220G-SK/KEI. Keil starter kit for STM32F2 series microcontrollers (STM32F207IG MCU) Features. Description Keil starter kit for STM32F2 series microcontrollers (STM32F207IG MCU) Data brief Features The Keil MDK-Lite development tools: µvision 4 IDE/Debugger for application programming and debugging ARM C/C++

More information

STTS V memory module temperature sensor. Features

STTS V memory module temperature sensor. Features 2.3 V memory module temperature sensor Data brief Features is a 2.3 V memory module temperature sensor forward compatible with JEDEC standard TS3000 and backward compatible with STTS424 Operating temperature

More information

STM8-SK/RAIS STM8-D/RAIS ST7-SK/RAIS ST7-D/RAIS

STM8-SK/RAIS STM8-D/RAIS ST7-SK/RAIS ST7-D/RAIS STM8-SK/RAIS STM8-D/RAIS ST7-SK/RAIS ST7-D/RAIS Raisonance s complete, low-cost starter kits for STM8 and ST7 Features Embedded RLink USB interface to host PC In-circuit debugging and programming Application

More information

AN2061 APPLICATION NOTE

AN2061 APPLICATION NOTE APPLICATION NOTE EEPROM Emulation with ST10F2xx Description External EEPROMs are often used in automotive applications to store adaptative/evolutive data. On the other hand, the Microcontroller used in

More information

AN4464 Application note

AN4464 Application note Application note Porting a Green Hills SW to SPC5Studio Introduction SPC5Studio provides a comprehensive framework to design, build and deploy embedded applications for SPC56 Power Architecture 32-bit

More information

STM3210B-SK/KEIL STR91X-SK/KEI, STR7-SK/KEIL

STM3210B-SK/KEIL STR91X-SK/KEI, STR7-SK/KEIL STM3210B STR91X-SK/KEI, STR7 Keil starter kits for ST ARM core-based microcontrollers Data brief Features The ARM RealView Microcontroller Development Kit complete development software package with: µvision3

More information

STM32-MP3NL/DEC. STM32 audio engine MP3 decoder library. Description. Features

STM32-MP3NL/DEC. STM32 audio engine MP3 decoder library. Description. Features STM32 audio engine MP3 decoder library Data brief Features MPEG-1, 2 or 2.5 formats Layers 1, 2 and 3 Constant bit rate and variable bit rate Mono or stereo input streams PCM (Pulse Code Modulation) output

More information

EVAL6235PD. L6235 three-phase brushless DC motor driver demonstration board. Features. Description

EVAL6235PD. L6235 three-phase brushless DC motor driver demonstration board. Features. Description L6235 three-phase brushless DC motor driver demonstration board Features Operating supply voltage from 8 V to 52 V 5.6 A output peak current (2.8 A RMS ) Operating frequency up to 100 khz Non-dissipative

More information

AN3354 Application note

AN3354 Application note Application note STM32F105/107 in-application programming using a USB host 1 Introduction An important requirement for most Flash-memory-based systems is the ability to update firmware installed in the

More information

EV-VNQ5E050AK VNQ5E050AK evaluation board

EV-VNQ5E050AK VNQ5E050AK evaluation board VNQ5E050AK evaluation board Data brief production data Features Parameter Symbol Value Unit Max supply voltage V CC 41 V Operating voltage range V CC 4.5 to 28 V Max On-State resistance R ON 50 mω Current

More information

ECMF02-3F3. Common mode filter with ESD protection. Features. Description. Applications. Complies with the following standard:

ECMF02-3F3. Common mode filter with ESD protection. Features. Description. Applications. Complies with the following standard: Common mode filter with ESD protection Datasheet production data Figure 1. Pin configuration (bump side) 1 2 A B Flip Chip 6 bumps C Features Figure 2. Schematic (bump side) Very large differential bandwidth

More information

AN2470 Application note TS4871 low voltage audio power amplifier Evaluation board user guidelines Features Description

AN2470 Application note TS4871 low voltage audio power amplifier Evaluation board user guidelines Features Description Application note TS4871 low voltage audio power amplifier Evaluation board user guidelines Features TS4871 low voltage audio power amplifier with active low standby mode Operating range from V CC =2.2V

More information

AN2361 Application note

AN2361 Application note AN2361 Application note Interfacing with the STR91x software library using Configuration and Programming Software (CAPS) Introduction STR91x microcontrollers offer extremely flexible configuration of I/O

More information

UM0401 User manual. User manual for eight bit port expander STMPE801 demonstration board. Introduction

UM0401 User manual. User manual for eight bit port expander STMPE801 demonstration board. Introduction User manual User manual for eight bit port expander STMPE801 demonstration board Introduction This document explains the functioning of the demo board for the port expander Chip STMPE801 with a PC GUI

More information

UM1792 User manual. STLUX385A development environment. Introduction. Reference documents

UM1792 User manual. STLUX385A development environment. Introduction. Reference documents User manual STLUX385A development environment Introduction This user manual provides complete information for SW developers about the complete STLUX385A development environment flow. The STLUX385A development

More information

AN2202 Application note

AN2202 Application note Application note STR73x microcontroller power management Introduction This application note provides an overview of the STR73x power management features and gives some guidelines for using the low power

More information

STICE CF/Stice_Connect AD/Stice_Connect AS/Stice_Connect

STICE CF/Stice_Connect AD/Stice_Connect AS/Stice_Connect STICE CF/Stice_Connect AD/Stice_Connect AS/Stice_Connect Full-featured cost-effective emulation system for ST microcontrollers Data brief Features Emulation system Real-time emulation of STM8 MCUs (CPU

More information

STM32-SK/RAIS,STR91X-SK/RAI,STR7-SK/RAIS STM32-D/RAIS,STR9-D/RAIS,STR7-D/RAIS

STM32-SK/RAIS,STR91X-SK/RAI,STR7-SK/RAIS STM32-D/RAIS,STR9-D/RAIS,STR7-D/RAIS STM32-SK/RAIS,,STR7-SK/RAIS STM32-D/RAIS,STR9-D/RAIS,STR7-D/RAIS Raisonance REva starter kits for ST ARM core-based microcontrollers Data brief Features Raisonance software toolset with: GNU C compiler

More information

UM1677 User manual. Getting started with STM32F030 Value Line Discovery development tools. Introduction

UM1677 User manual. Getting started with STM32F030 Value Line Discovery development tools. Introduction User manual Getting started with STM32F030 Value Line Discovery development tools Introduction This document describes the software, firmware environment and development recommendations required to build

More information

UM1572 User manual. STEVAL-IPE020V1: ST energy meter application based on the Android platform. Introduction

UM1572 User manual. STEVAL-IPE020V1: ST energy meter application based on the Android platform. Introduction User manual STEVAL-IPE020V1: ST energy meter application based on the Android platform Introduction The ST energy meter application is a user friendly Android based solution based on NFC technology that

More information

STM32-SK/KEIL STR91X-SK/KEI, STR7-SK/KEIL

STM32-SK/KEIL STR91X-SK/KEI, STR7-SK/KEIL STM32 STR91X-SK/KEI, STR7 Keil starter kits for ST ARM core-based microcontrollers Data brief Features The ARM RealView Microcontroller Development Kit complete development software package with: µvision3

More information

UM1488 User manual. STPMC1 evaluation software. Introduction

UM1488 User manual. STPMC1 evaluation software. Introduction User manual STPMC1 evaluation software Introduction STPMC1 evaluation software is a graphical user interface to read, configure and calibrate an STPMC1 energy metering device, suitable for parallel and

More information

AN1335 APPLICATION NOTE

AN1335 APPLICATION NOTE AN1335 APPLICATION NOTE Using the ST10F280 By André ROGER 1 - INTRODUCTION ST10F280 is a new member of ST10 family. This device has been specifically designed for application based on C167 and that now

More information

STA bit single chip baseband controller for GPS and telematic applications. Features

STA bit single chip baseband controller for GPS and telematic applications. Features 32-bit single chip baseband controller for GPS and telematic applications Data Brief Features Suitable for automotive applications ARM7TDMI 16/32 bit RISC CPU based host microcontroller. Complete embedded

More information

AN2143 Application note

AN2143 Application note AN2143 Application note Programming the ST10F27X embedded Flash using the ST10FLASHER tool Introduction This document summarizes the different steps needed to program the internal Flash memory of the ST10F27x

More information

AN626 Application note

AN626 Application note Application note Serial EEPROM product numbering This application note provides a detailed description of the part numbering scheme of Serial EEPROM products. The part numbering scheme consists of a maximum

More information

STM8 I 2 C optimized examples

STM8 I 2 C optimized examples Application note STM8 I 2 C optimized examples Introduction This document describes how to use the following I 2 C optimized examples Hardware configuration example of a common I 2 C bus Master firmware

More information

STLC2500D. Bluetooth V2.1 "Lisbon" + EDR. Features. Description

STLC2500D. Bluetooth V2.1 Lisbon + EDR. Features. Description Bluetooth V2.1 "Lisbon" + EDR Data Brief Features Based on Ericsson Technology Licensing Baseband Core (EBC) Bluetooth specification compliance: V2.1 ( Lisbon ) + EDR HW support for packet types ACL, SCO,

More information

AN2240 Application note

AN2240 Application note AN0 Application note Using the evaluation board for the TS7 low noise microphone preamplifier with V bias Introduction This application note describes the DEMO TS7 evaluation board, specifically designed

More information

This document describes the hardware architecture of the board, how to configure the jumpers and to enable specific functions.

This document describes the hardware architecture of the board, how to configure the jumpers and to enable specific functions. User manual SPC560B-DIS discovery board Introduction This document describes the hardware architecture of the board, how to configure the jumpers and to enable specific functions. November 2013 DocID025237

More information

AN2474 Application note

AN2474 Application note AN474 Application note TS4995.W fully differential audio power amplifier with selectable standby and 6db fixed gain - Evaluation board user guidelines Introduction This application note describes the DEMO

More information

AN3265 Application note

AN3265 Application note Application note Handling hardware and software failures with the STM8S-DISCOVERY Application overview This application is based on the STM8S-DISCOVERY. It demonstrates how to use the STM8S window watchdog

More information

STEVAL-VNH5019A. Motor driver evaluation board based on VNH5019A. Description. Features

STEVAL-VNH5019A. Motor driver evaluation board based on VNH5019A. Description. Features STEVAL-VNH5019A Motor driver evaluation board based on VNH5019A Description Data brief Features Type R DS(on) I out V CC(max) VNH5019A-E 18 mω typ (per leg) 30 A 41 V Handling up to 30 A of maximum motor

More information

RN0046 Release note. 1 Introduction. SimpleMAC library for STM32W108xx kits. About this release note

RN0046 Release note. 1 Introduction. SimpleMAC library for STM32W108xx kits. About this release note Release note SimpleMAC library for STM32W108xx kits 1 Introduction About this release note This release note is related to the SimpleMAC library which supports all the available STM32W108xx kits. This

More information

ST19NP18-TPM-I2C Trusted Platform Module (TPM) with I²C Interface Features

ST19NP18-TPM-I2C Trusted Platform Module (TPM) with I²C Interface Features Trusted Platform Module (TPM) with I²C Interface Data brief Features Single-chip Trusted Platform Module (TPM) Embedded TPM 1.2 firmware I²C communication interface (Slave mode) Architecture based on ST19N

More information

AN2860 Application note

AN2860 Application note Application note EMC guidelines for STM8 microcontrollers Introduction To meet the demand for higher performance, complexity and cost reduction, the semiconductor industry develops microcontrollers with

More information

AN2737 Application note Basic in-application programming example using the STM8 I 2 C and SPI peripherals Introduction

AN2737 Application note Basic in-application programming example using the STM8 I 2 C and SPI peripherals Introduction Application note Basic in-application programming example using the STM8 I 2 C and SPI peripherals Introduction This application note is one of a set of application notes giving examples of how to use

More information

TN0132 Technical note

TN0132 Technical note Technical note STM32 Serial Wire Viewer and ETM capabilities with EWARM 5.40 and MDK-ARM 3.70 Introduction This document presents Serial Wire Viewer (SWV) and Embedded Trace Macrocell (ETM) capabilities

More information

AN2430 Application note

AN2430 Application note Application note STR75x SystemMemory boot mode Introduction te: This application note describes the features of the SystemMemory boot mode developed for STR75x Flash microcontrollers providing all the

More information

AN2855 Application note

AN2855 Application note Application note Configuration for single-click and double-click detection using the FC30 Introduction This document is intended to provide application information for the click and double-click detection

More information

ST33F1M. Smartcard MCU with 32-bit ARM SecurCore SC300 CPU and 1.25 Mbytes high-density Flash memory. Features. Hardware features.

ST33F1M. Smartcard MCU with 32-bit ARM SecurCore SC300 CPU and 1.25 Mbytes high-density Flash memory. Features. Hardware features. Smartcard MCU with 32-bit ARM SecurCore SC300 CPU and 1.25 Mbytes high-density Flash memory Data brief Features ST33F1M major applications include: Mobile communications (GSM, 3G and CDMA) Java Card applications

More information

UM1084 User manual. CR95HF development software user guide. Introduction. Reference documents

UM1084 User manual. CR95HF development software user guide. Introduction. Reference documents User manual CR95HF development software user guide Introduction The CR95HF development software is a PC software which allows to configure, evaluate, and communicate with ST CR95HF 13.56 MHz multiprotocol

More information

ST19WR08 Dual Contactless Smartcard MCU With RF UART, IART & 8 Kbytes EEPROM Features Contactless specific features

ST19WR08 Dual Contactless Smartcard MCU With RF UART, IART & 8 Kbytes EEPROM Features Contactless specific features Dual Contactless Smartcard MCU With RF UART, IART & 8 Kbytes EEPROM Data Brief Features Enhanced 8-bit CPU with extended addressing modes 112 KBytes user ROM with partitioning 2 KBytes user RAM with partitioning

More information

AN3965 Application note

AN3965 Application note Application note STM32F40x/STM32F41x in-application programming using the USART 1 Introduction An important requirement for most Flash-memory-based systems is the ability to update firmware when installed

More information

UM1000 User manual. 1 Introduction. STM8L1528-EVAL demonstration firmware

UM1000 User manual. 1 Introduction. STM8L1528-EVAL demonstration firmware User manual STM8L1528-EVAL demonstration firmware 1 Introduction This document describes the demonstration firmware running on the STM8L1528-EVAL evaluation board. You can use it to evaluate the capabilities

More information

STM8L-PRIMER STM32-PRIMER STMPRIMER

STM8L-PRIMER STM32-PRIMER STMPRIMER STM8L-PRIMER STM32-PRIMER STMPRIMER Raisonance STM32 and STM8 Primers for fun, easy evaluation and development with STM32 and STM8 Features Data brief The versatile EvoPrimer range includes: In-circuit

More information

AN3001 Application note

AN3001 Application note Application note Demonstration board user guidelines for the TS4657 single supply stereo digital audio line driver Introduction This application note focuses on the TS4657 demonstration board, designed

More information

OSPlus USB Extension. OSPlus USB 2.0 extension. Description. Features. Application. TCP/IP stack NexGenOS NexGenIP VFS. FAT Ext2 LVM Device layer

OSPlus USB Extension. OSPlus USB 2.0 extension. Description. Features. Application. TCP/IP stack NexGenOS NexGenIP VFS. FAT Ext2 LVM Device layer OSPlus USB 2.0 extension Data brief Application VFS FAT Ext2 LVM Device layer Device drivers TCP/IP stack NexGenOS NexGenIP NexGenRemote NexGenResolve NexGenBoot NexGenPPP USB stack OSPlus interface Class

More information

AN3348 Application note

AN3348 Application note Application note Porting etpu code to etpu compiler build tools guides Introduction This guide would take you through the process of porting your application to the new etpu Compiler (EC). EC was designed

More information

How to interpret the LPS331AP pressure and temperature readings. Main components mbar absolute barometer with digital output

How to interpret the LPS331AP pressure and temperature readings. Main components mbar absolute barometer with digital output DT Design tip How to interpret the LPSAP pressure and temperature readings By Tom Bocchino and Boon-Nam Poh LPSAP Main components - mbar absolute barometer with digital output Purpose and benefits Description

More information

STM8-SK/RAIS STM8-D/RAIS ST7-SK/RAIS ST7-D/RAIS

STM8-SK/RAIS STM8-D/RAIS ST7-SK/RAIS ST7-D/RAIS STM8-SK/RAIS STM8-D/RAIS ST7-SK/RAIS ST7-D/RAIS Features Raisonance s complete, low-cost starter kits for STM8 and ST7 Embedded RLink USB interface to host PC In-circuit debugging and programming Application

More information

STEVAL-IDW001V1. Wi-Fi daughterboard for STM32F0DISCOVERY. Description. Features

STEVAL-IDW001V1. Wi-Fi daughterboard for STM32F0DISCOVERY. Description. Features STEVAL-IDW00V Wi-Fi daughterboard for STMF0DISCOVERY Description Data brief Features Integrated SPWF0SA. Wi-Fi module Used as daughterboard for the STMF0DISCOVERY Can be used with the STEVAL-PCC0V UART

More information

AN2673 Application note

AN2673 Application note Application note STM8A SPI application examples Introduction This application note is one of a set of application notes giving examples of how to use the various blocks of the STM8A microcontroller family

More information

AN3250 Application note

AN3250 Application note Application note M24LR64-R Multi-bank reference design description and settings 1 Introduction The M24LR64-R multi-bank reference design has been created to help users increase the memory density of their

More information

Obsolete Product(s) - Obsolete Product(s)

Obsolete Product(s) - Obsolete Product(s) 8 line low capacitance EMI filter and ESD protection Main product characteristics Where EMI filtering in ESD sensitive equipment is required: LCD and camera for mobile phones Computers and printers Communication

More information

AN2408 Application note

AN2408 Application note Application note 900mA standalone linear Li-Ion battery charger with thermal regulation Introduction One way to minimize the size and complexity of a battery charger is to use a linear-type charger. The

More information

SOT23-6L ESDALCL6-2SC6

SOT23-6L ESDALCL6-2SC6 Very low capacitance and low leakage current ESD protection Features 2 data-line protection Datasheet production data Protects V BUS Very low capacitance: 2.5 pf typ. Very low leakage current: 10 na at

More information

AN2557 Application note

AN2557 Application note Application note STM32F10x in-application programming using the USART Introduction An important requirement for most Flash-memory-based systems is the ability to update firmware when installed in the end

More information

AN3154 Application note

AN3154 Application note Application note CAN protocol used in the STM32 bootloader Introduction This application note describes the CAN protocol used in the STM32 microcontroller bootloader. It details each supported command.

More information

AN2734 Application note S-Touch design procedure Introduction

AN2734 Application note S-Touch design procedure Introduction Application note S-Touch design procedure Introduction The purpose of this application note is to provide the system/hardware engineers enough ground knowledge to start the design of capacitive touch inferface

More information

SMP75. Trisil for telecom equipment protection. Features. Description. Applications. Benefits

SMP75. Trisil for telecom equipment protection. Features. Description. Applications. Benefits Trisil for telecom equipment protection Features bidirectional crowbar protection voltage: 8 V low leakage current: I R = 2 µa max holding current: I H = 15 ma min repetitive peak pulse current: I PP =

More information

EMIF01-SMIC01F2 IPAD. Single line EMI filter including ESD protection. Main application. Description. Benefits. Pin configuration (Bump side view)

EMIF01-SMIC01F2 IPAD. Single line EMI filter including ESD protection. Main application. Description. Benefits. Pin configuration (Bump side view) IPAD Single line EMI filter including ESD protection Main application Single ended microphone in mobile phones and portable devices Description The is a highly integrated device designed to suppress EMI/RFI

More information

Obsolete Product(s) - Obsolete Product(s)

Obsolete Product(s) - Obsolete Product(s) 2-line IPAD, EMI filter and ESD protection for speaker Figure 1. Pin configuration (top view) and basic cell configuration Input SPK R in GND SPK L in 1 Pin 1 Micro QFN 6 leads 1.45 mm x 1.00 mm (bottom

More information

EMIF02-SPK02F2. 2-line IPAD, EMI filter and ESD protection. Features. Application. Description. Complies with the following standards

EMIF02-SPK02F2. 2-line IPAD, EMI filter and ESD protection. Features. Application. Description. Complies with the following standards 2-line IPAD, EMI filter and ESD protection Datasheet production data Features Packaged in lead-free Flip Chip Very low resistance: 0.35 Ω High attenuation: -45 db at 900 MHz Very low PCB space consumption:

More information

AN4371 Application note

AN4371 Application note Application note SPC56ELxx ADC Built-in self-tests ADC working in CPU mode Introduction In automotive more and more often comes in foreground the question of safety. For this reason the ST s PowerPC microcontrollers

More information

Distributed by: www.jameco.com 1-800-831-4242 The content and copyrights of the attached material are the property of its owner. ST7xxxx-SK/RAIS Raisonance s complete, low-cost starter kits for ST7 The

More information

STEVAL-IHM028V1. 2 kw 3-phase motor control demonstration board featuring the IGBT intelligent power module STGIPS20K60. Features.

STEVAL-IHM028V1. 2 kw 3-phase motor control demonstration board featuring the IGBT intelligent power module STGIPS20K60. Features. Features 2 kw 3-phase motor control demonstration board featuring the IGBT intelligent power module STGIPS20K60 Data brief Complete solution for a 2 kw power inverter HV supply mode: voltage 90 VAC to

More information

EMIF02-MIC01F2 2-line IPAD, EMI filter including ESD protection Features Application Description Complies with the standards:

EMIF02-MIC01F2 2-line IPAD, EMI filter including ESD protection Features Application Description Complies with the standards: 2-line IPAD, EMI filter including ESD protection Features 2-line symetrical low-pass filter Lead-free package High-density capacitor High-efficiency EMI filtering Very small PCB footprint: 1.42 mm x 1.92

More information

AN2781 Application note

AN2781 Application note Application note UART emulation software in STM8S and STM8A microcontrollers Introduction This application note describes how to emulate the UART behavior and functionality using routines in STM8S microcontrollers.

More information

AN2792 Application note

AN2792 Application note Application note STM8A easy programmer 1 Introduction This application note describes the easy programmer which is a low cost solution allowing the content of the STM8A Flash program memory to be updated

More information

Main components 1 A, high efficiency adjustable single inductor dual mode buckboost DC-DC converter

Main components 1 A, high efficiency adjustable single inductor dual mode buckboost DC-DC converter DN0007 Design note STBB1 buck-boost converter used as a 500mA LED driver with 1.8VDC-5.5VDC Vin Designs from our labs describe tested circuit designs from ST labs which provide optimized solutions for

More information

AN4311 Application note

AN4311 Application note Application note Assessing STM32L1 Series current consumption Introduction The STMicroelectronics ARM Cortex -M3 based STM32L1 series uses ST s proprietary ultra-low-leakage process technology with an

More information