Pin # Name Type Description

Size: px
Start display at page:

Download "Pin # Name Type Description"

Transcription

1 Figure 1. Photo of Actual FEATURES High Efficiency: 90% Constant Current Output Maximum Output Current: 1A Current Output Noise: 0.0% High Stability: 0ppm/ C PWM Switching Frequency Synchronizable Zero EMI Compact Size 0 % Lead (Pb)-free and RoHS Compliant DIP Package Available APPLICATIONS Driving laser diodes with low noise, including DPSSL, EDFA, fiber laser, direct diode lasers, etc. DESCRIPTION This laser driver is an electronic module designed for driving diode lasers with up to 1A constant current, high efficiency, low noise, high reliability, zero EMI, and small package. Figure 1 shows the photo of actual. Table 1 Pin Function Descriptions It provides these functions: laser constant current control, laser current monitoring, over current and thermal protection, switching frequency synchronization, laser diode status indication, soft start, and shut down. It comes with a high stability low noise 2.V voltage reference output which can be used for setting the output current. The reference output can also be used for the ADCs (Analog to Digital Converters) and/or DACs (Digital to Analog Converters) to monitor the laser output current and/or set laser output current respectively. The frequency synchronization of this laser driver allows using an external digital signal to synchronize the internal PWM output stage of the laser driver, to eliminate frequency beating interferences between the laser drivers and other switch mode electronic circuits on the same PCB. The external signal needs to be in the range of 20kHz to 800kHz. If other frequency is needed, contact us, we may be able to adjust the internal PWM frequency for you. The default switching frequency of the internal PWM output stage is 00kHz. The is packaged in a sided metal enclosure, which blocks EMIs (Electro-Magnetic Interferences) to prevent the driver and other electronics from interfering each other. SDN 1 12 VPS SYNC 2 11 P 3 9 LDC LDA LDGD 20.0 Figure 2. Pin Names and Locations Figure 2 is the actual size top view of the, which shows the pin names and locations. Its thickness is.0mm. Warning: This module can only be soldered manually on the board by using a solder iron of < 3ºC (90ºF), never let the module go through a reflow oven process. The pin functions are shown in Table 1. Pin # Name Type Description 1 SDN Digital Input 2 SYNC Synchronization Input Shut down control. Negative logic, at the internal chip control input: >1.V = enable, <0.9V = shut down, normal threshold voltage = 1.2V. The default internal switching frequency is 00kHz. This pin can be connected to an external clock signal of which the frequency should be about % to 1% higher than the default switching frequency. In this Copyrights , Analog Technologies, Inc. All Rights Reserved. Updated on 9/1/

2 3, 7 Signal Ground Analog Output Analog Input Analog Output 8 LDGD Digital Output way, the driver will be switching at the same frequency with the external clock signal, eliminating beating interferences with other switch mode power supplies, laser drivers, TEC controllers, etc. If other default switching frequency is needed, please contact us, it can be specified from 300kHz to 700kHz. Signal ground pin. Connect POT (potentiometer), ADCs and DACs grounds to here. Reference voltage. It can source 3mA max, with <μv P-P 0.1 to Hz and <2ppm/ C stability. Laser current set-point voltage. There is an input resistor of M tied to on this port. Setting it from 0V to 2.V will set the laser current from 0A to 1A linearly. Laser current output indication. 0V to 2.V indicates the laser current of from 0A to 1A linearly. Laser diode good. When this pin is high, >2V, the control loop is working properly. When this pin is low, <0.3V, the laser diode is bad, or there is a short or open circuit at the laser diode. 9 LDA Analog Output Laser diode anode. Connect it to the anode of the laser diode. LDC Analog Output Laser diode cathode. Connect it to the cathode of the laser diode. 11 P Power Ground Power ground pin. Connect this pin directly to power supply s return terminal.. 12 VPS Power Input Power supply voltage. The driver will work from V VPS = 3.0V to.v. SPECIFICATIONS Table 2 Characteristics (T ambient = 2 C) Parameter Value Unit Laser driver efficiency 90 % Maximum output current 1 A Current output noise 0.0 % Stability 0 ppm/ C Laser current control signal level 0 ~ 2. V Control accuracy ±0.2 % Laser current indication signal level 0 ~ 2. V Indication accuracy ±0.2 % Output reference voltage 2. V Power supply voltage range 3.0 ~. V Operating case temperature 0 ~ 12 C Rise times of small signal 70 µs Fall times of small signal 70 µs Rise times of large signal 32 µs Fall times of large signal 18 µs OPERATION PRINCIPLE The block diagram of the driver is shown in Figure 3. The shut down control circuit accepts signals from 3 sources: external shut down, over current and over temperature signals. When one of these signals is activated, the driver is shut down. Only when all these 3 signals go up, the soft start circuit starts enabling the low noise driver. It comes with a laser diode status indication circuit. When LDGD pin is high, >2V, the control loop is working properly. When this pin is low, <0.3V, the laser diode is bad, or there is a short or open circuit at the laser diode. The high stability low noise 2.V voltage reference can be used for setting the output current by setting the voltage on this pin, and also be used for the external ADCs and/or DACs as voltage references. An internal soft start circuit allows a slow start up and a quick shut down for the laser control loop. The current measurement circuit monitors the output current and sets the current indication voltage on the pin. The over current protection circuit shuts down the driver upon detecting the output current exceeds the pre-set value. Copyrights , Analog Technologies, Inc. All Rights Reserved. Updated on 9/1/

3 SDN 1 2.V voltage reference Soft start & thermal shutdown Laser diode status indication 8 LDGD EA Constant current driver LDC P 9 LDA Current measurement Over current protection Laser diode Figure 3. Block Diagram APPLICATIONS S1 Shutdown To external clock 1 2 Laser Driver SDN VPS 12 SYNC P 11 To power supply To power 1 W1 0K 3 2 (Clock-wise) To DC voltmeter 3 P LDC LDA 9 LDGD 8 7 Laser diode A K D1 A K D2 LED Figure shows a typical stand-alone application circuit. The switch S1 is an external switch for shutting down or enabling the controller. When shorting SDN to ground, i.e. to close the switch S1, the controller is shut down; when leave the switch open, the internal pull up circuit pulls the SDN pin high and the controller is enabled. The internal logic threshold on the SDN pin is: >1.V for enabling, and <0.9V for shutting down, normal threshold voltage is 1.2V. The switch S1 can also be replaced by an electronic switch, such as an I/O pin of a micro-controller, an either open drain or push-pull output digital port, see Figure. If not using a switch to control the laser, leave the SDN pin unconnected. The SYNC pin is for using an external signal to synchronize the internal switching frequency, to eliminate the beating interference between this laser controller and other switch mode power supply on the same PCB. If the SYNC is not connected, the default internal switching frequency is 00kHz. When using this pin, it must be Figure. A Typical Stand-alone Application Schematic connected by an external clock signal of about 0kHz to 70kHz, about % to 1% higher than the default switching frequency of 00kHz. After using this function, the driver will be switching at the same frequency with the external clock signal, eliminating beating interferences. If other switching frequency is needed, please contact us, it can be specified from 300kHz to 700kHz. In Figure, the potentiometer W1 is used to set the output current. Setting from 0V to 2.V will set the laser current from 0 to 1A linearly. The laser diode D1 is connected between LDA and LDC pins. It is worth mentioning that the power supply return terminal should be connected to the pin 11, P, and the cathode of the laser diode should be connected to the pin, LDC. These 2 nodes should not be connected together externally, although they are connected together internally already by the driver circuit. In Figure, the LED D2 is used to indicate laser diode status. When LDGD pin is high, >2V, the laser diode Copyrights , Analog Technologies, Inc. All Rights Reserved. Updated on 9/1/

4 control loop is working properly. When LDGD pin is low, <0.3V, the laser diode is bad, or there is a short or open circuit at the laser diode. The LDGD pin can also be connected to a digital input pin of a micro-controller, when To micro-controller To external clock To signal To ADC & DAC To DAC To ADC SDN SYNC Laser Driver software/firmware is utilized in the system, see Figure. A typical micro-processor-based application circuit is shown in Figure. VPS 12 P 11 P LDC LDA 9 LDGD 8 7 To power supply To power Laser diode A K D1 To micro-controller To signal Figure. A Typical Micro-processor-based Application Schematic Turning the Driver On and Off The driver can be turned on and off by setting the SDN pin high and lower respectively. It is recommended to turn the driver on by this sequence: To turn on: turn on the power by providing the power supply voltage to the driver, turn on the driver by releasing the SDN pin. To turn off: turn off the driver by lowering the voltage of SDN pin, turn off the power by stopping the voltage supply on the VPS pin. When not controlling by the SDN pin: leave it unconnected and turn on and off the driver by the power supply. Adjusting the Output Current The output current is set by adjusting W1, which sets input voltages on, pin, see Figure. The output current will be: I OUT (A) = 0. V (V). can be configured by using a DAC, to replace the W1 in Figure. Please make sure that the DAC has a low output noise, or, if no modulation is needed, an RC low pass filtered can be inserted between the DAC and the pin. The pin indicates the actual output current of the laser controller. It can still be used to monitor the output current. When this pin s voltage changes from 0V to 2.V, it indicates the laser current is from 0 to 1A linearly. Monitoring the Output Current The output current of the driver can be monitored by measuring the voltage on the pin. This feature is very useful for micro-controller based system where an ADC is available and monitoring the current in real time is required. This pin provides a very low noise voltage signal which is proportional to the output current: V (V) = 2. I OUT (A). For example, when the output current is 1A, the pin voltage is 2.V. The pin can be used to drive an ADC directly, or measured by a multimeter. Please be aware of this: using a digital multimeter to measure the pin s voltage may inject noise which is generated by the digital circuit of the meter, this noise can be amplified by the laser controller and shows up at the output pin, LDA. Therefore, it is not recommended to use a digital meter to measure the pin s voltage when the laser is working. Driver Power Consumption The power consumption of the driver can be calculated by: P DRIVER = I IN V VPS I OUT V LDA, where I OUT is the output current; I IN is the power supply input current; V VPS is the power supply voltage; V LDA is the voltage across the laser diode; η = I OUT V LDA /(I IN V VPS ). When the P DRIVER exceeds 1W, a heat sink might be used to lower the temperature of the laser controller. Another option is: reducing the power supply voltage V VPS. Please make sure: V VPS 1.2 V LDAMAX, where V LDAMAX is the maximum possible laser diode voltage. First Time Power Up Copyrights , Analog Technologies, Inc. All Rights Reserved. Updated on 9/1/2017

5 A diode laser is a high value and vulnerable device. Any faults in connections or damages caused to the driver during soldering process may damage the laser permanently. To protect the laser, it is highly recommend to use 2 to 3 regular diodes of > 2A to form a dummy laser and insert it in the place of the real laser diode, between the LDA and LDC pins, when powering up the driver for the first time. Use an oscilloscope to monitor the LDA voltage at the times of power-up and power-down, make sure that there is not over-shoot in voltage. At the same time, use an ammeter in serious with the dummy laser, to make sure that the output current equals the desired value set by the pin. After thorough checking the laser driver being free of faults, disconnect the dummy laser and connect the real laser in place. The output voltage range for the laser is between 0. to V when powered by a V power supply, and between 0. to 2.V when powered by a 3.3V power supply. OUTLINE DIMENSIONS AND MOUNTING The driver comes in only one package: through hole mount, being often called DIP (Dual Inline Package) or D (short for DIP) package, and has a part number:. The dimensions of the DIP package driver are shown in Figure. Tent (i.e. cover the entire via by the solder mask layer) all the vias under the driver, otherwise, the vias can be shorted by the bottom plate of the driver which is internally connected the ground. See Figure 7 and 8, it is recommended to use large copper fills for VPS, LDC, and the LDA pins, and other pins if possible, to decrease the thermal resistance between the module and the supporting PCB, to lower the module temperature. Figure 7. Top View of the PCB Foot-print Figure. Dimensions of the DIP Package Driver Figure 7 shows the top view PCB foot-print for mounting the laser driver. Figure 8. Top View of the Bottom Side PCB Foot-print Figure 8 shows the top view of the bottom side PCB footprint. Copyrights , Analog Technologies, Inc. All Rights Reserved. Updated on 9/1/2017

6 Warning: This module can only be soldered manually on the board by using a solder iron of < 3ºC (90ºF), never let the module go through a reflow oven process. ORDERING INFORMATION Table 3 Part Number Part # Description It can output up to 1A current and is packed in DIP package. PRICES Table. Unit Price Quantity 1 9 pcs 9 pcs pcs pcs 00 pcs $7 $70.1 $.2 $2.3 $8. NOTICE 1. ATI warrants performance of its products for one year to the specifications applicable at the time of sale, except for those being damaged by excessive abuse. Products found not meeting the specifications within one year from the date of sale can be exchanged free of charge. 2. ATI reserves the right to make changes to its products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. 3. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgment, including those pertaining to warranty, patent infringement, and limitation of liability. Testing and other quality control techniques are utilized to the extent ATI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.. Customers are responsible for their applications using ATI components. In order to minimize risks associated with the customers applications, adequate design and operating safeguards must be provided by the customers to minimize inherent or procedural hazards. ATI assumes no liability for applications assistance or customer product design.. ATI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of ATI covering or relating to any combination, machine, or process in which such products or services might be or are used. ATI s publication of information regarding any third party s products or services does not constitute ATI s approval, warranty or endorsement thereof.. IP (Intellectual Property) Ownership: ATI retains the ownership of full rights for special technologies and/or techniques embedded in its products, the designs for mechanics, optics, plus all modifications, improvements, and inventions made by ATI for its products and/or projects. Copyrights , Analog Technologies, Inc. All Rights Reserved. Updated on 9/1/2017

Pin # Name Type Description

Pin # Name Type Description Figure 1. Photo of Actual FEATURES High Efficiency: 90% Constant Current Output Maximum Output Current: 3A Current Output Noise: 0.0% High Stability: 0ppm/ C PWM Switching Frequency Synchronizable Zero

More information

Pin # Name Type Description

Pin # Name Type Description Figure 1. Photo of actual FEATURES High Efficiency: 90% Constant Current Output Maximum Output Current: 00mA Current Output Noise: 0.0% High Stability: 0ppm/ C PWM Switching Frequency Synchronizable Zero

More information

Pin # Name Type Description. 3, 7 GND Signal Ground Signal ground pin. Connect ADC and DAC grounds to here.

Pin # Name Type Description. 3, 7 GND Signal Ground Signal ground pin. Connect ADC and DAC grounds to here. FEATURES High Efficiency: 90% Maximum Output Current: 1A Current Output Noise: 0.0% High Stability: 0ppm/ C Loop Good Indication Zero EMI Compact Size DIP Package Available 0 % Lead (Pb)-free and RoHS

More information

Pin # Name Type Description. 3, 7 GND Signal Ground Signal ground pin. Connect the POT, DAC and/or the DAC grounds to here.

Pin # Name Type Description. 3, 7 GND Signal Ground Signal ground pin. Connect the POT, DAC and/or the DAC grounds to here. FEATURES Power Supply Voltage Range:.1V 6V High Efficiency: 90% Maximum Output Current: A Current Output Noise:

More information

3, 7 GND Signal Ground Signal ground pin. Connect ADC and DAC grounds to here.

3, 7 GND Signal Ground Signal ground pin. Connect ADC and DAC grounds to here. FEATURES Analog Technologies High Efficiency: 90% Maximum Output Current: A Current Output Noise: 0.0% High Stability: 0ppm/ C Loop Good Indication Zero EMI Compact Size 0 % Lead (Pb)-free and RoHS Compliant

More information

Pin # Name Type Description

Pin # Name Type Description FEATURES High Efficiency: 8% Maximum Output Current: A Current Output Noise: 0.0% High Stability: ± ma@a (0.%) for entire temp. range Loop Good Indication Fully shielded Compact Size 00 % lead (Pb)-free

More information

Analog Technologies. High Voltage Constant Current 50MA Laser Driver ATLS50MA212

Analog Technologies. High Voltage Constant Current 50MA Laser Driver ATLS50MA212 Figure 1. Physical Photo of FEATURES Power Supply Voltage VPS Range: 4.5V 15V Full Swing Output Voltage: 0.8V to 0.9V VPS (input voltage) Maximum Output Current: 50mA High Efficiency: no heat sink is needed

More information

1161 Ringwood Ct, #110, San Jose, CA 95131, U. S. A. Tel.: (408) , Fax: (408)

1161 Ringwood Ct, #110, San Jose, CA 95131, U. S. A. Tel.: (408) , Fax: (408) Figure 1. Physical Photo of FEATURES Power Supply Voltage VPS Range: 4.5V 15V Full Swing Output Voltage: 0.8V to 0.9V VPS (input voltage) Maximum Output Current: 3A High Efficiency: 90% - no heat sink

More information

Analog Technologies. High Voltage Constant Current 500mA Laser Driver ATLS500MA212 APPLICATIONS DESCRIPTION

Analog Technologies. High Voltage Constant Current 500mA Laser Driver ATLS500MA212 APPLICATIONS DESCRIPTION Figure 1. Physical Photo of FEATURES Power Supply Voltage VPS Range: 4.5V 15V Full Swing Output Voltage: 0.8V to 0.9V VPS (input voltage) Maximum Output Current: 500mA High Efficiency: 80% no heat sink

More information

Evaluation Board for High Voltage ATLSXA216D Series Laser Drivers

Evaluation Board for High Voltage ATLSXA216D Series Laser Drivers Evaluation Board for High Voltage ATLSXA216D Series Laser Drivers Figure 1. Physical Photo of INTRODUCTION The ATLSXA216D is a series of high efficiency constant current laser drivers for driving one or

More information

Analog Technologies. Laser Driver Load Assembly ATLS212DLD1.0 Load Assembly for Laser Drivers

Analog Technologies. Laser Driver Load Assembly ATLS212DLD1.0 Load Assembly for Laser Drivers Load Assembly for Laser Drivers series laser drivers more conveniently, we have designed and made the evaluation board, ATLS212EV1.0. This laser load assembly can be used with this evaluation board, or

More information

Analog Technologies. Laser Driver Load Assembly ATLS212DLD1.0 Load Assembly for Laser Drivers

Analog Technologies. Laser Driver Load Assembly ATLS212DLD1.0 Load Assembly for Laser Drivers ATLSDLD.0 Load Assembly for Laser Drivers evaluation board, ATLSEV. This laser load assembly can be used with this evaluation board, or be used alone, as a dummy laser load, to emulate one or multiple

More information

LPGD SBDN GND 4VR PZVS VLMU VLML PZVO PIZO. 3 GND Signal ground Signal ground pin. Connect ADC and DAC grounds to here.

LPGD SBDN GND 4VR PZVS VLMU VLML PZVO PIZO. 3 GND Signal ground Signal ground pin. Connect ADC and DAC grounds to here. DESCRIPTION The is an electronic module designed for driving piezos with high efficiency. Figure 1 shows the physical photo of. The output voltage is 30V to 300V when powered by a 5V power supply. Figure

More information

ATLD10A5-D EV1.0 Evaluation Board for ATLD10A5-D 10A High Efficiency Laser Controller ATLD10A5-D Evaluation Board Rev. 1.0

ATLD10A5-D EV1.0 Evaluation Board for ATLD10A5-D 10A High Efficiency Laser Controller ATLD10A5-D Evaluation Board Rev. 1.0 ATLD0A5-D EV.0 Evaluation Board for ATLD0A5-D 0A High Efficiency Laser Controller ATLD0A5-D Evaluation Board Rev..0 Figure ATLD0A5-D EV.0 Photo INTORDUCTION The ATLD0A5-D is an electronic module designed

More information

Constant Temperature Chamber ATITRS1. Figure 1. Top View. Figure 2. Front View

Constant Temperature Chamber ATITRS1. Figure 1. Top View. Figure 2. Front View Figure 1. Top View Figure 2. Front View Copyrights 2000-2018,, Inc. All Rights Reserved. Updated on 11/13/2018 www.analogti.com 1 Figure 3. Side View Figure 4. Back View Copyrights 2000-2018,, Inc. All

More information

Low Noise Laser Driver ATLS1A103D Evaluation Board Rev. 1.0

Low Noise Laser Driver ATLS1A103D Evaluation Board Rev. 1.0 ATLSA0DEV.0 Evaluation Board for ATLSA0D Low Noise Laser Driver ATLSA0D Evaluation Board Rev..0 Figure. Physical Photo of ATLSA0DEV.0 FEATURES Come with a dummy laser on the board. Use the dummy laser

More information

Low Noise Laser Driver ATLS1A103D Evaluation Board Rev. 1.0

Low Noise Laser Driver ATLS1A103D Evaluation Board Rev. 1.0 ATLSA0DEV.0 Evaluation Board for ATLSA0D Low Noise Laser Driver ATLSA0D Evaluation Board Rev..0 Figure. Physical Photo of ATLSA0DEV.0 FEATURES Come with a dummy laser on the board. Use the dummy laser

More information

27 - Line SCSI Terminator With Split Reverse Disconnect

27 - Line SCSI Terminator With Split Reverse Disconnect 27 - Line SCSI Terminator With Split Reverse Disconnect FEATURES Complies with SCSI, SCSI-2, SCSI-3, SPI and FAST-20 (Ultra) Standards 2.5pF Channel Capacitance During Disconnect 100µA Supply Current in

More information

Using LDOs and Power Managers in Systems With Redundant Power Supplies

Using LDOs and Power Managers in Systems With Redundant Power Supplies Application Report SLVA094 - November 000 Using LDOs and Power Managers in Systems With Redundant Power Supplies Ludovic de Graaf TI Germany ABSTRACT For reasons of continuity in some systems, independent

More information

Hardware UART for the TMS320C3x

Hardware UART for the TMS320C3x TMS320 DSP DESIGNER S NOTEBOOK Hardware UART for the TMS320C3x APPLICATION BRIEF: SPRA223 Contributed by Lawrence Wong Digital Signal Processing Products Semiconductor Group Texas Instruments June 1993

More information

Distributed by: www.jameco.com -800-83-4242 The content and copyrights of the attached material are the property of its owner. SOLID-STATE HEXADECIMAL DISPLAY WITH INTEGRAL TTL CIRCUIT TO ACCEPT, STORE,

More information

February 2003 PMP EVMs SLVU081

February 2003 PMP EVMs SLVU081 User s Guide February 2003 PMP EVMs SLVU081 IMPORTANT NOTICE Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and

More information

MC1488, SN55188, SN75188 QUADRUPLE LINE DRIVERS

MC1488, SN55188, SN75188 QUADRUPLE LINE DRIVERS Meet or Exceed the Requirements of ANSI EIA/ TIA--E and ITU Recommendation V. Designed to Be Interchangeable With Motorola MC1 Current-Limited Output: ma Typical Power-Off Output Impedance: Ω Minimum Slew

More information

EV Evaluation System User Guide. Contents. Kit Contents. Introduction

EV Evaluation System User Guide. Contents. Kit Contents. Introduction Contents EV2200 40 Evaluation System User Guide Section Page No. Introduction 1 Kit Contents 1 Hardware and Software Setup 2 Software Installation 2 Hardware Connection 2 Operation 2 Starting the Program

More information

Application Report. Mixed Signal Products SLOA028

Application Report. Mixed Signal Products SLOA028 Application Report July 1999 Mixed Signal Products SLOA028 IMPORTANT NOTICE Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product

More information

SN54BCT760, SN74BCT760 OCTAL BUFFERS/DRIVERS WITH OPEN-COLLECTOR OUTPUTS

SN54BCT760, SN74BCT760 OCTAL BUFFERS/DRIVERS WITH OPEN-COLLECTOR OUTPUTS SNBCT0, SNBCT0 SCBS0B JULY REVISED NOVEMBER Open-Collector Version of BCT Open-Collector Outputs Drive Bus Lines or Buffer Memory Address Registers ESD Protection Exceeds 000 V Per MIL-STD-C Method 0 Packages

More information

SN54F38, SN74F38 QUADRUPLE 2-INPUT POSITIVE-NAND BUFFERS WITH OPEN-COLLECTOR OUTPUTS

SN54F38, SN74F38 QUADRUPLE 2-INPUT POSITIVE-NAND BUFFERS WITH OPEN-COLLECTOR OUTPUTS SNF, SN7F SDFS0A MARCH 7 REVISED OCTOBER Package Options Include Plastic Small-Outline Packages, Ceramic Chip Carriers, and Standard Plastic and Ceramic 00-mil DIPs description These devices contain four

More information

12MHz XTAL USB DAC PCM2702E

12MHz XTAL USB DAC PCM2702E EVALUATION FIXTURE FEATURES COMPLETE EVALUATION FIXTURE FOR THE PCM70E USB DIGITAL-TO- ANALOG CONVERTER ON-BOARD OUTPUT FILTER USING OPA5UA DUAL CMOS OP AMP.5mm STEREO MINI JACK FOR LINE LEVEL OUTPUTS

More information

Increase Current Drive Using LVDS

Increase Current Drive Using LVDS Application Report SLLA100 May 2001 Increase Current Drive Using LVDS Steve Corrigan DSBU LVDS ABSTRACT The most common configuration for an LVDS connection is the one-way transmission topology. A single

More information

November 2000 Mixed-Signal Products SLOU086

November 2000 Mixed-Signal Products SLOU086 User s Guide November 2000 Mixed-Signal Products SLOU086 IMPORTANT NOTICE Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or

More information

SN54LVTH16240, SN74LVTH V ABT 16-BIT BUFFERS/DRIVERS WITH 3-STATE OUTPUTS

SN54LVTH16240, SN74LVTH V ABT 16-BIT BUFFERS/DRIVERS WITH 3-STATE OUTPUTS Members of the Texas Instruments Widebus Family State-of-the-Art Advanced BiCMOS Technology (ABT) Design for 3.3-V Operation and Low Static-Power Dissipation Support Mixed-Mode Signal Operation (5-V Input

More information

EV Software Rev Evaluation System User Guide. Introduction. Contents. Hardware and Software Setup. Software Installation

EV Software Rev Evaluation System User Guide. Introduction. Contents. Hardware and Software Setup. Software Installation Contents Evaluation System User Guide Software Rev 2.0.1 Introduction Section Page No. Introduction 1 Kit Contents 1 Hardware and Software Setup 1 Software Installation 1 Hardware Connection 1 Operation

More information

Parallel connection / operations and current share application note

Parallel connection / operations and current share application note Parallel connection / operations and current share application note Overview This document will examine method for active load sharing, basic criteria and performances of such a function on Glary UH and

More information

SN5446A, 47A, 48, SN54LS47, LS48, LS49 SN7446A, 47A, 48, SN74LS47, LS48, LS49 BCD-TO-SEVEN-SEGMENT DECODERS/DRIVERS

SN5446A, 47A, 48, SN54LS47, LS48, LS49 SN7446A, 47A, 48, SN74LS47, LS48, LS49 BCD-TO-SEVEN-SEGMENT DECODERS/DRIVERS PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include

More information

DV2003S1. Fast Charge Development System. Control of On-Board P-FET Switch-Mode Regulator. Features. Connection Descriptions. General Description

DV2003S1. Fast Charge Development System. Control of On-Board P-FET Switch-Mode Regulator. Features. Connection Descriptions. General Description DV003S1 Fast Charge Development System Control of On-Board P-FET Switch-Mode Regulator Features bq003 fast-charge control evaluation and development Charge current sourced from an on-board switch-mode

More information

L293 QUADRUPLE HALF-H DRIVER

L293 QUADRUPLE HALF-H DRIVER QUDRUPE F- DRIVER SRS005 SEPTEMBER 8 REVISED MY 0 - Current Capability Per Driver Pulsed Current - Driver Wide Supply Voltage Range: 4.5 V to V Separate -ogic Supply NE Package Designed for eat Sinking

More information

bq2056 Designed to Go Parts List General Description bq2056 Charge Algorithm Current Voltage

bq2056 Designed to Go Parts List General Description bq2056 Charge Algorithm Current Voltage Designed to GO... Practical and Cost-Effective Battery Management Design Examples by Benchmarq Series 2056, Number One Single- and Double-Cell Low-Dropout Lithium-Ion Charger Using the bq2056 Features

More information

74AC11139 DUAL 2-LINE DECODER/DEMULTIPLEXER

74AC11139 DUAL 2-LINE DECODER/DEMULTIPLEXER Designed Specifically for High-Speed Memory Decoders and Data Tramission Systems Incorporates Two Enable Inputs to Simplify Cascading and/or Data Reception Center-Pin V CC and GND Configuratio Minimize

More information

74AC11240 OCTAL BUFFER/LINE DRIVER WITH 3-STATE OUTPUTS

74AC11240 OCTAL BUFFER/LINE DRIVER WITH 3-STATE OUTPUTS Flow-Through Architecture Optimizes PCB Layout Center-Pin V CC and Configuratio Minimize High-Speed Switching Noise EPIC (Enhanced-Performance Implanted CMOS) -m Process 500-mA Typical Latch-Up Immunity

More information

Texas Instruments Solution for Undershoot Protection for Bus Switches

Texas Instruments Solution for Undershoot Protection for Bus Switches Application Report SCDA007 - APRIL 2000 Texas Instruments Solution for Undershoot Protection for Bus Switches Nadira Sultana and Chris Graves Standard Linear & Logic ABSTRACT Three solutions for undershoot

More information

Quad-Channel TEC Controller Getting Started Guide. Contents. Introduction. Contents of Evaluation Kit

Quad-Channel TEC Controller Getting Started Guide. Contents. Introduction. Contents of Evaluation Kit Contents Introduction... 1 Contents of Evaluation Kit... 1 Quad-TEC Platform Overview... 2 Installing the Control Software... 2 Removing the Quad-TEC Platform from its Protective Packaging... 2 Connecting

More information

SN54ALS32, SN54AS32, SN74ALS32, SN74AS32 QUADRUPLE 2-INPUT POSITIVE-OR GATES

SN54ALS32, SN54AS32, SN74ALS32, SN74AS32 QUADRUPLE 2-INPUT POSITIVE-OR GATES Package Options Include Plastic Small-Outline (D) Packages, Ceramic Chip Carriers (FK), and Standard Plastic (N) and Ceramic (J) 00-mil DIPs description These devices contain four independent -input positive-or

More information

Fast Optical Power Monitor

Fast Optical Power Monitor Fast Optical Power Monitor OPM200 Highlights Maximum input power Noise equivalent power (NEP RMS ) Small signal rise time ( 10-90%) Bandwidth Wide selection of photodiodes 30 mw 300 nw 35 ns 10 MHz 200-2100

More information

UCC3917 Floating Hot Swap Power Manager Evaluation Board

UCC3917 Floating Hot Swap Power Manager Evaluation Board User s Guide SLUU03 - June 00 UCC397 Floating Hot Swap Power Manager Evaluation Board Power Distribution & Power Supply Contents Introduction.........................................................................

More information

LDD M SERIES INSTRUCTION MANUAL LDD M SERIES

LDD M SERIES INSTRUCTION MANUAL LDD M SERIES TM LDD M SERIES LDD M SERIES INSTRUCTION MANUAL P O Box Bozeman, MT 9 Phone (0) -90 Fax (0) -9 email sales@wavelengthelectronics.com www.wavelengthelectronics.com TABLE OF CONTENTS Features... Customer

More information

Voltage Translation (5 V, 3.3 V, 2.5 V, 1.8 V), Switching Standards, and Bus Contention

Voltage Translation (5 V, 3.3 V, 2.5 V, 1.8 V), Switching Standards, and Bus Contention Voltage Translation (5 V, 3.3 V, 2.5 V, 1.8 V), Switching Standards, and Bus Contention SCYA006 September 1999 1 IMPORTANT NOTICE Texas Instruments and its subsidiaries (TI) reserve the right to make changes

More information

SN54ALS04B, SN54AS04, SN74ALS04B, SN74AS04 HEX INVERTERS

SN54ALS04B, SN54AS04, SN74ALS04B, SN74AS04 HEX INVERTERS SNALS0B, SNAS0, SN7ALS0B, SN7AS0 Package Options Include Plastic Small-Outline (D) Packages, Ceramic Chip Carriers (FK), and Standard Plastic (N) and Ceramic (J) 00-mil DIPs description These devices contain

More information

Stereo Dac Motherboard application information

Stereo Dac Motherboard application information Stereo Dac Motherboard application information 1 Introduction The "Stereo Dac Motherboard" is a high end solution to create a complete dac system. Just one board is needed to create a stereo system. Several

More information

EV-110 AAT1157 EVAL 1MHz 1.4A Buck Regulator

EV-110 AAT1157 EVAL 1MHz 1.4A Buck Regulator Introduction The AAT1157 evaluation board demonstrates performance, along with the suggested size and placement of external components, for the AAT1157 integrated buck regulator. The external components

More information

TIDA Test Report

TIDA Test Report Test Report October 2015 TIDA-00623 Test Report Jing Zou BMS/WLPC Abstract TI design TIDA-00623 wireless power supply transmitter is an application of the bq50002 and bq500511 devices in a 5W Qi compliant

More information

2001 Mixed-Signal Products SLOU091A

2001 Mixed-Signal Products SLOU091A User s Guide 2001 Mixed-Signal Products SLOU091A Preface How to Use This Manual This document contains the following chapters: Chapter 1 Introduction Chapter 2 Operation Related Documentation From Texas

More information

IT900 STK4 (Starter Kit)

IT900 STK4 (Starter Kit) PRELIMINARY IT900 STK4 (Starter Kit) February 2011 Copyright YITRAN Communications Ltd. PRELIMINARY information concerns products in the formative or design phase of development. Characteristic data and

More information

ADVANCED MICRO SYSTEMS

ADVANCED MICRO SYSTEMS Overview... 3 Included in the Box:... 3 Pinout... 4 Installation... 5 Power Supply... 6 Stepping Motors... 7 DIP Switch (JP1) Location... 8 Setting the Output Current (JP1)... 8 Microstep Resolution (JP1)...

More information

TPA4861 Audio Power Amplifier Evaluation Module DATA MANUAL: SLOU004

TPA4861 Audio Power Amplifier Evaluation Module DATA MANUAL: SLOU004 TPA4861 Audio Power Amplifier Evaluation Module DATA MANUAL: SLOU004 Date: July 1997 IMPORTANT NOTICE Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or

More information

In data sheets and application notes which still contain NXP or Philips Semiconductors references, use the references to Nexperia, as shown below.

In data sheets and application notes which still contain NXP or Philips Semiconductors references, use the references to Nexperia, as shown below. Important notice Dear Customer, On 7 February 2017 the former NXP Standard Product business became a new company with the tradename Nexperia. Nexperia is an industry leading supplier of Discrete, Logic

More information

PMEG2010EH; PMEG2010EJ; PMEG2010ET

PMEG2010EH; PMEG2010EJ; PMEG2010ET PMEG200EH; PMEG200EJ; PMEG200ET Rev. 04 20 March 2007 Product data sheet. Product profile. General description Planar Maximum Efficiency General Application (MEGA) Schottky barrier rectifiers with an integrated

More information

PMEG3015EH; PMEG3015EJ

PMEG3015EH; PMEG3015EJ Rev. 03 13 January 2010 Product data sheet 1. Product profile 1.1 General description Planar Maximum Efficiency General Application (MEGA) Schottky barrier rectifiers with an integrated guard ring for

More information

Stereo Audio Volume Control

Stereo Audio Volume Control PGA2310 Stereo Audio Volume Control FEATURES DIGITALLY CONTROLLED ANALOG VOLUME CONTROL Two Independent Audio Channels Serial Control Interface Zero Crossing Detection Mute Function WIDE GAIN AND ATTENUATION

More information

FMC-SFP+ FEATURES APPLICATIONS SOFTWARE. FMC Module with Four SFP+ Ports DESCRIPTION

FMC-SFP+ FEATURES APPLICATIONS SOFTWARE. FMC Module with Four SFP+ Ports DESCRIPTION V1.2 5/17/17 FMC Module with Four SFP+ Ports FEATURES Four SFP+ ports Up to 5 Gbps per port Programmable low jitter clock supports 0.16 to 350 MHz range with 1PPM step Spreadspectrum clock support 10 MHz,

More information

PMEG1030EH; PMEG1030EJ

PMEG1030EH; PMEG1030EJ Rev. 04 15 January 2010 Product data sheet 1. Product profile 1.1 General description Planar Maximum Efficiency General Application (MEGA) Schottky barrier rectifiers with an integrated guard ring for

More information

Dual Access into Single- Access RAM on a C5x Device

Dual Access into Single- Access RAM on a C5x Device TMS320 DSP DESIGNER S NOTEBOOK Dual Access into Single- Access RAM on a C5x Device APPLICATION BRIEF: SPRA215 Mansoor Chishtie Digital Signal Processing Products Semiconductor Group Texas Instruments February

More information

Low forward voltage Ultra small SMD plastic package Low capacitance Flat leads: excellent coplanarity and improved thermal behavior

Low forward voltage Ultra small SMD plastic package Low capacitance Flat leads: excellent coplanarity and improved thermal behavior Rev. 02 15 January 2010 Product data sheet 1. Product profile 1.1 General description Planar Schottky barrier triple diode with an integrated guard ring for stress protection. Three electrically isolated

More information

Total power dissipation: 500 mw Small plastic package suitable for surface-mounted design Wide working voltage range Low differential resistance

Total power dissipation: 500 mw Small plastic package suitable for surface-mounted design Wide working voltage range Low differential resistance Rev. 01 27 January 2010 Product data sheet 1. Product profile 1.1 General description General-purpose Zener diodes in a SOD123F small and flat lead Surface-Mounted Device (SMD) plastic package. 1.2 Features

More information

Test Report PMP Test Data For PMP /20/2015

Test Report PMP Test Data For PMP /20/2015 Test Data For PMP10748 09/20/2015 1 09/20/2015 Table of Contents 1. Design Specifications... 2 2. Circuit Description... 3 3. Block Diagram... 4 4. Board Schematic... 5 5. PMP10748 Board Photos... 6 6.

More information

Figure 1: AAT1106 Evaluation Board.

Figure 1: AAT1106 Evaluation Board. Introduction The AAT1106 Evaluation Board contains a fully tested 600mA, 1.5MHz Step-Down DC/DC Regulator. The circuit has an input voltage range of 2.5V to 5.5V and four preset selectable outputs (1.2V,

More information

SN54ALS74A, SN54AS74, SN74ALS74A, SN74AS74 DUAL D-TYPE POSITIVE-EDGE-TRIGGERED FLIP-FLOPS WITH CLEAR AND PRESET

SN54ALS74A, SN54AS74, SN74ALS74A, SN74AS74 DUAL D-TYPE POSITIVE-EDGE-TRIGGERED FLIP-FLOPS WITH CLEAR AND PRESET SNALS7A, SNAS7, SN7ALS7A, SN7AS7 SDASA D, APRIL 9 REVISED SEPTEMBER 97 Package Optio Include Plastic Small Outline Packages, Ceramic Chip Carriers, and Standard Plastic and Ceramic 00-mil DIPs Dependable

More information

Texas Instruments Voltage-Level-Translation Devices

Texas Instruments Voltage-Level-Translation Devices Application Report SCEA21 - February 21 Texas Instruments -Level-Translation Devices Nadira Sultana and Chris Cockrill Standard Linear & Logic ABSTRACT In electronic systems design, there is a need to

More information

Dual back-to-back Zener diode

Dual back-to-back Zener diode Rev. 01 28 January 2008 Product data sheet 1. Product profile 1.1 General description in a SOD323 (SC-76) very small Surface-Mounted Device (SMD) plastic package. 1.2 Features Non-repetitive peak reverse

More information

INVENTORY HISTORY REPORT EXTENSION. User Guide. User Guide Page 1

INVENTORY HISTORY REPORT EXTENSION. User Guide. User Guide Page 1 INVENTORY HISTORY REPORT EXTENSION User Guide User Guide Page 1 Important Notice JtechExtensions reserves the right to make corrections, modifications, enhancements, improvements, and other changes to

More information

SN75240 DUAL UNIVERSAL SERIAL BUS PORT TRANSIENT SUPPRESSOR SLLS266 FEBRUARY 1997

SN75240 DUAL UNIVERSAL SERIAL BUS PORT TRANSIENT SUPPRESSOR SLLS266 FEBRUARY 1997 DUL UNIVERSL SERIL US PORT TRNSIENT SUPPRESSOR SLLS266 FERURY 997 Design to Protect Submicron 3-V or -V Silicon from Noise Transients pplicable to Two High- or Low-Speed Universal Serial us (US) Host,

More information

NCR402T. 1. General description. 2. Features and benefits. 3. Applications. 4. Quick reference data

NCR402T. 1. General description. 2. Features and benefits. 3. Applications. 4. Quick reference data 16 October 2015 Product data sheet 1. General description LED driver consisting of a resistor-equipped PNP transistor with two diodes on one chip in a small SOT23 plastic package. 2. Features and benefits

More information

October 2002 PMP Portable Power SLVU074

October 2002 PMP Portable Power SLVU074 User s Guide October 2002 PMP Portable Power SLVU074 IMPORTANT NOTICE Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements,

More information

In data sheets and application notes which still contain NXP or Philips Semiconductors references, use the references to Nexperia, as shown below.

In data sheets and application notes which still contain NXP or Philips Semiconductors references, use the references to Nexperia, as shown below. Important notice Dear Customer, On 7 February 2017 the former NXP Standard Product business became a new company with the tradename Nexperia. Nexperia is an industry leading supplier of Discrete, Logic

More information

Using the bq3285/7e in a Green or Portable Environment

Using the bq3285/7e in a Green or Portable Environment in a Green or Portable Environment Introduction The bq3285/7e Real-Time Clock is a PC/AT-compatible real-time clock that incorporates three enhanced features to facilitate power management in Green desktop

More information

In data sheets and application notes which still contain NXP or Philips Semiconductors references, use the references to Nexperia, as shown below.

In data sheets and application notes which still contain NXP or Philips Semiconductors references, use the references to Nexperia, as shown below. Important notice Dear Customer, On 7 February 2017 the former NXP Standard Product business became a new company with the tradename Nexperia. Nexperia is an industry leading supplier of Discrete, Logic

More information

In data sheets and application notes which still contain NXP or Philips Semiconductors references, use the references to Nexperia, as shown below.

In data sheets and application notes which still contain NXP or Philips Semiconductors references, use the references to Nexperia, as shown below. Important notice Dear Customer, On 7 February 2017 the former NXP Standard Product business became a new company with the tradename Nexperia. Nexperia is an industry leading supplier of Discrete, Logic

More information

TPA1517NE Audio Power Amplifier Evaluation Module DATA MANUAL: SLOU007

TPA1517NE Audio Power Amplifier Evaluation Module DATA MANUAL: SLOU007 TPA1517NE Audio Power Amplifier Evaluation Module DATA MANUAL: SLOU007 Date: July 1997 IMPORTANT NOTICE Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or

More information

Application Report. 1 Hardware Description. John Fahrenbruch... MSP430 Applications

Application Report. 1 Hardware Description. John Fahrenbruch... MSP430 Applications Application Report SLAA309 June 2006 Low-Power Tilt Sensor Using the MSP430F2012 John Fahrenbruch... MSP430 Applications ABSTRACT The MSP430 family of low-power microcontrollers are ideal for low-power

More information

~ > TEXAS~ SN5427, SN54LS27, SN7427, SN74LS27 TRIPLE 3-INPUT POSITIVE-NOR GATES. Vee INSTRUMENTS POST OFOICE BOX OALLAS.

~ > TEXAS~ SN5427, SN54LS27, SN7427, SN74LS27 TRIPLE 3-INPUT POSITIVE-NOR GATES. Vee INSTRUMENTS POST OFOICE BOX OALLAS. SDLS089 Package Options Include Plastic "Small Outline" Packages, Ceramic Chip Carriers and Flat Packages, and Plastic and Ceramic DIPs Dependable Texas Instruments Quality and Reliability description

More information

TPA1517DWP Audio Power Amplifier Evaluation Module DATA MANUAL: SLOU008

TPA1517DWP Audio Power Amplifier Evaluation Module DATA MANUAL: SLOU008 TPA1517DWP Audio Power Amplifier Evaluation Module DATA MANUAL: SLOU008 Date: July 1997 IMPORTANT NOTICE Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products

More information

In data sheets and application notes which still contain NXP or Philips Semiconductors references, use the references to Nexperia, as shown below.

In data sheets and application notes which still contain NXP or Philips Semiconductors references, use the references to Nexperia, as shown below. Important notice Dear Customer, On 7 February 2017 the former NXP Standard Product business became a new company with the tradename Nexperia. Nexperia is an industry leading supplier of Discrete, Logic

More information

In data sheets and application notes which still contain NXP or Philips Semiconductors references, use the references to Nexperia, as shown below.

In data sheets and application notes which still contain NXP or Philips Semiconductors references, use the references to Nexperia, as shown below. Important notice Dear Customer, On 7 February 2017 the former NXP Standard Product business became a new company with the tradename Nexperia. Nexperia is an industry leading supplier of Discrete, Logic

More information

TIDA Test Report

TIDA Test Report Test Report January 2015 TIDA-00334 Test Report Bill Johns BMS/WLPC Abstract TI design TIDA-00334 wireless power supply transmitter is an application of the bq500212a IC in a small form factor design targeted

More information

Reading a 16-Bit Bus With the TMS320C5x Serial Port

Reading a 16-Bit Bus With the TMS320C5x Serial Port TMS320 DSP DESIGNER S NOTEBOOK Reading a 16-Bit Bus With the TMS320C5x Serial Port APPLICATION BRIEF: SPRA270 Manuel Rodrigues Digital Signal Processing Products Semiconductor Group Texas Instruments May

More information

PLD Series +5V Laser Diode Drivers

PLD Series +5V Laser Diode Drivers PLD Series +5V Laser Diode Drivers General Description The PLD series of Laser Diode Drivers combines the high performance you expect from a Wavelength component with two distinct improvements: low voltage

More information

The photograph below shows the PMP9730 Rev E prototype assembly. This circuit was built on a PMP9730 Rev D PCB.

The photograph below shows the PMP9730 Rev E prototype assembly. This circuit was built on a PMP9730 Rev D PCB. 1 Photos The photograph below shows the PMP9730 Rev E prototype assembly. This circuit was built on a PMP9730 Rev D PCB. 2 Standby Power No Load Pin AC (W) 120VAC/60Hz 0.187 230VAC/50Hz 0.238 Page 1 of

More information

Model: SJR-BTM334. Version: V

Model: SJR-BTM334. Version: V Bluetooth Module Datasheet Model: SJR-BTM334 Version: V1.1 2018-10-12 Sky Jiarun Technologies Co., Ltd. Tel: (0755)85279490 E-mail: sales@tianjiarun.com Web: www.tianjiarun.com Fuyong, Baoan, Shenzhen

More information

In data sheets and application notes which still contain NXP or Philips Semiconductors references, use the references to Nexperia, as shown below.

In data sheets and application notes which still contain NXP or Philips Semiconductors references, use the references to Nexperia, as shown below. Important notice Dear Customer, On 7 February 207 the former NXP Standard Product business became a new company with the tradename Nexperia. Nexperia is an industry leading supplier of Discrete, Logic

More information

Logic Solutions for IEEE Std 1284

Logic Solutions for IEEE Std 1284 Logic Solutions for IEEE Std SCEA013 June 1999 1 IMPORTANT NOTICE Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service

More information

LOW EMI PWM INTELLIGENT POWER HIGH SIDE SWITCH

LOW EMI PWM INTELLIGENT POWER HIGH SIDE SWITCH Automotive grade Automotive IPS High side AUIPS72211R LOW EMI PWM INTELLIGENT POWER HIGH SIDE SWITCH Features Integrated bootstrap for 100kHz switching Optimized EMI switching Charge pump for DC operation

More information

SmartFan Fusion-4. Speed Control and Alarm for DC Fans CONTROL RESOURCES INCORPORATED. The driving force of motor control & electronics cooling.

SmartFan Fusion-4. Speed Control and Alarm for DC Fans CONTROL RESOURCES INCORPORATED. The driving force of motor control & electronics cooling. SmartFan Fusion-4 Speed Control and Alarm for DC Fans The driving force of motor control & electronics cooling. P/N FUS300-F DC Controls SmartFan Fusion-4 is a digital fan speed control and alarm that

More information

1 Photo. 7/15/2014 PMP10283 Rev A Test Results

1 Photo. 7/15/2014 PMP10283 Rev A Test Results 1 Photo The photographs below show the PMP10283 Rev A assembly. This circuit was built on a PMP10283 Rev A PCB. Top side: Bottom side: Page 1 of 17 2 Efficiency 120V AC /60Hz Vin(ac) Iin(A) Pin(W) PF Vo1(V)

More information

In data sheets and application notes which still contain NXP or Philips Semiconductors references, use the references to Nexperia, as shown below.

In data sheets and application notes which still contain NXP or Philips Semiconductors references, use the references to Nexperia, as shown below. Important notice Dear Customer, On 7 February 2017 the former NXP Standard Product business became a new company with the tradename Nexperia. Nexperia is an industry leading supplier of Discrete, Logic

More information

Thorlabs Model LD1100

Thorlabs Model LD1100 Thorlabs Model LD1100 Constant Power Laser Driver THORLABS, Inc. PO Box 366 435 Route 206N Newton, NJ 07860 (973) 579-7227 Phone (973) 383-8406 Fax http://www.thorlabs.com Page 1 of 15 Table of Contents

More information

Electronic Initiation Device 1R

Electronic Initiation Device 1R Electronic Initiation Device 1R FEATURES: Compact, light-weight design Quick-attach enclosure Reusable High accuracy Fully programmable trigger options Time delays milliseconds - minutes Altitude by absolute

More information

Overview Included in the Box: Pinout Installation Power Supply Stepping Motors DIP Switch (JP1) Location...

Overview Included in the Box: Pinout Installation Power Supply Stepping Motors DIP Switch (JP1) Location... DRV7 USERS GUIDE Overview... 3 Included in the Box:... 4 Pinout... 4 Installation... 5 Power Supply... 6 Stepping Motors... 8 DIP Switch (JP1) Location... 9 Setting the Output Current (JP1)... 9 Microstep

More information

Crystal Technology, Inc.

Crystal Technology, Inc. Crystal Technology, Inc. Octal Channel AOTF Controller Integration Guide Revision 1.1 2010/08/10 Document #60-00108-01 Reproduction of the contents of this document without the permission of Crystal Technology,

More information

TM124MBK36C, TM124MBK36S BY 36-BIT TM248NBK36C, TM248NBK36S BY 36-BIT DYNAMIC RAM MODULE

TM124MBK36C, TM124MBK36S BY 36-BIT TM248NBK36C, TM248NBK36S BY 36-BIT DYNAMIC RAM MODULE Organization TM124MBK36C...48576 36 TM248NBK36C...2097152 36 Single 5-V Power Supply (±% Tolerance) 72-pin Leadless Single In-Line Memory Module (SIMM) TM124MBK36C Utilizes Eight 4-Megabit DRAMs in Plastic

More information

Single Cell Battery Power Solution

Single Cell Battery Power Solution Single Cell Battery Power Solution Input 5V DC Output 2.80.. 4.28V (dependent on charge state of battery) Current limited to 500mA max. Devices TPS2113A Autoswitching Power MUX TPD4S012 4-Channel USB ESD

More information

G540 4-AXIS DRIVE REV 4: MAY 28, 2010

G540 4-AXIS DRIVE REV 4: MAY 28, 2010 Thank you for choosing to purchase the G540 4-Axis Drive System. If you are dissatisfied with it for any reason at all within two weeks of its purchase date, you may return it for a full refund provided

More information