Evaluation of Parallel I/O Performance and Energy with Frequency Scaling on Cray XC30 Suren Byna and Brian Austin

Size: px
Start display at page:

Download "Evaluation of Parallel I/O Performance and Energy with Frequency Scaling on Cray XC30 Suren Byna and Brian Austin"

Transcription

1 Evaluation of Parallel I/O Performance and Energy with Frequency Scaling on Cray XC30 Suren Byna and Brian Austin Lawrence Berkeley National Laboratory

2 Energy efficiency at Exascale A design goal for future exascale systems Power consumption less than 20 MW Dynamic voltage and frequency scaling (DVFS) is a method to provide variable amount of energy on processors Lowering frequency saves CPU power When CPUs have to do computing in low power states, DVFS may affect performance Several efforts to avoid or reduce performance degradation with DVFS

3 Large-scale Scientific Simulations ² Large-scale scientific simulations use significant portion of supercomputers VPIC-Hopper ² VPIC ² Flash ² Produce large amounts of data ² 10 trillion particles 8 properties: ~300 TB 3

4 DVFS during I/O phases Simulations with interleaving computation and I/O phases Parallel I/O is often a collective operation in writing to a single file If processors are idle or not computing during I/O, can they be in a low power state? What is the impact of DVFS during I/O phases?

5 Parallel I/O Parallel I/O software stack Application High-level I/O libraries and data models I/O middleware Parallel file system Options for performance optimization Complex inter-dependencies among layers Application High-level I/O library (HDF5, NetCDF, etc.) I/O Middleware (MPI-IO, POSIX) I/O optimization layer (redirection, forwarding, etc.) Parallel File System Storage Hardware 5

6 Experimental Setup NERSC Edison o Cray XC30 o Each node has two 2.4 GHz 12-core Intel Ivy Bridge CPUs o 64 GB DDR3 DRAM o Cray Aries interconnect File system o Sonexion 1600 appliance w/ Lustre o 144 OSTs with 72 GB/s peak I/O bandwidth o 32 MB stripe size

7 Applications VPIC-IO I/O kernel from a plasma physics simulation o VPIC is developed at LANL and I/O w/ HDF5 at LBNL o H5Part and HDF5 I/O o Each MPI process writes data for 8 million particles o Each particle has 8 properties o Each property is stored as a 1D HDF5 dataset VORPAL-IO I/O kernel from accelerator physics o Developed at TechX o I/O kernel extracted at LBNL o H5Block and HDF5 I/O o Each process writes a 3D block of 100 x 100 x 60

8 Measurements I/O time o Maximum time of all processes o Includes file open, close, and write times o Ran each experiment 5 times and selected the best performing Energy and Power measurements o Cray Power Management counters PM counters o /sys/cray/pm_counters/cpu_{energy,power} o Developed a small library to obtain the elapsed power/energy and to aggregate from all nodes involved in running a job PMON o To set frequency for running an I/O kernel e.g.: aprun --p-state= n 2048 exec args The power and energy measurements are for compute nodes, not for the I/O subsystem

9 Scaling tests Weak Scaling Number of cores VPIC data size VORPAL data size 2K 512 GB 1.6 TB 4K 1 TB 3.2 TB 8K 2 TB 6.4 TB 16K 4 TB 12.8 TB Strong Scaling Number of cores 2K 4K 8K VPIC data size 1 TB

10 Weak-scaling Power Consumption Better Power&(in&x1000&Wa/s)& Thousands& 200" 180" 160" 140" 120" 100" 80" 60" 40" 20" VPIC-2K" VPIC-4K" VPIC-8K" VPIC-16K" VORPAL-2K" VORPAL-4K" VORPAL-8K" VORPAL-16K" 0" 1.2" 1.4" 1.6" 1.8" 2" 2.2" 2.4" Default 2.6" 2.8" P6State&(Frequency&in&GHz)&

11 Better Weak-scaling Energy Consumption

12 Weak-scaling I/O Rate 50.00# 45.00# Better 40.00# 35.00# I/O$Rate$(GB/s)$ 30.00# VPIC/2K# 25.00# VPIC/4K# 20.00# VPIC/8K# 15.00# VPIC/16K# VORPAL/2K# 10.00# VORPAL/4K# 5.00# VORPAL/8K# 0.00# VORPAL/16K# 1.2# 1.4# 1.6# 1.8# 2# 2.2# 2.4# Default 2.6# 2.8# P/State$(Frequency$in$GHz)$ Significant I/O performance degradation at low frequencies

13 Weak-scaling Energy Efficiency 1.80# 1.60# Better I/O$Rate$per$Wa,$(MB/s/W)$ 1.40# 1.20# 1.00# 0.80# 0.60# 0.40# VPIC-2K# VPIC-4K# VPIC-8K# VPIC-16K# VORPAL-2K# VORPAL-4K# VORPAL-8K# 0.20# VORPAL-16K# 0.00# 1.2# 1.4# 1.6# 1.8# 2# 2.2# 2.4# Default 2.6# 2.8# P3State$(Frequency$in$GHz)$

14 Weak scaling Energy Savings & Improvement Least energy consumption to default energy Highest energy efficiency to default energy efficiency 5 out of 2.2 GHz 1.8 and 1.4 GHz

15 Strong Scaling Energy and Energy Efficiency Better Best: 2K à 2.4 GHz 4K à 2.2 GHz 8K à 1.8 GHz Better Default

16 Strong Scaling Trends Times&increase&from&2K&to&8K& 4.50# 4.00# 3.50# 3.00# 2.50# 2.00# 1.50# 1.00# Energy# Power# I/O#Rate# Energy#Efficiency# 0.50# 0.00# 1.2# 1.4# 1.6# 1.8# 2# 2.2# 2.4# Default 2.6# 2.8# P2State&&(Frequency&in&GHz)& Power increases by 4X from 2K to 8K Energy efficiency decreases by 50%

17 Observations & Unknowns Decreased I/O rate with frequency? o CPU and node activity during I/O phase o Using fewer cores per node or pinning fewer cores to perform I/O o MPI-IO in independent mode o I/O performance variation o Fine grain power state settings Some cores at high frequency and some at lower I/O phase energy consumption with new memory and storage hierarchy? o Node level NVM o Burst buffers

18 Thanks! Advanced Scientific Computing Research (ASCR) for funding the Power-aware Data Management project Program Manager: Lucy Nowell Project PI: Hank Childs 18

Taming Parallel I/O Complexity with Auto-Tuning

Taming Parallel I/O Complexity with Auto-Tuning Taming Parallel I/O Complexity with Auto-Tuning Babak Behzad 1, Huong Vu Thanh Luu 1, Joseph Huchette 2, Surendra Byna 3, Prabhat 3, Ruth Aydt 4, Quincey Koziol 4, Marc Snir 1,5 1 University of Illinois

More information

SDS: A Framework for Scientific Data Services

SDS: A Framework for Scientific Data Services SDS: A Framework for Scientific Data Services Bin Dong, Suren Byna*, John Wu Scientific Data Management Group Lawrence Berkeley National Laboratory Finding Newspaper Articles of Interest Finding news articles

More information

NERSC Site Update. National Energy Research Scientific Computing Center Lawrence Berkeley National Laboratory. Richard Gerber

NERSC Site Update. National Energy Research Scientific Computing Center Lawrence Berkeley National Laboratory. Richard Gerber NERSC Site Update National Energy Research Scientific Computing Center Lawrence Berkeley National Laboratory Richard Gerber NERSC Senior Science Advisor High Performance Computing Department Head Cori

More information

Overview. Idea: Reduce CPU clock frequency This idea is well suited specifically for visualization

Overview. Idea: Reduce CPU clock frequency This idea is well suited specifically for visualization Exploring Tradeoffs Between Power and Performance for a Scientific Visualization Algorithm Stephanie Labasan & Matt Larsen (University of Oregon), Hank Childs (Lawrence Berkeley National Laboratory) 26

More information

Massively Parallel K-Nearest Neighbor Computation on Distributed Architectures

Massively Parallel K-Nearest Neighbor Computation on Distributed Architectures Massively Parallel K-Nearest Neighbor Computation on Distributed Architectures Mostofa Patwary 1, Nadathur Satish 1, Narayanan Sundaram 1, Jilalin Liu 2, Peter Sadowski 2, Evan Racah 2, Suren Byna 2, Craig

More information

ArrayUDF Explores Structural Locality for Faster Scientific Analyses

ArrayUDF Explores Structural Locality for Faster Scientific Analyses ArrayUDF Explores Structural Locality for Faster Scientific Analyses John Wu 1 Bin Dong 1, Surendra Byna 1, Jialin Liu 1, Weijie Zhao 2, Florin Rusu 1,2 1 LBNL, Berkeley, CA 2 UC Merced, Merced, CA Two

More information

Toward portable I/O performance by leveraging system abstractions of deep memory and interconnect hierarchies

Toward portable I/O performance by leveraging system abstractions of deep memory and interconnect hierarchies Toward portable I/O performance by leveraging system abstractions of deep memory and interconnect hierarchies François Tessier, Venkatram Vishwanath, Paul Gressier Argonne National Laboratory, USA Wednesday

More information

Performance and Energy Usage of Workloads on KNL and Haswell Architectures

Performance and Energy Usage of Workloads on KNL and Haswell Architectures Performance and Energy Usage of Workloads on KNL and Haswell Architectures Tyler Allen 1 Christopher Daley 2 Doug Doerfler 2 Brian Austin 2 Nicholas Wright 2 1 Clemson University 2 National Energy Research

More information

On the Use of Burst Buffers for Accelerating Data-Intensive Scientific Workflows

On the Use of Burst Buffers for Accelerating Data-Intensive Scientific Workflows On the Use of Burst Buffers for Accelerating Data-Intensive Scientific Workflows Rafael Ferreira da Silva, Scott Callaghan, Ewa Deelman 12 th Workflows in Support of Large-Scale Science (WORKS) SuperComputing

More information

Extreme I/O Scaling with HDF5

Extreme I/O Scaling with HDF5 Extreme I/O Scaling with HDF5 Quincey Koziol Director of Core Software Development and HPC The HDF Group koziol@hdfgroup.org July 15, 2012 XSEDE 12 - Extreme Scaling Workshop 1 Outline Brief overview of

More information

Short Talk: System abstractions to facilitate data movement in supercomputers with deep memory and interconnect hierarchy

Short Talk: System abstractions to facilitate data movement in supercomputers with deep memory and interconnect hierarchy Short Talk: System abstractions to facilitate data movement in supercomputers with deep memory and interconnect hierarchy François Tessier, Venkatram Vishwanath Argonne National Laboratory, USA July 19,

More information

Designing Power-Aware Collective Communication Algorithms for InfiniBand Clusters

Designing Power-Aware Collective Communication Algorithms for InfiniBand Clusters Designing Power-Aware Collective Communication Algorithms for InfiniBand Clusters Krishna Kandalla, Emilio P. Mancini, Sayantan Sur, and Dhabaleswar. K. Panda Department of Computer Science & Engineering,

More information

Harmonia: An Interference-Aware Dynamic I/O Scheduler for Shared Non-Volatile Burst Buffers

Harmonia: An Interference-Aware Dynamic I/O Scheduler for Shared Non-Volatile Burst Buffers I/O Harmonia Harmonia: An Interference-Aware Dynamic I/O Scheduler for Shared Non-Volatile Burst Buffers Cluster 18 Belfast, UK September 12 th, 2018 Anthony Kougkas, Hariharan Devarajan, Xian-He Sun,

More information

UMAMI: A Recipe for Generating Meaningful Metrics through Holistic I/O Performance Analysis

UMAMI: A Recipe for Generating Meaningful Metrics through Holistic I/O Performance Analysis UMAMI: A Recipe for Generating Meaningful Metrics through Holistic I/O Performance Analysis Glenn K. Lockwood, Shane Snyder, Wucherl Yoo, Kevin Harms, Zachary Nault, Suren Byna, Philip Carns, Nicholas

More information

IME (Infinite Memory Engine) Extreme Application Acceleration & Highly Efficient I/O Provisioning

IME (Infinite Memory Engine) Extreme Application Acceleration & Highly Efficient I/O Provisioning IME (Infinite Memory Engine) Extreme Application Acceleration & Highly Efficient I/O Provisioning September 22 nd 2015 Tommaso Cecchi 2 What is IME? This breakthrough, software defined storage application

More information

libhio: Optimizing IO on Cray XC Systems With DataWarp

libhio: Optimizing IO on Cray XC Systems With DataWarp libhio: Optimizing IO on Cray XC Systems With DataWarp May 9, 2017 Nathan Hjelm Cray Users Group May 9, 2017 Los Alamos National Laboratory LA-UR-17-23841 5/8/2017 1 Outline Background HIO Design Functionality

More information

Tuning I/O Performance for Data Intensive Computing. Nicholas J. Wright. lbl.gov

Tuning I/O Performance for Data Intensive Computing. Nicholas J. Wright. lbl.gov Tuning I/O Performance for Data Intensive Computing. Nicholas J. Wright njwright @ lbl.gov NERSC- National Energy Research Scientific Computing Center Mission: Accelerate the pace of scientific discovery

More information

User Training Cray XC40 IITM, Pune

User Training Cray XC40 IITM, Pune User Training Cray XC40 IITM, Pune Sudhakar Yerneni, Raviteja K, Nachiket Manapragada, etc. 1 Cray XC40 Architecture & Packaging 3 Cray XC Series Building Blocks XC40 System Compute Blade 4 Compute Nodes

More information

API and Usage of libhio on XC-40 Systems

API and Usage of libhio on XC-40 Systems API and Usage of libhio on XC-40 Systems May 24, 2018 Nathan Hjelm Cray Users Group May 24, 2018 Los Alamos National Laboratory LA-UR-18-24513 5/24/2018 1 Outline Background HIO Design HIO API HIO Configuration

More information

Blue Waters I/O Performance

Blue Waters I/O Performance Blue Waters I/O Performance Mark Swan Performance Group Cray Inc. Saint Paul, Minnesota, USA mswan@cray.com Doug Petesch Performance Group Cray Inc. Saint Paul, Minnesota, USA dpetesch@cray.com Abstract

More information

Do You Know What Your I/O Is Doing? (and how to fix it?) William Gropp

Do You Know What Your I/O Is Doing? (and how to fix it?) William Gropp Do You Know What Your I/O Is Doing? (and how to fix it?) William Gropp www.cs.illinois.edu/~wgropp Messages Current I/O performance is often appallingly poor Even relative to what current systems can achieve

More information

Illinois Proposal Considerations Greg Bauer

Illinois Proposal Considerations Greg Bauer - 2016 Greg Bauer Support model Blue Waters provides traditional Partner Consulting as part of its User Services. Standard service requests for assistance with porting, debugging, allocation issues, and

More information

Motivation Goal Idea Proposition for users Study

Motivation Goal Idea Proposition for users Study Exploring Tradeoffs Between Power and Performance for a Scientific Visualization Algorithm Stephanie Labasan Computer and Information Science University of Oregon 23 November 2015 Overview Motivation:

More information

Improved Solutions for I/O Provisioning and Application Acceleration

Improved Solutions for I/O Provisioning and Application Acceleration 1 Improved Solutions for I/O Provisioning and Application Acceleration August 11, 2015 Jeff Sisilli Sr. Director Product Marketing jsisilli@ddn.com 2 Why Burst Buffer? The Supercomputing Tug-of-War A supercomputer

More information

Store Process Analyze Collaborate Archive Cloud The HPC Storage Leader Invent Discover Compete

Store Process Analyze Collaborate Archive Cloud The HPC Storage Leader Invent Discover Compete Store Process Analyze Collaborate Archive Cloud The HPC Storage Leader Invent Discover Compete 1 DDN Who We Are 2 We Design, Deploy and Optimize Storage Systems Which Solve HPC, Big Data and Cloud Business

More information

I/O Performance on Cray XC30

I/O Performance on Cray XC30 I/O Performance on Cray XC30 Zhengji Zhao 1), Doug Petesch 2), David Knaak 2), and Tina Declerck 1) 1) National Energy Research Scientific Center, Berkeley, CA 2) Cray, Inc., St. Paul, MN Email: {zzhao,

More information

Utilizing Unused Resources To Improve Checkpoint Performance

Utilizing Unused Resources To Improve Checkpoint Performance Utilizing Unused Resources To Improve Checkpoint Performance Ross Miller Oak Ridge Leadership Computing Facility Oak Ridge National Laboratory Oak Ridge, Tennessee Email: rgmiller@ornl.gov Scott Atchley

More information

Analyzing I/O Performance on a NEXTGenIO Class System

Analyzing I/O Performance on a NEXTGenIO Class System Analyzing I/O Performance on a NEXTGenIO Class System holger.brunst@tu-dresden.de ZIH, Technische Universität Dresden LUG17, Indiana University, June 2 nd 2017 NEXTGenIO Fact Sheet Project Research & Innovation

More information

Managing HPC Active Archive Storage with HPSS RAIT at Oak Ridge National Laboratory

Managing HPC Active Archive Storage with HPSS RAIT at Oak Ridge National Laboratory Managing HPC Active Archive Storage with HPSS RAIT at Oak Ridge National Laboratory Quinn Mitchell HPC UNIX/LINUX Storage Systems ORNL is managed by UT-Battelle for the US Department of Energy U.S. Department

More information

Overview of Tianhe-2

Overview of Tianhe-2 Overview of Tianhe-2 (MilkyWay-2) Supercomputer Yutong Lu School of Computer Science, National University of Defense Technology; State Key Laboratory of High Performance Computing, China ytlu@nudt.edu.cn

More information

Introduction to High Performance Parallel I/O

Introduction to High Performance Parallel I/O Introduction to High Performance Parallel I/O Richard Gerber Deputy Group Lead NERSC User Services August 30, 2013-1- Some slides from Katie Antypas I/O Needs Getting Bigger All the Time I/O needs growing

More information

Introduction to HPC Parallel I/O

Introduction to HPC Parallel I/O Introduction to HPC Parallel I/O Feiyi Wang (Ph.D.) and Sarp Oral (Ph.D.) Technology Integration Group Oak Ridge Leadership Computing ORNL is managed by UT-Battelle for the US Department of Energy Outline

More information

Analyzing the High Performance Parallel I/O on LRZ HPC systems. Sandra Méndez. HPC Group, LRZ. June 23, 2016

Analyzing the High Performance Parallel I/O on LRZ HPC systems. Sandra Méndez. HPC Group, LRZ. June 23, 2016 Analyzing the High Performance Parallel I/O on LRZ HPC systems Sandra Méndez. HPC Group, LRZ. June 23, 2016 Outline SuperMUC supercomputer User Projects Monitoring Tool I/O Software Stack I/O Analysis

More information

Preparing GPU-Accelerated Applications for the Summit Supercomputer

Preparing GPU-Accelerated Applications for the Summit Supercomputer Preparing GPU-Accelerated Applications for the Summit Supercomputer Fernanda Foertter HPC User Assistance Group Training Lead foertterfs@ornl.gov This research used resources of the Oak Ridge Leadership

More information

Exploring Emerging Technologies in the Extreme Scale HPC Co- Design Space with Aspen

Exploring Emerging Technologies in the Extreme Scale HPC Co- Design Space with Aspen Exploring Emerging Technologies in the Extreme Scale HPC Co- Design Space with Aspen Jeffrey S. Vetter SPPEXA Symposium Munich 26 Jan 2016 ORNL is managed by UT-Battelle for the US Department of Energy

More information

Overlapping Computation and Communication for Advection on Hybrid Parallel Computers

Overlapping Computation and Communication for Advection on Hybrid Parallel Computers Overlapping Computation and Communication for Advection on Hybrid Parallel Computers James B White III (Trey) trey@ucar.edu National Center for Atmospheric Research Jack Dongarra dongarra@eecs.utk.edu

More information

UK LUG 10 th July Lustre at Exascale. Eric Barton. CTO Whamcloud, Inc Whamcloud, Inc.

UK LUG 10 th July Lustre at Exascale. Eric Barton. CTO Whamcloud, Inc Whamcloud, Inc. UK LUG 10 th July 2012 Lustre at Exascale Eric Barton CTO Whamcloud, Inc. eeb@whamcloud.com Agenda Exascale I/O requirements Exascale I/O model 3 Lustre at Exascale - UK LUG 10th July 2012 Exascale I/O

More information

NERSC. National Energy Research Scientific Computing Center

NERSC. National Energy Research Scientific Computing Center NERSC National Energy Research Scientific Computing Center Established 1974, first unclassified supercomputer center Original mission: to enable computational science as a complement to magnetically controlled

More information

1. Many Core vs Multi Core. 2. Performance Optimization Concepts for Many Core. 3. Performance Optimization Strategy for Many Core

1. Many Core vs Multi Core. 2. Performance Optimization Concepts for Many Core. 3. Performance Optimization Strategy for Many Core 1. Many Core vs Multi Core 2. Performance Optimization Concepts for Many Core 3. Performance Optimization Strategy for Many Core 4. Example Case Studies NERSC s Cori will begin to transition the workload

More information

An Exploration into Object Storage for Exascale Supercomputers. Raghu Chandrasekar

An Exploration into Object Storage for Exascale Supercomputers. Raghu Chandrasekar An Exploration into Object Storage for Exascale Supercomputers Raghu Chandrasekar Agenda Introduction Trends and Challenges Design and Implementation of SAROJA Preliminary evaluations Summary and Conclusion

More information

I/O Profiling Towards the Exascale

I/O Profiling Towards the Exascale I/O Profiling Towards the Exascale holger.brunst@tu-dresden.de ZIH, Technische Universität Dresden NEXTGenIO & SAGE: Working towards Exascale I/O Barcelona, NEXTGenIO facts Project Research & Innovation

More information

Analyzing the Performance of IWAVE on a Cluster using HPCToolkit

Analyzing the Performance of IWAVE on a Cluster using HPCToolkit Analyzing the Performance of IWAVE on a Cluster using HPCToolkit John Mellor-Crummey and Laksono Adhianto Department of Computer Science Rice University {johnmc,laksono}@rice.edu TRIP Meeting March 30,

More information

Performance Optimizations via Connect-IB and Dynamically Connected Transport Service for Maximum Performance on LS-DYNA

Performance Optimizations via Connect-IB and Dynamically Connected Transport Service for Maximum Performance on LS-DYNA Performance Optimizations via Connect-IB and Dynamically Connected Transport Service for Maximum Performance on LS-DYNA Pak Lui, Gilad Shainer, Brian Klaff Mellanox Technologies Abstract From concept to

More information

Fast Forward I/O & Storage

Fast Forward I/O & Storage Fast Forward I/O & Storage Eric Barton Lead Architect 1 Department of Energy - Fast Forward Challenge FastForward RFP provided US Government funding for exascale research and development Sponsored by 7

More information

Guidelines for Efficient Parallel I/O on the Cray XT3/XT4

Guidelines for Efficient Parallel I/O on the Cray XT3/XT4 Guidelines for Efficient Parallel I/O on the Cray XT3/XT4 Jeff Larkin, Cray Inc. and Mark Fahey, Oak Ridge National Laboratory ABSTRACT: This paper will present an overview of I/O methods on Cray XT3/XT4

More information

Smart Trading with Cray Systems: Making Smarter Models + Better Decisions in Algorithmic Trading

Smart Trading with Cray Systems: Making Smarter Models + Better Decisions in Algorithmic Trading Smart Trading with Cray Systems: Making Smarter Models + Better Decisions in Algorithmic Trading Smart Trading with Cray Systems Agenda: Cray Overview Market Trends & Challenges Mitigating Risk with Deeper

More information

Amazon Web Services: Performance Analysis of High Performance Computing Applications on the Amazon Web Services Cloud

Amazon Web Services: Performance Analysis of High Performance Computing Applications on the Amazon Web Services Cloud Amazon Web Services: Performance Analysis of High Performance Computing Applications on the Amazon Web Services Cloud Summarized by: Michael Riera 9/17/2011 University of Central Florida CDA5532 Agenda

More information

High Performance Computing. What is it used for and why?

High Performance Computing. What is it used for and why? High Performance Computing What is it used for and why? Overview What is it used for? Drivers for HPC Examples of usage Why do you need to learn the basics? Hardware layout and structure matters Serial

More information

HPCF Cray Phase 2. User Test period. Cristian Simarro User Support. ECMWF April 18, 2016

HPCF Cray Phase 2. User Test period. Cristian Simarro User Support. ECMWF April 18, 2016 HPCF Cray Phase 2 User Test period Cristian Simarro User Support advisory@ecmwf.int ECMWF April 18, 2016 Content Introduction Upgrade timeline Changes Hardware Software Steps for the testing on CCB Possible

More information

EARLY EVALUATION OF THE CRAY XC40 SYSTEM THETA

EARLY EVALUATION OF THE CRAY XC40 SYSTEM THETA EARLY EVALUATION OF THE CRAY XC40 SYSTEM THETA SUDHEER CHUNDURI, SCOTT PARKER, KEVIN HARMS, VITALI MOROZOV, CHRIS KNIGHT, KALYAN KUMARAN Performance Engineering Group Argonne Leadership Computing Facility

More information

8.5 End-to-End Demonstration Exascale Fast Forward Storage Team June 30 th, 2014

8.5 End-to-End Demonstration Exascale Fast Forward Storage Team June 30 th, 2014 8.5 End-to-End Demonstration Exascale Fast Forward Storage Team June 30 th, 2014 NOTICE: THIS MANUSCRIPT HAS BEEN AUTHORED BY INTEL, THE HDF GROUP, AND EMC UNDER INTEL S SUBCONTRACT WITH LAWRENCE LIVERMORE

More information

ScalaIOTrace: Scalable I/O Tracing and Analysis

ScalaIOTrace: Scalable I/O Tracing and Analysis ScalaIOTrace: Scalable I/O Tracing and Analysis Karthik Vijayakumar 1, Frank Mueller 1, Xiaosong Ma 1,2, Philip C. Roth 2 1 Department of Computer Science, NCSU 2 Computer Science and Mathematics Division,

More information

Welcome! Virtual tutorial starts at 15:00 BST

Welcome! Virtual tutorial starts at 15:00 BST Welcome! Virtual tutorial starts at 15:00 BST Parallel IO and the ARCHER Filesystem ARCHER Virtual Tutorial, Wed 8 th Oct 2014 David Henty Reusing this material This work is licensed

More information

ENERGY-EFFICIENT VISUALIZATION PIPELINES A CASE STUDY IN CLIMATE SIMULATION

ENERGY-EFFICIENT VISUALIZATION PIPELINES A CASE STUDY IN CLIMATE SIMULATION ENERGY-EFFICIENT VISUALIZATION PIPELINES A CASE STUDY IN CLIMATE SIMULATION Vignesh Adhinarayanan Ph.D. (CS) Student Synergy Lab, Virginia Tech INTRODUCTION Supercomputers are constrained by power Power

More information

Computing architectures Part 2 TMA4280 Introduction to Supercomputing

Computing architectures Part 2 TMA4280 Introduction to Supercomputing Computing architectures Part 2 TMA4280 Introduction to Supercomputing NTNU, IMF January 16. 2017 1 Supercomputing What is the motivation for Supercomputing? Solve complex problems fast and accurately:

More information

TECHNICAL GUIDELINES FOR APPLICANTS TO PRACE 11th CALL (T ier-0)

TECHNICAL GUIDELINES FOR APPLICANTS TO PRACE 11th CALL (T ier-0) TECHNICAL GUIDELINES FOR APPLICANTS TO PRACE 11th CALL (T ier-0) Contributing sites and the corresponding computer systems for this call are: BSC, Spain IBM System X idataplex CINECA, Italy The site selection

More information

Cray XC Scalability and the Aries Network Tony Ford

Cray XC Scalability and the Aries Network Tony Ford Cray XC Scalability and the Aries Network Tony Ford June 29, 2017 Exascale Scalability Which scalability metrics are important for Exascale? Performance (obviously!) What are the contributing factors?

More information

UCX: An Open Source Framework for HPC Network APIs and Beyond

UCX: An Open Source Framework for HPC Network APIs and Beyond UCX: An Open Source Framework for HPC Network APIs and Beyond Presented by: Pavel Shamis / Pasha ORNL is managed by UT-Battelle for the US Department of Energy Co-Design Collaboration The Next Generation

More information

HPC Storage Use Cases & Future Trends

HPC Storage Use Cases & Future Trends Oct, 2014 HPC Storage Use Cases & Future Trends Massively-Scalable Platforms and Solutions Engineered for the Big Data and Cloud Era Atul Vidwansa Email: atul@ DDN About Us DDN is a Leader in Massively

More information

Lustre architecture for Riccardo Veraldi for the LCLS IT Team

Lustre architecture for Riccardo Veraldi for the LCLS IT Team Lustre architecture for LCLS@SLAC Riccardo Veraldi for the LCLS IT Team 2 LCLS Experimental Floor 3 LCLS Parameters 4 LCLS Physics LCLS has already had a significant impact on many areas of science, including:

More information

Memory Scalability Evaluation of the Next-Generation Intel Bensley Platform with InfiniBand

Memory Scalability Evaluation of the Next-Generation Intel Bensley Platform with InfiniBand Memory Scalability Evaluation of the Next-Generation Intel Bensley Platform with InfiniBand Matthew Koop, Wei Huang, Ahbinav Vishnu, Dhabaleswar K. Panda Network-Based Computing Laboratory Department of

More information

Building supercomputers from embedded technologies

Building supercomputers from embedded technologies http://www.montblanc-project.eu Building supercomputers from embedded technologies Alex Ramirez Barcelona Supercomputing Center Technical Coordinator This project and the research leading to these results

More information

CHARACTERIZING HPC I/O: FROM APPLICATIONS TO SYSTEMS

CHARACTERIZING HPC I/O: FROM APPLICATIONS TO SYSTEMS erhtjhtyhy CHARACTERIZING HPC I/O: FROM APPLICATIONS TO SYSTEMS PHIL CARNS carns@mcs.anl.gov Mathematics and Computer Science Division Argonne National Laboratory April 20, 2017 TU Dresden MOTIVATION FOR

More information

Spark and HPC for High Energy Physics Data Analyses

Spark and HPC for High Energy Physics Data Analyses Spark and HPC for High Energy Physics Data Analyses Marc Paterno, Jim Kowalkowski, and Saba Sehrish 2017 IEEE International Workshop on High-Performance Big Data Computing Introduction High energy physics

More information

Jialin Liu, Evan Racah, Quincey Koziol, Richard Shane Canon, Alex Gittens, Lisa Gerhardt, Suren Byna, Mike F. Ringenburg, Prabhat

Jialin Liu, Evan Racah, Quincey Koziol, Richard Shane Canon, Alex Gittens, Lisa Gerhardt, Suren Byna, Mike F. Ringenburg, Prabhat H5Spark H5Spark: Bridging the I/O Gap between Spark and Scien9fic Data Formats on HPC Systems Jialin Liu, Evan Racah, Quincey Koziol, Richard Shane Canon, Alex Gittens, Lisa Gerhardt, Suren Byna, Mike

More information

Cori (2016) and Beyond Ensuring NERSC Users Stay Productive

Cori (2016) and Beyond Ensuring NERSC Users Stay Productive Cori (2016) and Beyond Ensuring NERSC Users Stay Productive Nicholas J. Wright! Advanced Technologies Group Lead! Heterogeneous Mul-- Core 4 Workshop 17 September 2014-1 - NERSC Systems Today Edison: 2.39PF,

More information

Medical practice: diagnostics, treatment and surgery in supercomputing centers

Medical practice: diagnostics, treatment and surgery in supercomputing centers International Advanced Research Workshop on High Performance Computing from Clouds and Big Data to Exascale and Beyond Medical practice: diagnostics, treatment and surgery in supercomputing centers Prof.

More information

Adaptive Power Profiling for Many-Core HPC Architectures

Adaptive Power Profiling for Many-Core HPC Architectures Adaptive Power Profiling for Many-Core HPC Architectures Jaimie Kelley, Christopher Stewart The Ohio State University Devesh Tiwari, Saurabh Gupta Oak Ridge National Laboratory State-of-the-Art Schedulers

More information

HPC Saudi Jeffrey A. Nichols Associate Laboratory Director Computing and Computational Sciences. Presented to: March 14, 2017

HPC Saudi Jeffrey A. Nichols Associate Laboratory Director Computing and Computational Sciences. Presented to: March 14, 2017 Creating an Exascale Ecosystem for Science Presented to: HPC Saudi 2017 Jeffrey A. Nichols Associate Laboratory Director Computing and Computational Sciences March 14, 2017 ORNL is managed by UT-Battelle

More information

Burst Buffers Simulation in Dragonfly Network

Burst Buffers Simulation in Dragonfly Network Burst Buffers Simulation in Dragonfly Network Jian Peng Department of Computer Science Illinois Institute of Technology Chicago, IL, USA jpeng10@hawk.iit.edu Michael Lang Los Alamos National Laboratory

More information

The Red Storm System: Architecture, System Update and Performance Analysis

The Red Storm System: Architecture, System Update and Performance Analysis The Red Storm System: Architecture, System Update and Performance Analysis Douglas Doerfler, Jim Tomkins Sandia National Laboratories Center for Computation, Computers, Information and Mathematics LACSI

More information

Parallel, In Situ Indexing for Data-intensive Computing. Introduction

Parallel, In Situ Indexing for Data-intensive Computing. Introduction FastQuery - LDAV /24/ Parallel, In Situ Indexing for Data-intensive Computing October 24, 2 Jinoh Kim, Hasan Abbasi, Luis Chacon, Ciprian Docan, Scott Klasky, Qing Liu, Norbert Podhorszki, Arie Shoshani,

More information

MDHIM: A Parallel Key/Value Store Framework for HPC

MDHIM: A Parallel Key/Value Store Framework for HPC MDHIM: A Parallel Key/Value Store Framework for HPC Hugh Greenberg 7/6/2015 LA-UR-15-25039 HPC Clusters Managed by a job scheduler (e.g., Slurm, Moab) Designed for running user jobs Difficult to run system

More information

Structuring PLFS for Extensibility

Structuring PLFS for Extensibility Structuring PLFS for Extensibility Chuck Cranor, Milo Polte, Garth Gibson PARALLEL DATA LABORATORY Carnegie Mellon University What is PLFS? Parallel Log Structured File System Interposed filesystem b/w

More information

High Performance Computing. What is it used for and why?

High Performance Computing. What is it used for and why? High Performance Computing What is it used for and why? Overview What is it used for? Drivers for HPC Examples of usage Why do you need to learn the basics? Hardware layout and structure matters Serial

More information

Aggregation of Real-Time System Monitoring Data for Analyzing Large-Scale Parallel and Distributed Computing Environments

Aggregation of Real-Time System Monitoring Data for Analyzing Large-Scale Parallel and Distributed Computing Environments Aggregation of Real-Time System Monitoring Data for Analyzing Large-Scale Parallel and Distributed Computing Environments Swen Böhm 1,2, Christian Engelmann 2, and Stephen L. Scott 2 1 Department of Computer

More information

Distributed Memory Parallel Markov Random Fields Using Graph Partitioning

Distributed Memory Parallel Markov Random Fields Using Graph Partitioning Distributed Memory Parallel Markov Random Fields Using Graph Partitioning Colleen Heinemann, Talita Perciano, Daniela Ushizima, Wes Bethel December 11, 2017 Overview What is MRF-based image segmentation?

More information

Progress on Efficient Integration of Lustre* and Hadoop/YARN

Progress on Efficient Integration of Lustre* and Hadoop/YARN Progress on Efficient Integration of Lustre* and Hadoop/YARN Weikuan Yu Robin Goldstone Omkar Kulkarni Bryon Neitzel * Some name and brands may be claimed as the property of others. MapReduce l l l l A

More information

DDN and Flash GRIDScaler, Flashscale Infinite Memory Engine

DDN and Flash GRIDScaler, Flashscale Infinite Memory Engine 1! DDN and Flash GRIDScaler, Flashscale Infinite Memory Engine T. Cecchi - September 21 st 2016 HPC Advisory Council 2! DDN END-TO-END DATA LIFECYCLE MANAGEMENT BURST & COMPUTE SSD, DISK & FILE SYSTEM

More information

Lustre Parallel Filesystem Best Practices

Lustre Parallel Filesystem Best Practices Lustre Parallel Filesystem Best Practices George Markomanolis Computational Scientist KAUST Supercomputing Laboratory georgios.markomanolis@kaust.edu.sa 7 November 2017 Outline Introduction to Parallel

More information

HPC Architectures. Types of resource currently in use

HPC Architectures. Types of resource currently in use HPC Architectures Types of resource currently in use Reusing this material This work is licensed under a Creative Commons Attribution- NonCommercial-ShareAlike 4.0 International License. http://creativecommons.org/licenses/by-nc-sa/4.0/deed.en_us

More information

Intel Xeon Phi архитектура, модели программирования, оптимизация.

Intel Xeon Phi архитектура, модели программирования, оптимизация. Нижний Новгород, 2017 Intel Xeon Phi архитектура, модели программирования, оптимизация. Дмитрий Прохоров, Дмитрий Рябцев, Intel Agenda What and Why Intel Xeon Phi Top 500 insights, roadmap, architecture

More information

HPC NETWORKING IN THE REAL WORLD

HPC NETWORKING IN THE REAL WORLD 15 th ANNUAL WORKSHOP 2019 HPC NETWORKING IN THE REAL WORLD Jesse Martinez Los Alamos National Laboratory March 19 th, 2019 [ LOGO HERE ] LA-UR-19-22146 ABSTRACT Introduction to LANL High Speed Networking

More information

Realtime Data Analytics at NERSC

Realtime Data Analytics at NERSC Realtime Data Analytics at NERSC Prabhat XLDB May 24, 2016-1 - Lawrence Berkeley National Laboratory - 2 - National Energy Research Scientific Computing Center 3 NERSC is the Production HPC & Data Facility

More information

Oak Ridge National Laboratory Computing and Computational Sciences

Oak Ridge National Laboratory Computing and Computational Sciences Oak Ridge National Laboratory Computing and Computational Sciences OFA Update by ORNL Presented by: Pavel Shamis (Pasha) OFA Workshop Mar 17, 2015 Acknowledgments Bernholdt David E. Hill Jason J. Leverman

More information

Introduction to Parallel I/O

Introduction to Parallel I/O Introduction to Parallel I/O Bilel Hadri bhadri@utk.edu NICS Scientific Computing Group OLCF/NICS Fall Training October 19 th, 2011 Outline Introduction to I/O Path from Application to File System Common

More information

LS-DYNA Best-Practices: Networking, MPI and Parallel File System Effect on LS-DYNA Performance

LS-DYNA Best-Practices: Networking, MPI and Parallel File System Effect on LS-DYNA Performance 11 th International LS-DYNA Users Conference Computing Technology LS-DYNA Best-Practices: Networking, MPI and Parallel File System Effect on LS-DYNA Performance Gilad Shainer 1, Tong Liu 2, Jeff Layton

More information

GPU-centric communication for improved efficiency

GPU-centric communication for improved efficiency GPU-centric communication for improved efficiency Benjamin Klenk *, Lena Oden, Holger Fröning * * Heidelberg University, Germany Fraunhofer Institute for Industrial Mathematics, Germany GPCDP Workshop

More information

The Cray XC Series Scalability Advantage

The Cray XC Series Scalability Advantage The Cray XC Series Scalability Advantage Duncan Roweth, senior principal engineer Mark Atkins, engineer Kim McMahon, staff engineer Cray Inc. WP-Scalability-Advantage-1016 www.cray.com Table of Contents

More information

Supercomputer Field Data. DRAM, SRAM, and Projections for Future Systems

Supercomputer Field Data. DRAM, SRAM, and Projections for Future Systems Supercomputer Field Data DRAM, SRAM, and Projections for Future Systems Nathan DeBardeleben, Ph.D. (LANL) Ultrascale Systems Research Center (USRC) 6 th Soft Error Rate (SER) Workshop Santa Clara, October

More information

Toward Automated Application Profiling on Cray Systems

Toward Automated Application Profiling on Cray Systems Toward Automated Application Profiling on Cray Systems Charlene Yang, Brian Friesen, Thorsten Kurth, Brandon Cook NERSC at LBNL Samuel Williams CRD at LBNL I have a dream.. M.L.K. Collect performance data:

More information

Molecular Modelling and the Cray XC30 Performance Counters. Michael Bareford, ARCHER CSE Team

Molecular Modelling and the Cray XC30 Performance Counters. Michael Bareford, ARCHER CSE Team Molecular Modelling and the Cray XC30 Performance Counters Michael Bareford, ARCHER CSE Team michael.bareford@epcc.ed.ac.uk Reusing this material This work is licensed under a Creative Commons Attribution-

More information

High-Performance Lustre with Maximum Data Assurance

High-Performance Lustre with Maximum Data Assurance High-Performance Lustre with Maximum Data Assurance Silicon Graphics International Corp. 900 North McCarthy Blvd. Milpitas, CA 95035 Disclaimer and Copyright Notice The information presented here is meant

More information

Revealing Applications Access Pattern in Collective I/O for Cache Management

Revealing Applications Access Pattern in Collective I/O for Cache Management Revealing Applications Access Pattern in for Yin Lu 1, Yong Chen 1, Rob Latham 2 and Yu Zhuang 1 Presented by Philip Roth 3 1 Department of Computer Science Texas Tech University 2 Mathematics and Computer

More information

Data Management. Parallel Filesystems. Dr David Henty HPC Training and Support

Data Management. Parallel Filesystems. Dr David Henty HPC Training and Support Data Management Dr David Henty HPC Training and Support d.henty@epcc.ed.ac.uk +44 131 650 5960 Overview Lecture will cover Why is IO difficult Why is parallel IO even worse Lustre GPFS Performance on ARCHER

More information

FastForward I/O and Storage: ACG 8.6 Demonstration

FastForward I/O and Storage: ACG 8.6 Demonstration FastForward I/O and Storage: ACG 8.6 Demonstration Kyle Ambert, Jaewook Yu, Arnab Paul Intel Labs June, 2014 NOTICE: THIS MANUSCRIPT HAS BEEN AUTHORED BY INTEL UNDER ITS SUBCONTRACT WITH LAWRENCE LIVERMORE

More information

Stream Processing for Remote Collaborative Data Analysis

Stream Processing for Remote Collaborative Data Analysis Stream Processing for Remote Collaborative Data Analysis Scott Klasky 146, C. S. Chang 2, Jong Choi 1, Michael Churchill 2, Tahsin Kurc 51, Manish Parashar 3, Alex Sim 7, Matthew Wolf 14, John Wu 7 1 ORNL,

More information

Mainstream Computer System Components

Mainstream Computer System Components Mainstream Computer System Components Double Date Rate (DDR) SDRAM One channel = 8 bytes = 64 bits wide Current DDR3 SDRAM Example: PC3-12800 (DDR3-1600) 200 MHz (internal base chip clock) 8-way interleaved

More information

The Hopper System: How the Largest* XE6 in the World Went From Requirements to Reality! Katie Antypas, Tina Butler, and Jonathan Carter

The Hopper System: How the Largest* XE6 in the World Went From Requirements to Reality! Katie Antypas, Tina Butler, and Jonathan Carter The Hopper System: How the Largest* XE6 in the World Went From Requirements to Reality! Katie Antypas, Tina Butler, and Jonathan Carter CUG 2011, May 25th, 2011 1 Requirements to Reality Develop RFP Select

More information

Brand-New Vector Supercomputer

Brand-New Vector Supercomputer Brand-New Vector Supercomputer NEC Corporation IT Platform Division Shintaro MOMOSE SC13 1 New Product NEC Released A Brand-New Vector Supercomputer, SX-ACE Just Now. Vector Supercomputer for Memory Bandwidth

More information