Programmed I/O Interrupt-Driven I/O Direct Memory Access (DMA) I/O Processors. 10/12/2017 Input/Output Systems and Peripheral Devices (02-2)

Size: px
Start display at page:

Download "Programmed I/O Interrupt-Driven I/O Direct Memory Access (DMA) I/O Processors. 10/12/2017 Input/Output Systems and Peripheral Devices (02-2)"

Transcription

1 Programmed I/O Interrupt-Driven I/O Direct Memory Access (DMA) I/O Processors 1

2 Principle of Interrupt-Driven I/O Multiple-Interrupt Systems Priority Interrupt Systems Parallel Priority Interrupts Daisy-Chain Priority Interrupts 2

3 Interrupt suspension of program execution by an external signal or by an internal event of the CPU Program suspension occurs at the end of the current instruction s execution The CPU is relieved from the task of testing the status of I/O devices Interrupt sources can be external or internal to the CPU 3

4 Examples of interrupt sources: Peripheral devices data transfers Virtual memory page transfers Hardware circuits for supervising normal operation of the system: detecting memory errors, power-supply failures Internal software events: overflows, divisions by zero, non-existent or privileged instructions 4

5 For interrupting the CPU, a control line is asserted IREQ (Interrupt Request) An interrupt flag is set When recognizing the interrupt request, the CPU: Asserts an interrupt acknowledge signal IACK (Interrupt Acknowledge) Executes an interrupt handler routine, associated with the interrupt source 5

6 For transferring control to the interrupt handler routine: The CPU identifies the interrupt source The CPU determines the address of the interrupt handler corresponding to the interrupt source The CPU saves the program counter (PC) and other status information The CPU loads the address of the interrupt handler into the program counter 6

7 The CPU has to determine the address of the interrupt handler Methods for choosing the address of the interrupt handler: Nonvectored interrupts: the interrupt handler is located at a fixed address in memory Vectored interrupts: the address is supplied by the interrupt source, in the form of an interrupt vector 7

8 Principle of Interrupt-Driven I/O Multiple-Interrupt Systems Priority Interrupt Systems Parallel Priority Interrupts Daisy-Chain Priority Interrupts 8

9 For registering the interrupt requests, an interrupt request register is used For an individual control of interrupt sources, mask flip-flops are used interrupt mask register Main problems: Identifying the source of interrupt Choosing the interrupt to service in case of several simultaneous requests 9

10 Techniques for identifying the source of interrupt: Multiple interrupt lines Software polling Connecting the devices in a daisy chain (hardware polling) Bus arbitration 10

11 Multiple interrupt lines between the CPU and the I/O modules The simplest solution It is impractical to dedicate a large number of bus lines or processor pins to interrupt lines Usually, multiple I/O modules will be attached to each line 11

12 Software polling When the CPU detects an interrupt, it executes an interrupt-service routine The I/O modules are interrogated (polled) to determine which module generated the interrupt For polling, a separate command line may be used (e.g., TEST I/O) Each I/O module may contain an addressable status register 12

13 Hardware polling A daisy-chain of devices is used All I/O modules share a common interrupt request line When detects an interrupt request, the CPU asserts an interrupt acknowledge signal The interrupt acknowledge signal is daisychained through the I/O modules 13

14 The acknowledge signal propagates through the I/O modules until it reaches a requesting module This module responds by placing an interrupt vector on the data bus The CPU uses the vector as a pointer to the service routine for the module Advantage: there is no need to execute a general interrupt service routine 14

15 Bus arbitration Uses vectored interrupts An I/O module must first gain control of the bus before it can assert the interrupt request signal When detects the interrupt, the CPU asserts the interrupt acknowledge signal The requesting module places its vector on the data lines 15

16 Principle of Interrupt-Driven I/O Multiple-Interrupt Systems Priority Interrupt Systems Parallel Priority Interrupts Daisy-Chain Priority Interrupts 16

17 In case of simultaneous requests, a priority system is needed Establishing the priority of simultaneous interrupts can be done in software or in hardware Software method: Identification of the highest-priority source is made by polling There is a common service routine, which polls the interrupt sources 17

18 The order in which the sources are polled determines their priority Disadvantage: if there are many sources, the time required for polling increases Hardware method: An interrupt controller accepts interrupt requests from many sources and determines the highest priority request Each source has its own interrupt vector 18

19 Principle of Interrupt-Driven I/O Multiple-Interrupt Systems Priority Interrupt Systems Parallel Priority Interrupts Daisy-Chain Priority Interrupts 19

20 An interrupt register RINT is used Its bits are set separately by the interrupt requests of each device Priority is established according to the position of bits in the register The interrupt mask register RM allows to control (disable) the status of each interrupt request 20

21 21

22 The priority encoder: Implements the priority function Generates two bits of the interrupt vector The vector is transferred to the CPU via tristate buffers The buffers are enabled with the INTACK signal from the CPU and the IST, IEN flipflops IST interrupt status flip-flop IEN interrupt enable flip-flop 22

23 Principle of Interrupt-Driven I/O Multiple-Interrupt Systems Priority Interrupt Systems Parallel Priority Interrupts Daisy-Chain Priority Interrupts 23

24 All devices that can generate an interrupt request are connected in a daisy-chain The device with the highest priority is placed in the first position The interrupt request line is shared by all devices (wired OR connection) When no interrupt requests are pending, the interrupt request line remains at logical 0 24

25 25

26 The CPU responds to an interrupt request by asserting the INTACK signal The signal is received by device D 0 at its PI (Priority In) input The signal is sent to the PO (Priority Out) output only if device D 0 is not requesting an interrupt If D 0 has a pending interrupt: Blocks the acknowledge signal Places its own interrupt vector 26

27 Programmed I/O Interrupt-Driven I/O Direct Memory Access (DMA) I/O Processors 27

28 Principle of I/O through DMA Execution of DMA Transfers Configurations of Systems Using DMA Transfers 28

29 Disadvantage of programmed I/O and interrupt-driven I/O: the CPU is busy with managing the I/O operations DMA eliminates this disadvantage data transfers are executed directly between the internal memory and the I/O system An additional module is required DMA controller Two methods for performing transfers through DMA 29

30 1. By suspending the CPU operations and placing the bus in the high-impedance state during the transfer Data break or block transfer This method is required, e.g., for magnetic disk drives data transmission cannot be stopped or slowed down The CPU is inactive for relatively long time periods 30

31 2. By using the time intervals when the CPU does not access the memory Cycle stealing Large blocks of data are transferred by a sequence of DMA bus transactions interspersed with CPU bus transactions The method reduces the maximum transfer rate, but it also reduces the interference of the DMA controller in accessing memory by the CPU 31

32 Breakpoints of the CPU for performing transfers through DMA and through interrupts 32

33 Principle of I/O through DMA Execution of DMA Transfers Configurations of Systems Using DMA Transfers 33

34 The CPU sends an initialization sequence to the DMA controller The initialization sequence contains: Direction of transfer (read or write) Address of the I/O device involved Starting address of the memory area used for the transfer Number of bytes or words to be transferred 34

35 The CPU releases the bus and may execute other operations The DMA controller generates the addresses and control signals needed for the transfer After a DMA cycle, other cycles may follow or the control is transferred to the CPU When the transfer is complete, the DMA controller generates an interrupt request to the CPU 35

36 36

37 1. The CPU loads the IOAR and DC registers with initial values I/O instructions 2. When the DMA controller is ready for the transfer, it asserts the DMAREQ signal At the next DMA breakpoint, the CPU releases the bus and asserts DMAACK 3. The DMA controller transfers data directly with the main memory; the IOAR and DC registers are updated 37

38 4. If the DC register 0, but the I/O device is not ready, the DMA controller releases the bus The CPU disables the DMAACK signal and takes control of the bus 5. If the DC register = 0, the DMA controller releases the bus and sends an interrupt request to the CPU The CPU responds by halting the I/O device or by initiating a new transfer 38

39 Principle of I/O through DMA Execution of DMA Transfers Configurations of Systems Using DMA Transfers 39

40 40

41 41

42 Programmed I/O Interrupt-Driven I/O Direct Memory Access (DMA) I/O Processors 42

43 Principle of I/O through I/O Processors Execution of an I/O Program Intel I/O Processors 43

44 Principle of I/O through I/O Processors (1) While DMA releases the CPU from many I/O operations, for high-speed peripherals numerous bus cycles will be needed During these cycles, the CPU enters a wait state The cycle stealing will saturate the bus A certain time is required to service the interrupts The I/O modules have been improved, becoming I/O processors (IOPs) 44

45 Principle of I/O through I/O Processors (2) Some of these I/O modules are also called I/O channels IOPs have a specialized instruction set for I/O operations The CPU sends a command to the IOP to execute an I/O program (channel program) located in memory The CPU can specify a sequence of I/O operations, and is interrupted only at the completion of the entire sequence 45

46 Principle of I/O through I/O Processors (3) 46

47 Principle of I/O through I/O Processors (4) The CPU and IOP can also communicate with each other directly via control lines DMA Request (DMAREQ) DMA Acknowledge (DMAACK) The CPU may attention the IOP by asserting the ATN (Attention) signal execution of an I/O program The IOP may attention the CPU by asserting the IREQ signal execution of an interrupt service routine 47

48 Principle of I/O through I/O Processors Execution of an I/O Program Intel I/O Processors 48

49 49

50 Principle of I/O through I/O Processors Execution of an I/O Program Intel I/O Processors 50

51 Intended for high-performance servers Designed to maximize the bandwidth of servers I/O operations by balancing the data flow Relieving the main processor from the task of executing I/O operations Intercepting the interrupts generated by the peripheral devices 51

52 In RAID (Redundant Array of Independent Disks) subsystems used to control the parallel transactions and compression algorithms A dedicated controller is more expensive Peer-to-peer technologies Creating an interface between the disk drives and the local network the data flow is managed by the I/O processor 52

53 IOP331, IOP333 Intended for communication, storage, and networking applications that require I/Ointensive operations Contain interfaces for the PCI-X bus (IOP331) or PCI Express bus with 8 lanes (IOP333) Hardware acceleration of RAID 5 applications The parity information is distributed on several disk drives 53

54 IOP341, IOP342 Contain interfaces for the PCI-X and PCI Express buses (8 lanes) IOP348 Designed for storage subsystems SAS/SATA II controller for 8 ports SAS: Serial Attached SCSI SATA: Serial ATA Hardware acceleration of RAID 6 applications 54

55 Interrupts relieve the CPU from testing the status of I/O devices Two methods for choosing the address of the interrupt handler: nonvectored or vectored interrupts Several techniques are used for identifying the source of interrupt in a multiple-interrupt system The interrupt lines can be connected in parallel or in a daisy-chain 55

56 The DMA technique allows performing I/O transfers without CPU intervention Two methods for performing DMA transfers: data break (block transfer) or cycle stealing I/O processors (IOPs) have specialized instructions for I/O operations An IOP may execute a sequence of I/O operations without interrupting the CPU The CPU and an IOP communicate via a memory area and via control signals 56

57 Operations executed by the CPU when detecting an interrupt request Methods for choosing the address of the interrupt handler Nonvectored interrupts Vectored interrupts Techniques for identifying the source of interrupt in a multiple-interrupt system Software polling technique Hardware polling technique 57

58 Software method for establishing the priority of simultaneous interrupts Hardware method for establishing the priority of simultaneous interrupts Parallel connection of interrupt lines Daisy-chain connection of interrupt lines Principle of I/O through DMA Methods for performing DMA transfers Data-break DMA transfer method 58

59 Cycle-stealing DMA transfer method Execution of DMA transfers Diagram of circuitry required for DMA transfers and the execution steps of a transfer Principle of I/O through IOP Structure of a computer with IOP CPU-IOP communication Operations for execution of an I/O program 59

60 1. What are the methods for choosing the address of the interrupt handler? 2. How does the technique of hardware polling work? 3. What are the methods for performing DMA transfers? 4. What is the advantage of I/O through I/O processors compared to DMA? 60

Input / Output. School of Computer Science G51CSA

Input / Output. School of Computer Science G51CSA Input / Output 1 Overview J I/O module is the third key element of a computer system. (others are CPU and Memory) J All computer systems must have efficient means to receive input and deliver output J

More information

INPUT-OUTPUT ORGANIZATION

INPUT-OUTPUT ORGANIZATION INPUT-OUTPUT ORGANIZATION Peripheral Devices: The Input / output organization of computer depends upon the size of computer and the peripherals connected to it. The I/O Subsystem of the computer, provides

More information

Chapter 7 : Input-Output Organization

Chapter 7 : Input-Output Organization Chapter 7 Input-Output organization 7.1 Peripheral devices In addition to the processor and a set of memory modules, the third key element of a computer system is a set of input-output subsystem referred

More information

INPUT/OUTPUT ORGANIZATION

INPUT/OUTPUT ORGANIZATION INPUT/OUTPUT ORGANIZATION Accessing I/O Devices I/O interface Input/output mechanism Memory-mapped I/O Programmed I/O Interrupts Direct Memory Access Buses Synchronous Bus Asynchronous Bus I/O in CO and

More information

Accessing I/O Devices Interface to CPU and Memory Interface to one or more peripherals Generic Model of IO Module Interface for an IO Device: CPU checks I/O module device status I/O module returns status

More information

Computer Organization ECE514. Chapter 5 Input/Output (9hrs)

Computer Organization ECE514. Chapter 5 Input/Output (9hrs) Computer Organization ECE514 Chapter 5 Input/Output (9hrs) Learning Outcomes Course Outcome (CO) - CO2 Describe the architecture and organization of computer systems Program Outcome (PO) PO1 Apply knowledge

More information

INPUT/OUTPUT ORGANIZATION

INPUT/OUTPUT ORGANIZATION INPUT/OUTPUT ORGANIZATION Accessing I/O Devices I/O interface Input/output mechanism Memory-mapped I/O Programmed I/O Interrupts Direct Memory Access Buses Synchronous Bus Asynchronous Bus I/O in CO and

More information

INPUT-OUTPUT ORGANIZATION

INPUT-OUTPUT ORGANIZATION 1 INPUT-OUTPUT ORGANIZATION Peripheral Devices Input-Output Interface Asynchronous Data Transfer Modes of Transfer Priority Interrupt Direct Memory Access Input-Output Processor Serial Communication 2

More information

HANDLING MULTIPLE DEVICES

HANDLING MULTIPLE DEVICES HANDLING MULTIPLE DEVICES Let us now consider the situation where a number of devices capable of initiating interrupts are connected to the processor. Because these devices are operationally independent,

More information

1. Define Peripherals. Explain I/O Bus and Interface Modules. Peripherals: Input-output device attached to the computer are also called peripherals.

1. Define Peripherals. Explain I/O Bus and Interface Modules. Peripherals: Input-output device attached to the computer are also called peripherals. 1. Define Peripherals. Explain I/O Bus and Interface Modules. Peripherals: Input-output device attached to the computer are also called peripherals. A typical communication link between the processor and

More information

Generic Model of I/O Module Interface to CPU and Memory Interface to one or more peripherals

Generic Model of I/O Module Interface to CPU and Memory Interface to one or more peripherals William Stallings Computer Organization and Architecture 7 th Edition Chapter 7 Input/Output Input/Output Problems Wide variety of peripherals Delivering different amounts of data At different speeds In

More information

Input/Output Problems. External Devices. Input/Output Module. I/O Steps. I/O Module Function Computer Architecture

Input/Output Problems. External Devices. Input/Output Module. I/O Steps. I/O Module Function Computer Architecture 168 420 Computer Architecture Chapter 6 Input/Output Input/Output Problems Wide variety of peripherals Delivering different amounts of data At different speeds In different formats All slower than CPU

More information

The control of I/O devices is a major concern for OS designers

The control of I/O devices is a major concern for OS designers Lecture Overview I/O devices I/O hardware Interrupts Direct memory access Device dimensions Device drivers Kernel I/O subsystem Operating Systems - June 26, 2001 I/O Device Issues The control of I/O devices

More information

6 Direct Memory Access (DMA)

6 Direct Memory Access (DMA) 1 License: http://creativecommons.org/licenses/by-nc-nd/3.0/ 6 Direct Access (DMA) DMA technique is used to transfer large volumes of data between I/O interfaces and the memory. Example: Disk drive controllers,

More information

Blog - https://anilkumarprathipati.wordpress.com/

Blog - https://anilkumarprathipati.wordpress.com/ Input-Output organization 1. Peripheral Devices The input-output subsystem of a computer, referred to as I/O, provides an efficient mode of communication between the central system and the outside environment.

More information

Modes of Transfer. Interface. Data Register. Status Register. F= Flag Bit. Fig. (1) Data transfer from I/O to CPU

Modes of Transfer. Interface. Data Register. Status Register. F= Flag Bit. Fig. (1) Data transfer from I/O to CPU Modes of Transfer Data transfer to and from peripherals may be handled in one of three possible modes: A. Programmed I/O B. Interrupt-initiated I/O C. Direct memory access (DMA) A) Programmed I/O Programmed

More information

Eastern Mediterranean University School of Computing and Technology INPUT / OUTPUT

Eastern Mediterranean University School of Computing and Technology INPUT / OUTPUT Eastern Mediterranean University School of Computing and Technology ITEC255 Computer Organization & Architecture INPUT / OUTPUT Introduction Computer system s I/O architecture is its interface to outside

More information

Unit 3 and Unit 4: Chapter 4 INPUT/OUTPUT ORGANIZATION

Unit 3 and Unit 4: Chapter 4 INPUT/OUTPUT ORGANIZATION Unit 3 and Unit 4: Chapter 4 INPUT/OUTPUT ORGANIZATION Introduction A general purpose computer should have the ability to exchange information with a wide range of devices in varying environments. Computers

More information

I/O Organization John D. Carpinelli, All Rights Reserved 1

I/O Organization John D. Carpinelli, All Rights Reserved 1 I/O Organization 1997 John D. Carpinelli, All Rights Reserved 1 Outline I/O interfacing Asynchronous data transfer Interrupt driven I/O DMA transfers I/O processors Serial communications 1997 John D. Carpinelli,

More information

Bus System. Bus Lines. Bus Systems. Chapter 8. Common connection between the CPU, the memory, and the peripheral devices.

Bus System. Bus Lines. Bus Systems. Chapter 8. Common connection between the CPU, the memory, and the peripheral devices. Bus System Chapter 8 CSc 314 T W Bennet Mississippi College 1 CSc 314 T W Bennet Mississippi College 3 Bus Systems Common connection between the CPU, the memory, and the peripheral devices. One device

More information

INPUT-OUTPUT ORGANIZATION

INPUT-OUTPUT ORGANIZATION INPUT-OUTPUT ORGANIZATION Peripheral Devices Input-Output Interface Asynchronous Data Transfer Modes of Transfer Priority Interrupt Direct Memory Access Input-Output Processor Serial Communication PERIPHERAL

More information

Organisasi Sistem Komputer

Organisasi Sistem Komputer LOGO Organisasi Sistem Komputer OSK 5 Input Output 1 1 PT. Elektronika FT UNY Input/Output Problems Wide variety of peripherals Delivering different amounts of data At different speeds In different formats

More information

Architecture of Computers and Parallel Systems Part 2: Communication with Devices

Architecture of Computers and Parallel Systems Part 2: Communication with Devices Architecture of Computers and Parallel Systems Part 2: Communication with Devices Ing. Petr Olivka petr.olivka@vsb.cz Department of Computer Science FEI VSB-TUO Architecture of Computers and Parallel Systems

More information

Input/Output Systems

Input/Output Systems Input/Output Systems CSCI 315 Operating Systems Design Department of Computer Science Notice: The slides for this lecture have been largely based on those from an earlier edition of the course text Operating

More information

CMSC 313 COMPUTER ORGANIZATION & ASSEMBLY LANGUAGE PROGRAMMING LECTURE 09, SPRING 2013

CMSC 313 COMPUTER ORGANIZATION & ASSEMBLY LANGUAGE PROGRAMMING LECTURE 09, SPRING 2013 CMSC 313 COMPUTER ORGANIZATION & ASSEMBLY LANGUAGE PROGRAMMING LECTURE 09, SPRING 2013 TOPICS TODAY I/O Architectures Interrupts Exceptions FETCH EXECUTE CYCLE 1.7 The von Neumann Model This is a general

More information

Unit 1. Chapter 3 Top Level View of Computer Function and Interconnection

Unit 1. Chapter 3 Top Level View of Computer Function and Interconnection Unit 1 Chapter 3 Top Level View of Computer Function and Interconnection Program Concept Hardwired systems are inflexible General purpose hardware can do different tasks, given correct control signals

More information

CS152 Computer Architecture and Engineering Lecture 20: Busses and OS s Responsibilities. Recap: IO Benchmarks and I/O Devices

CS152 Computer Architecture and Engineering Lecture 20: Busses and OS s Responsibilities. Recap: IO Benchmarks and I/O Devices CS152 Computer Architecture and Engineering Lecture 20: ses and OS s Responsibilities April 7, 1995 Dave Patterson (patterson@cs) and Shing Kong (shing.kong@eng.sun.com) Slides available on http://http.cs.berkeley.edu/~patterson

More information

INPUT/OUTPUT ORGANIZATION

INPUT/OUTPUT ORGANIZATION INPUT/OUTPUT ORGANIZATION Accessing I/O Devices I/O interface Input/output mechanism Memory-mapped I/O Programmed I/O Interrupts Direct Memory Access Buses Synchronous Bus Asynchronous Bus I/O in CO and

More information

Chapter 5 Input/Output Organization. Jin-Fu Li Department of Electrical Engineering National Central University Jungli, Taiwan

Chapter 5 Input/Output Organization. Jin-Fu Li Department of Electrical Engineering National Central University Jungli, Taiwan Chapter 5 Input/Output Organization Jin-Fu Li Department of Electrical Engineering National Central University Jungli, Taiwan Outline Accessing I/O Devices Interrupts Direct Memory Access Buses Interface

More information

Unit 5. Memory and I/O System

Unit 5. Memory and I/O System Unit 5 Memory and I/O System 1 Input/Output Organization 2 Overview Computer has ability to exchange data with other devices. Human-computer communication Computer-computer communication Computer-device

More information

Operating System: Chap13 I/O Systems. National Tsing-Hua University 2016, Fall Semester

Operating System: Chap13 I/O Systems. National Tsing-Hua University 2016, Fall Semester Operating System: Chap13 I/O Systems National Tsing-Hua University 2016, Fall Semester Outline Overview I/O Hardware I/O Methods Kernel I/O Subsystem Performance Application Interface Operating System

More information

操作系统概念 13. I/O Systems

操作系统概念 13. I/O Systems OPERATING SYSTEM CONCEPTS 操作系统概念 13. I/O Systems 东南大学计算机学院 Baili Zhang/ Southeast 1 Objectives 13. I/O Systems Explore the structure of an operating system s I/O subsystem Discuss the principles of I/O

More information

Computer System Overview. Chapter 1

Computer System Overview. Chapter 1 Computer System Overview Chapter 1 Operating System Exploits the hardware resources of one or more processors Provides a set of services to system users Manages secondary memory and I/O devices Basic Elements

More information

Computer Architecture CS 355 Busses & I/O System

Computer Architecture CS 355 Busses & I/O System Computer Architecture CS 355 Busses & I/O System Text: Computer Organization & Design, Patterson & Hennessy Chapter 6.5-6.6 Objectives: During this class the student shall learn to: Describe the two basic

More information

Interfacing. Introduction. Introduction Addressing Interrupt DMA Arbitration Advanced communication architectures. Vahid, Givargis

Interfacing. Introduction. Introduction Addressing Interrupt DMA Arbitration Advanced communication architectures. Vahid, Givargis Interfacing Introduction Addressing Interrupt DMA Arbitration Advanced communication architectures Vahid, Givargis Introduction Embedded system functionality aspects Processing Transformation of data Implemented

More information

Unit DMA CONTROLLER 8257

Unit DMA CONTROLLER 8257 DMA CONTROLLER 8257 In microprocessor based system, data transfer can be controlled by either software or hardware. To transfer data microprocessor has to do the following tasks: Fetch the instruction

More information

Last class: Today: Course administration OS definition, some history. Background on Computer Architecture

Last class: Today: Course administration OS definition, some history. Background on Computer Architecture 1 Last class: Course administration OS definition, some history Today: Background on Computer Architecture 2 Canonical System Hardware CPU: Processor to perform computations Memory: Programs and data I/O

More information

Computer System Overview

Computer System Overview Computer System Overview Chapter 1 Muhammad Adri, MT 1 Operating System Exploits the hardware resources of one or more processors Provides a set of services to system users Manages secondary memory and

More information

Computer Organization (Input-output)

Computer Organization (Input-output) Computer Organization (Input-output) KR Chowdhary Professor & Head Email: kr.chowdhary@gmail.com webpage: krchowdhary.com Department of Computer Science and Engineering MBM Engineering College, Jodhpur

More information

4 Multiplexer. Y Fig Keyboard Scan Matrix

4 Multiplexer. Y Fig Keyboard Scan Matrix - 4 Multiplexer Microcontroller 3 Decoder X Y Fig. - Keyboard Scan Matrix 2 Prentice Hall, Inc. -2 Track Sector Head positioning Fig. -2 Hard Disk Format 2 Prentice Hall, Inc. -3 RGB electron guns R G

More information

William Stallings Computer Organization and Architecture 10 th Edition Pearson Education, Inc., Hoboken, NJ. All rights reserved.

William Stallings Computer Organization and Architecture 10 th Edition Pearson Education, Inc., Hoboken, NJ. All rights reserved. + William Stallings Computer Organization and Architecture 10 th Edition 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved. 2 + Chapter 3 A Top-Level View of Computer Function and Interconnection

More information

Some material adapted from Mohamed Younis, UMBC CMSC 611 Spr 2003 course slides Some material adapted from Hennessy & Patterson / 2003 Elsevier

Some material adapted from Mohamed Younis, UMBC CMSC 611 Spr 2003 course slides Some material adapted from Hennessy & Patterson / 2003 Elsevier Some material adapted from Mohamed Younis, UMBC CMSC 6 Spr 23 course slides Some material adapted from Hennessy & Patterson / 23 Elsevier Science Characteristics IBM 39 IBM UltraStar Integral 82 Disk diameter

More information

Interconnecting Components

Interconnecting Components Interconnecting Components Need interconnections between CPU, memory, controllers Bus: shared communication channel Parallel set of wires for data and synchronization of data transfer Can become a bottleneck

More information

Interrupt/Timer/DMA 1

Interrupt/Timer/DMA 1 Interrupt/Timer/DMA 1 Exception An exception is any condition that needs to halt normal execution of the instructions Examples - Reset - HWI - SWI 2 Interrupt Hardware interrupt Software interrupt Trap

More information

Che-Wei Chang Department of Computer Science and Information Engineering, Chang Gung University

Che-Wei Chang Department of Computer Science and Information Engineering, Chang Gung University Che-Wei Chang chewei@mail.cgu.edu.tw Department of Computer Science and Information Engineering, Chang Gung University l Chapter 10: File System l Chapter 11: Implementing File-Systems l Chapter 12: Mass-Storage

More information

Device-Functionality Progression

Device-Functionality Progression Chapter 12: I/O Systems I/O Hardware I/O Hardware Application I/O Interface Kernel I/O Subsystem Transforming I/O Requests to Hardware Operations Incredible variety of I/O devices Common concepts Port

More information

Chapter 12: I/O Systems. I/O Hardware

Chapter 12: I/O Systems. I/O Hardware Chapter 12: I/O Systems I/O Hardware Application I/O Interface Kernel I/O Subsystem Transforming I/O Requests to Hardware Operations I/O Hardware Incredible variety of I/O devices Common concepts Port

More information

Module 3. Embedded Systems I/O. Version 2 EE IIT, Kharagpur 1

Module 3. Embedded Systems I/O. Version 2 EE IIT, Kharagpur 1 Module 3 Embedded Systems I/O Version 2 EE IIT, Kharagpur 1 Lesson 15 Interrupts Version 2 EE IIT, Kharagpur 2 Instructional Objectives After going through this lesson the student would learn Interrupts

More information

Systems Architecture II

Systems Architecture II Systems Architecture II Topics Interfacing I/O Devices to Memory, Processor, and Operating System * Memory-mapped IO and Interrupts in SPIM** *This lecture was derived from material in the text (Chapter

More information

Chapter 3. Top Level View of Computer Function and Interconnection. Yonsei University

Chapter 3. Top Level View of Computer Function and Interconnection. Yonsei University Chapter 3 Top Level View of Computer Function and Interconnection Contents Computer Components Computer Function Interconnection Structures Bus Interconnection PCI 3-2 Program Concept Computer components

More information

CS 134. Operating Systems. April 8, 2013 Lecture 20. Input/Output. Instructor: Neil Rhodes. Monday, April 7, 14

CS 134. Operating Systems. April 8, 2013 Lecture 20. Input/Output. Instructor: Neil Rhodes. Monday, April 7, 14 CS 134 Operating Systems April 8, 2013 Lecture 20 Input/Output Instructor: Neil Rhodes Hardware How hardware works Operating system layer What the kernel does API What the programmer does Overview 2 kinds

More information

Chapter 13: I/O Systems

Chapter 13: I/O Systems Chapter 13: I/O Systems I/O Hardware Application I/O Interface Kernel I/O Subsystem Transforming I/O Requests to Hardware Operations Streams Performance Objectives Explore the structure of an operating

More information

Chapter 6. I/O issues

Chapter 6. I/O issues Computer Architectures Chapter 6 I/O issues Tien-Fu Chen National Chung Cheng Univ Chap6 - Input / Output Issues I/O organization issue- CPU-memory bus, I/O bus width A/D multiplex Split transaction Synchronous

More information

I/O Management and Disk Scheduling. Chapter 11

I/O Management and Disk Scheduling. Chapter 11 I/O Management and Disk Scheduling Chapter 11 Categories of I/O Devices Human readable used to communicate with the user video display terminals keyboard mouse printer Categories of I/O Devices Machine

More information

by I.-C. Lin, Dept. CS, NCTU. Textbook: Operating System Concepts 8ed CHAPTER 13: I/O SYSTEMS

by I.-C. Lin, Dept. CS, NCTU. Textbook: Operating System Concepts 8ed CHAPTER 13: I/O SYSTEMS by I.-C. Lin, Dept. CS, NCTU. Textbook: Operating System Concepts 8ed CHAPTER 13: I/O SYSTEMS Chapter 13: I/O Systems I/O Hardware Application I/O Interface Kernel I/O Subsystem Transforming I/O Requests

More information

Computer System Overview OPERATING SYSTEM TOP-LEVEL COMPONENTS. Simplified view: Operating Systems. Slide 1. Slide /S2. Slide 2.

Computer System Overview OPERATING SYSTEM TOP-LEVEL COMPONENTS. Simplified view: Operating Systems. Slide 1. Slide /S2. Slide 2. BASIC ELEMENTS Simplified view: Processor Slide 1 Computer System Overview Operating Systems Slide 3 Main Memory referred to as real memory or primary memory volatile modules 2004/S2 secondary memory devices

More information

Computer Systems Overview

Computer Systems Overview Computer Systems Overview Maurizio Pizzonia slides adattate da W. Stalling Operating Systems: Internals and Design Principles http://williamstallings.com/os/os5e.html 1 Basic Elements Processor Main Memory

More information

EEL 4744C: Microprocessor Applications. Lecture 7. Part 1. Interrupt. Dr. Tao Li 1

EEL 4744C: Microprocessor Applications. Lecture 7. Part 1. Interrupt. Dr. Tao Li 1 EEL 4744C: Microprocessor Applications Lecture 7 Part 1 Interrupt Dr. Tao Li 1 M&M: Chapter 8 Or Reading Assignment Software and Hardware Engineering (new version): Chapter 12 Dr. Tao Li 2 Interrupt An

More information

Reading Assignment. Interrupt. Interrupt. Interrupt. EEL 4744C: Microprocessor Applications. Lecture 7. Part 1

Reading Assignment. Interrupt. Interrupt. Interrupt. EEL 4744C: Microprocessor Applications. Lecture 7. Part 1 Reading Assignment EEL 4744C: Microprocessor Applications Lecture 7 M&M: Chapter 8 Or Software and Hardware Engineering (new version): Chapter 12 Part 1 Interrupt Dr. Tao Li 1 Dr. Tao Li 2 Interrupt An

More information

Computer System Overview

Computer System Overview Computer System Overview Operating Systems 2005/S2 1 What are the objectives of an Operating System? 2 What are the objectives of an Operating System? convenience & abstraction the OS should facilitate

More information

1. Internal Architecture of 8085 Microprocessor

1. Internal Architecture of 8085 Microprocessor 1. Internal Architecture of 8085 Microprocessor Control Unit Generates signals within up to carry out the instruction, which has been decoded. In reality causes certain connections between blocks of the

More information

Digital Input and Output

Digital Input and Output Digital Input and Output Topics: Parallel Digital I/O Simple Input (example) Parallel I/O I/O Scheduling Techniques Programmed Interrupt Driven Direct Memory Access Serial I/O Asynchronous Synchronous

More information

Storage. Hwansoo Han

Storage. Hwansoo Han Storage Hwansoo Han I/O Devices I/O devices can be characterized by Behavior: input, out, storage Partner: human or machine Data rate: bytes/sec, transfers/sec I/O bus connections 2 I/O System Characteristics

More information

Chapter 13: I/O Systems. Operating System Concepts 9 th Edition

Chapter 13: I/O Systems. Operating System Concepts 9 th Edition Chapter 13: I/O Systems Silberschatz, Galvin and Gagne 2013 Chapter 13: I/O Systems Overview I/O Hardware Application I/O Interface Kernel I/O Subsystem Transforming I/O Requests to Hardware Operations

More information

SRI VIDYA COLLEGE OF ENGINEERING AND TECHNOLOGY,VIRUDHUNAGAR

SRI VIDYA COLLEGE OF ENGINEERING AND TECHNOLOGY,VIRUDHUNAGAR Year/sem: 02/04 Academic Year: 2014-2015 (even) UNIT II THE 8086 SYSTEM BUS STRUCTURE PART A 1. What are the three groups of signals in 8086? The 8086 signals are categorized in three groups. They are:

More information

I/O Systems. Amir H. Payberah. Amirkabir University of Technology (Tehran Polytechnic)

I/O Systems. Amir H. Payberah. Amirkabir University of Technology (Tehran Polytechnic) I/O Systems Amir H. Payberah amir@sics.se Amirkabir University of Technology (Tehran Polytechnic) Amir H. Payberah (Tehran Polytechnic) I/O Systems 1393/9/15 1 / 57 Motivation Amir H. Payberah (Tehran

More information

Computer Architecture 5.1. Computer Architecture. 5.2 Vector Address: Interrupt sources (IS) such as I/O, Timer 5.3. Computer Architecture

Computer Architecture 5.1. Computer Architecture. 5.2 Vector Address: Interrupt sources (IS) such as I/O, Timer 5.3. Computer Architecture License: http://creativecommons.org/licenses/by-nc-nd/3./ Hardware interrupt: 5. If in an eternal device (for eample I/O interface) a predefined event occurs this device issues an interrupt request to

More information

Chapter 13: I/O Systems

Chapter 13: I/O Systems Chapter 13: I/O Systems Chapter 13: I/O Systems I/O Hardware Application I/O Interface Kernel I/O Subsystem Transforming I/O Requests to Hardware Operations Streams Performance 13.2 Silberschatz, Galvin

More information

Chapter 13: I/O Systems. Chapter 13: I/O Systems. Objectives. I/O Hardware. A Typical PC Bus Structure. Device I/O Port Locations on PCs (partial)

Chapter 13: I/O Systems. Chapter 13: I/O Systems. Objectives. I/O Hardware. A Typical PC Bus Structure. Device I/O Port Locations on PCs (partial) Chapter 13: I/O Systems Chapter 13: I/O Systems I/O Hardware Application I/O Interface Kernel I/O Subsystem Transforming I/O Requests to Hardware Operations Streams Performance 13.2 Silberschatz, Galvin

More information

3. Controtlto specify the mode of transfer such as read or write 4. A control to start the DMA transfer

3. Controtlto specify the mode of transfer such as read or write 4. A control to start the DMA transfer DMA Controller The DMA controller needs the usual circuits of an interface to communicate the CPU and 10 device. In addition, it needs an address register, a word count register, and a set of address lines.

More information

I/O CANNOT BE IGNORED

I/O CANNOT BE IGNORED LECTURE 13 I/O I/O CANNOT BE IGNORED Assume a program requires 100 seconds, 90 seconds for main memory, 10 seconds for I/O. Assume main memory access improves by ~10% per year and I/O remains the same.

More information

8. Interfacing Processors and Peripherals

8. Interfacing Processors and Peripherals 8. Interfacing Processors and Peripherals Revisions Date March 23, 2003 March 31, 2003 Changes More details on synchronous buses have been added to section 8.4 Details and more diagrams in the section

More information

CSC Operating Systems Spring Lecture - XIX Storage and I/O - II. Tevfik Koşar. Louisiana State University.

CSC Operating Systems Spring Lecture - XIX Storage and I/O - II. Tevfik Koşar. Louisiana State University. CSC 4103 - Operating Systems Spring 2007 Lecture - XIX Storage and I/O - II Tevfik Koşar Louisiana State University April 10 th, 2007 1 RAID Structure As disks get cheaper, adding multiple disks to the

More information

RAID Structure. RAID Levels. RAID (cont) RAID (0 + 1) and (1 + 0) Tevfik Koşar. Hierarchical Storage Management (HSM)

RAID Structure. RAID Levels. RAID (cont) RAID (0 + 1) and (1 + 0) Tevfik Koşar. Hierarchical Storage Management (HSM) CSC 4103 - Operating Systems Spring 2007 Lecture - XIX Storage and I/O - II Tevfik Koşar RAID Structure As disks get cheaper, adding multiple disks to the same system provides increased storage space,

More information

Chapter 3 - Top Level View of Computer Function

Chapter 3 - Top Level View of Computer Function Chapter 3 - Top Level View of Computer Function Luis Tarrataca luis.tarrataca@gmail.com CEFET-RJ L. Tarrataca Chapter 3 - Top Level View 1 / 127 Table of Contents I 1 Introduction 2 Computer Components

More information

Computer Organization and Structure. Bing-Yu Chen National Taiwan University

Computer Organization and Structure. Bing-Yu Chen National Taiwan University Computer Organization and Structure Bing-Yu Chen National Taiwan University Storage and Other I/O Topics I/O Performance Measures Types and Characteristics of I/O Devices Buses Interfacing I/O Devices

More information

UC Santa Barbara. Operating Systems. Christopher Kruegel Department of Computer Science UC Santa Barbara

UC Santa Barbara. Operating Systems. Christopher Kruegel Department of Computer Science UC Santa Barbara Operating Systems Christopher Kruegel Department of Computer Science http://www.cs.ucsb.edu/~chris/ Input and Output Input/Output Devices The OS is responsible for managing I/O devices Issue requests Manage

More information

B.H.GARDI COLLEGE OF MASTER OF COMPUTER APPLICATION

B.H.GARDI COLLEGE OF MASTER OF COMPUTER APPLICATION Introduction :- An exploits the hardware resources of one or more processors to provide a set of services to system users. The OS also manages secondary memory and I/O devices on behalf of its users. So

More information

INTERFACING THE ISCC TO THE AND 8086

INTERFACING THE ISCC TO THE AND 8086 APPLICATION NOTE INTERFACING THE ISCC TO THE 68 AND 886 INTRODUCTION The ISCC uses its flexible bus to interface with a variety of microprocessors and microcontrollers; included are the 68 and 886. The

More information

QUIZ Ch.6. The EAT for a two-level memory is given by:

QUIZ Ch.6. The EAT for a two-level memory is given by: QUIZ Ch.6 The EAT for a two-level memory is given by: EAT = H Access C + (1-H) Access MM. Derive a similar formula for three-level memory: L1, L2 and RAM. Hint: Instead of H, we now have H 1 and H 2. Source:

More information

CS330: Operating System and Lab. (Spring 2006) I/O Systems

CS330: Operating System and Lab. (Spring 2006) I/O Systems CS330: Operating System and Lab. (Spring 2006) I/O Systems Today s Topics Block device vs. Character device Direct I/O vs. Memory-mapped I/O Polling vs. Interrupts Programmed I/O vs. DMA Blocking vs. Non-blocking

More information

Chapter 13: I/O Systems

Chapter 13: I/O Systems Chapter 13: I/O Systems DM510-14 Chapter 13: I/O Systems I/O Hardware Application I/O Interface Kernel I/O Subsystem Transforming I/O Requests to Hardware Operations STREAMS Performance 13.2 Objectives

More information

2. List the five interrupt pins available in INTR, TRAP, RST 7.5, RST 6.5, RST 5.5.

2. List the five interrupt pins available in INTR, TRAP, RST 7.5, RST 6.5, RST 5.5. DHANALAKSHMI COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING EE6502- MICROPROCESSORS AND MICROCONTROLLERS UNIT I: 8085 PROCESSOR PART A 1. What is the need for ALE signal in

More information

Module 12: I/O Systems

Module 12: I/O Systems Module 12: I/O Systems I/O hardwared Application I/O Interface Kernel I/O Subsystem Transforming I/O Requests to Hardware Operations Performance 12.1 I/O Hardware Incredible variety of I/O devices Common

More information

Chapter 13: I/O Systems

Chapter 13: I/O Systems Chapter 13: I/O Systems I/O Hardware Application I/O Interface Kernel I/O Subsystem Transforming I/O Requests to Hardware Operations Streams Performance I/O Hardware Incredible variety of I/O devices Common

More information

UNIT V INPUT OUTPUT ORGANIZATION

UNIT V INPUT OUTPUT ORGANIZATION UNIT V Unit objective INPUT OUTPUT ORGANIZATION In this unit you will be introduced to : How program-controlled I/O is performed using polling, The idea of interrupts and the hardware and software needed

More information

Chapter 8. Input Output Organization

Chapter 8. Input Output Organization Chapter 8 Input Output Organization 8.1 Introduction: In the design of a simple computer, we assumed one input device and one output device transferring data in and out of the accumulator using a programmed

More information

Lecture 13 Input/Output (I/O) Systems (chapter 13)

Lecture 13 Input/Output (I/O) Systems (chapter 13) Bilkent University Department of Computer Engineering CS342 Operating Systems Lecture 13 Input/Output (I/O) Systems (chapter 13) Dr. İbrahim Körpeoğlu http://www.cs.bilkent.edu.tr/~korpe 1 References The

More information

PC Interrupt Structure and 8259 DMA Controllers

PC Interrupt Structure and 8259 DMA Controllers ELEC 379 : DESIGN OF DIGITAL AND MICROCOMPUTER SYSTEMS 1998/99 WINTER SESSION, TERM 2 PC Interrupt Structure and 8259 DMA Controllers This lecture covers the use of interrupts and the vectored interrupt

More information

Advanced Parallel Architecture Lesson 4 bis. Annalisa Massini /2015

Advanced Parallel Architecture Lesson 4 bis. Annalisa Massini /2015 Advanced Parallel Architecture Lesson 4 bis Annalisa Massini - 2014/2015 Internal Memory RAM Many memory types are random access individual words of memory are directly accessed through wired-in addressing

More information

Digital Design Laboratory Lecture 6 I/O

Digital Design Laboratory Lecture 6 I/O ECE 280 / CSE 280 Digital Design Laboratory Lecture 6 I/O Input/Output Module Interface to CPU and Memory Interface to one or more peripherals Generic Model of I/O Module External Devices Human readable

More information

Introduction I/O 1. I/O devices can be characterized by Behavior: input, output, storage Partner: human or machine Data rate: bytes/sec, transfers/sec

Introduction I/O 1. I/O devices can be characterized by Behavior: input, output, storage Partner: human or machine Data rate: bytes/sec, transfers/sec Introduction I/O 1 I/O devices can be characterized by Behavior: input, output, storage Partner: human or machine Data rate: bytes/sec, transfers/sec I/O bus connections I/O Device Summary I/O 2 I/O System

More information

EC 6504 Microprocessor and Microcontroller. Unit II System Bus Structure

EC 6504 Microprocessor and Microcontroller. Unit II System Bus Structure EC 6504 Microprocessor and Microcontroller Unit II 8086 System Bus Structure Syllabus: 8086 Signals Basic Configurations System bus timing System Design using 8086 IO Programming Introduction to multiprogramming

More information

I/O CANNOT BE IGNORED

I/O CANNOT BE IGNORED LECTURE 13 I/O I/O CANNOT BE IGNORED Assume a program requires 100 seconds, 90 seconds for main memory, 10 seconds for I/O. Assume main memory access improves by ~10% per year and I/O remains the same.

More information

Chapter 12: I/O Systems

Chapter 12: I/O Systems Chapter 12: I/O Systems Chapter 12: I/O Systems I/O Hardware! Application I/O Interface! Kernel I/O Subsystem! Transforming I/O Requests to Hardware Operations! STREAMS! Performance! Silberschatz, Galvin

More information

Chapter 13: I/O Systems

Chapter 13: I/O Systems Chapter 13: I/O Systems Chapter 13: I/O Systems I/O Hardware Application I/O Interface Kernel I/O Subsystem Transforming I/O Requests to Hardware Operations STREAMS Performance Silberschatz, Galvin and

More information

Chapter 12: I/O Systems. Operating System Concepts Essentials 8 th Edition

Chapter 12: I/O Systems. Operating System Concepts Essentials 8 th Edition Chapter 12: I/O Systems Silberschatz, Galvin and Gagne 2011 Chapter 12: I/O Systems I/O Hardware Application I/O Interface Kernel I/O Subsystem Transforming I/O Requests to Hardware Operations STREAMS

More information

SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR Siddharth Nagar, Narayanavanam Road QUESTION BANK (DESCRIPTIVE) UNIT-I

SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR Siddharth Nagar, Narayanavanam Road QUESTION BANK (DESCRIPTIVE) UNIT-I SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR Siddharth Nagar, Narayanavanam Road 517583 QUESTION BANK (DESCRIPTIVE) Subject with Code : CO (16MC802) Year & Sem: I-MCA & I-Sem Course & Branch: MCA Regulation:

More information

Design with Microprocessors

Design with Microprocessors Design with Microprocessors Year III Computer Science 1-st Semester Lecture 11: I/O transfer with x86 I/O Transfer I/O Instructions We discussed IN, OUT, INS and OUTS as instructions for the transfer of

More information

Introduction Electrical Considerations Data Transfer Synchronization Bus Arbitration VME Bus Local Buses PCI Bus PCI Bus Variants Serial Buses

Introduction Electrical Considerations Data Transfer Synchronization Bus Arbitration VME Bus Local Buses PCI Bus PCI Bus Variants Serial Buses Introduction Electrical Considerations Data Transfer Synchronization Bus Arbitration VME Bus Local Buses PCI Bus PCI Bus Variants Serial Buses 1 Most of the integrated I/O subsystems are connected to the

More information