_ V1.3. Motorola 68HC11 AE/AS POD rev. F. POD Hardware Reference

Size: px
Start display at page:

Download "_ V1.3. Motorola 68HC11 AE/AS POD rev. F. POD Hardware Reference"

Transcription

1 _ V1.3 POD Hardware Reference Motorola 68HC11 AE/AS POD rev. F Ordering code IC81049 Thank you for purchasing this product from isystem. This product has been carefully crafted to satisfy your needs. Should any questions arise, do not hesitate to contact your local distributor or isystem directly. Our technical support personnel will be happy to answer all your technical support questions. All information, including contact information, is available on our web site Feel free also to explore our alternative products. isystem constantly yields for development and therefore certain pictures in this documentation may vary slightly from the actual product you received. The differences should be minor, but should you find more serious inconsistencies of the product with the documentation, please contact your local distributor for more information. This document and all documents accompanying it are copyrighted by isystem and all rights are reserved. Duplication of these documents is allowed for personal use. For every other case a written consent from isystem is required. Copyright 2003 isystem, GmbH. All rights reserved. All trademarks are property of their respective owners. isystem, August /12

2 _ POD Hardware Reference In-Circuit Emulation PODs The following elements of interest are located on all In-Circuit emulation PODs: emulation CPU - acts on behalf of target's CPU. On some PODs you must use the same CPU on the POD as it is used on the target (see your POD reference page). In such cases, remove the CPU from the POD and insert the CPU that you use in the target system, in its place. red LED (D3) - lit when CPU is running green LED (D4) - lit when Emulator is ready for emulation a connector, mostly marked ST3 - contains signal lines, some of which are hardware configuration lines (such as bank select signals), others you can use for signal generation (pattern generator outputs). Here are some common signals found on the signal connector, commonly marked as ST3: GND Ground BPE External breakpoint input. Active high. RESO/RO Reset output. Connect to target to reset peripherals. TRES/TR Target reset input. AUXn AUX signal inputs (same as inputs on Emulator/trace) Note: On PODs that support synchronization between two or more Emulators (currently only the HC(S)12 Family, see the Synchronization section in the Hardware User's Guide for more information) AUX0 and AUX1 are cut short with Run/Stop synchronization line, and AUX2, AUX3 with RESET synchronization line. You should use these pins to connect to other PODs or target CPUs. PAT0-2 Pattern generator output on 16-bit POD OC4-6 Pattern generator output on 8-bit POD Note: The signal connector can also have other markings, like P1, U1, etc. Please refer to the POD-specific documentation for the signal connector name and signals present. isystem, August /12

3 For every POD the following information is given: Ordering code. If there are different speed versions of a POD the ordering code is modified by appending the speed in MHz (IC for the 16 MHz 8031 POD) information on available speed versions and required Emulator access time POD size and position of PIN1 on the target adapter relative to bottom left corner. The memory range specifies the range of addresses that a POD can address. If this specification is omitted the default 1MB is assumed. Note: The In-Circuit Emulator can emulate a processor or a microcontroller. Beside the CPU, additional logic is integrated on the POD. The amount of additional logic depends on the emulated CPU and the type of emulation. A buffer on a data bus is always used (minimal logic) and when rebuilding ports on the POD, maximum logic is used. As soon as a POD is inserted in the target instead of the CPU, electrical and timing characteristics are changed. Different electrical and timing characteristics of used elements on the POD and prolonged lines from the target to the CPU on the POD contribute to different POD characteristics. Consequently, signal cross-talks and reflections occur, capacitance changes, etc. Beside that, pull-up and pull-down resistors are added to some signals. Pull-up/pull-down resistors are required to define the inactive state of signals like reset and interrupt inputs, while the POD is not connected to the target. Because of this, the POD can operate as standalone without the target. Final Target Application Test After the application is being more or less debugged and final application test is performed, it is recommended to remove all breakpoints and to close all debug windows (memory, SFR, watch...) to eliminate any possible influence of the emulator on the CPU execution. There were cases where the target application has been behaving differently with the target CPU inserted or the POD connected. If the debugger is configured to update some debug windows in real-time, the user may not be aware of that the CPU execution may be slightly disturbed. However, when the monitor access type is configured to update debug windows while the CPU is running, the CPU execution is disturbed significantly, depending on the necessary number of memory accesses to update opened debug windows. There are cases when internal peripheral device requires read access of the particular register during the device configuration. The user has had SFR window opened and the necessary read access was actually performed by the debugger and not by the application as it would be correct. Therefore, the application was working fine with the emulator, but a standalone application didn't work correctly, as the peripheral device was not configured properly. For Better Understanding of the Hardware Reference: PIN 1 locations There are several references to pin 1 in the manual and many jumper settings, CPU and pinout orientations rely on the correct location of pin 1. If sometimes the location of pin 1 is not clear, check the markings on the POD. If there are no markings, check the PCB board of the POD. Pin 1 is always marked on the PCB with a square pin (the other pins are round). The pin 1 location is also visible on the board in the hardware reference, if not any other way it can be identified by searching for the square pin. isystem, August /12

4 _ POD Hardware Reference Motorola 68HC11 AE/AS POD rev. F Ordering code IC81049 POD Speed (MHz) 4 Emulator Speed (ns) 90 Exchange CPU YES Bank switch support YES Before connecting the POD, make sure you have read the technical notes on Motorola 68HC11 Family in the Hardware User's Guide. This PODs is an 8-bit PODs that can be used on ic181, ic1000 and the PowerEmulator unit. Bank switching is supported. POD Layout This POD can be used for single-chip and expanded mode applications. For expanded mode applications, the PGA52 adapter shipped with the POD must be used. For single-chip applications an appropriate single-chip adapter must be used. The below table identifies the adapter. isystem, August /12

5 Emulated CPU 68HC11A0 68HC11A1 68HC11A7 68HC11A8 68HC11E0 68HC11E1 68HC811E2 68HC11E8 68HC11E9 68HC711E9 68HC11E20 Single Chip Adapter N/A N/A HC11apru or HC11axaf HC11apru or HC11axaf N/A N/A HC11apru or HC11axaf HC11apru or HC11axaf HC11apru, HC11axaf or HC11exaf HC11apru, HC11axaf or HC11exaf HC11apru or HC11axaf Jumper Settings Jumper J1 determines the voltage level for the CPU. Position Set (*) Removed CPU voltage 5 V 3.3 V Jumper selector JX connects target and CPU XTAL. Jumper J1 settings (* - factory default) Position Set (*) Removed CPU target XTAL Connected Not Connected Jumper JX settings (* - factory default) If clock from the emulator is used and there is an crystal in the target, this jumper should be removed, if problems with the clock occur. Electrical Differences and Rebuilt Ports In general, when emulating the single chip mode, some ports have to be rebuilt on the POD because original ports are used for emulation typically ports used as address and data bus in extended mode. Special devices, so called port replacement units, provided already by the CPU vendor or other standard integrated circuits are used to rebuilt "lost" ports. Rebuilt ports are logically 100% compatible with original CPU s ports, but electrical characteristics may differ. If special device (port replacement unit) is available, electrical characteristics don t differ much and usually the user doesn t have to pay attention. The differences may become relevant when standard integrated circuits are used and operating close to electrical limits, e.g. when input voltage level is close to specified maximum voltage for low input level ( 0 ) or specified minimum voltage for high input level ( 1 ). When emulating the single chip mode, original ports B and C are used for the emulation and rebuilt by standard integrated circuits on the POD. Therefore, electrical characteristics are changed. Using the emulator, the port registers (Port Registers and Port Data Direction Registers) belonging to the rebuilt ports must be mapped to the target when emulating the single-chip mode. Special logic is present on the IRQ, RESET, XIRQ, R/W and E signals and therefore electrical characteristics are changed when emulating single-chip or extended mode. isystem, August /12

6 Whenever operating close to electrical limits and having problems with rebuilt ports please check pull-up and pull-down resistors. They shouldn t be too strong, neither too weak. Check the voltage level. Try to withdraw from voltage limits. Single-Chip Adapters and Emulation Notes HC11exaf and HC11axaf adapters are used to emulate single chip mode. In this mode port B and port C are rebuilt by a so called Port Replacement Unit (PRU) designed by Motorola. Both adapters have some limitations which originate from Motorola's PRU device. When using port B and POD with HC11exaf adapter the user should write appropriate value into the port B data direction (DDRB) or to the adequate address (0x1006) when there is no DDRB register. Some MCUs supported by HC11exaf adapter have DDRB and some don't. For proper PRU operation the user must always write to DDRB (0x1006) prior to use port B as output. Tip: To define port B as output you can add single write of value 0xFF to address 0x1006 in the 'Initialization' tab in the 'Hardware/In-circuit emulation' dialog. This sequence will be executed always when the system will be reseted for the first time or when the download will be executed. Of course the user can add this sequence in his user program instead to the 'Initialization' dialog. For E9 CPUs the single chip adapter must be chosen according to application requirements and adapter limitations. When using HC24 PRU (HC11axaf adapter), the I/O capabilities of Port B on E9 can not be fully used, since the port is output only, on the other hand, the STRA and STRB signals are supported. When using the HC27 PRU (HC11exaf adapter), the I/O capabilities of Port B are available for input and output, but the STRA and STRB signals are not available. HC11axaf single-chip adapter (shipped with POD) This adapter uses the HC24 PRU on which the port B is output only. isystem, August /12

7 HC11exaf single-chip adapter (shipped with POD) This adapter uses the HC27 PRU on which STRA and STRB are not available. Jumper selector J1A connects CPU AS (Address strobe) to target. Position Set (*) Removed CPU target AS Connected Not Connected Jumper selector J2A connects CPU R/W to target. Jumper J1A settings (* - factory default) Position Set (*) Removed CPU target R/W Connected Not Connected Jumper J2A settings (* - factory default) Note: the HC27 PRU presets registers to address 0. The Emulator will set those to the default (1000h). This can however not be achieved with the Reset and run command. If this command is used. The registers must be moved to 1000 explicitly by the target application, by writing 1 into low 4 bits of the INIT (3Dh) register. isystem, August /12

8 Assembly Instructions for Extended Mode and Single-Chip Applications When purchasing the 68HC11 AE/AS POD (IC81049), it is delivered with the PGA52 adapter, assembled by default. The POD is ready for use when emulating the expanded mode. The 68HC11 AE/AS POD with the standard PGA52 adapter When emulating the single chip mode, one of available single chip adapters must be used, either HC11 axaf or HC11 exaf adapter. The adapters have some limitations, which differ and have been discussed above. Single-chip adapters: on the left side HC11axaf, on the right side HC11exaf isystem, August /12

9 When a single chip adapter is used, first the PGA52 adapter must be removed from the POD and then the HC11 axaf or HC11 exaf adapter inserted. The POD is ready to emulate the single chip mode. The PGA52 adapter, removed from the POD on the left and the 68HC11 AE/AS POD with a Single-Chip adapter on the right General HC11 Emulation Notes MODA/LIR CPU pin Check the MODA/LIR signal. The signal MODA/LIR must be connected to the target by pull-up or pull-down resistor, depending on the mode that your application runs in (single chip or extended). The signal must be available for in-circuit emulator for proper operation. You must not tie the signal directly to the GND or Vcc since the signal becomes output when the CPU is released from the reset. Wait Mode, Stop Mode Both of them are supported. When the CPU is in one of the mode, it generates (random) dummy cycles, the debugger looses the control over it and HALTED status is displayed in winideatm. The CPU can be brought out of the mode by the external IRQ and external RESET. COP Internal watchdog must be disabled during the debugging, otherwise the emulation fails. Internal RAM, Internal EEPROM If the CPU provides a capability to write to the internal RAM or EEPROM via memory window (no specific programming sequence required), the download file can be loaded to the internal RAM or EEPROM using the Target Download option. The debugger downloads the code to the internal memory after reset via the CPU. If the CPU requires some registers to be configured before the CPU is able to write in the EEPROM area, the user must configure the necessary registers respectively, using the initialization dialog. Any sequence, added in the initialization dialog, is executed immediately after reset, before the download is performed. At HC11 family pay attention to the configuration of the BPROT register (if available on the CPU used), that can prevent write access to the EEPROM. If you want to modify the contents of the EEPROM within your debugging session, you should disable the BPROT protection. Refer to the CPU datasheets for more information. Note that debugging is limited while executing the program in the internal EEPROM or RAM. While the CPU accesses internal memory resources, the in-circuit emulator (ICE) loses the control over the CPU since the external bus is not active. Therefore, breakpoints cannot be set and the user's program cannot be stopped or isystem, August /12

10 stepped when executing in the internal EEPROM/RAM. Additionally, debug windows cannot be updated as well. Normally, in the target application the CPU executes the program in the internal or external ROM. Using the ICE, ROM memory is overlaid by the emulation memory and consequently the program can be debugged without restrictions. But, sometimes, there is a need to execute some short routines in the CPU internal memory. Using the ICE, the user can run such a routine, but he cannot debug it. Clock Clock source can be either used internal from the emulator or external from the target. It is recommended to use the internal clock when possible. When using the clock from the target, it may happen that the emulator cannot initialize any more. It is dissuaded to use a crystal in the target as a clock source during the emulation. It is recommended that the oscillator is used instead. Normally, a crystal and two capacitors are connected to the CPU's clock inputs in the target application as stated in the CPU datasheets. A length of clock paths is critical and must be taken into consideration when designing the target. During the emulation, the distance between the crystal in the target and the CPU (on the POD) is furthermore increased, therefore the impedance may change in a manner that the crystal doesn't oscillate anymore. In such case, a standalone crystal circuit, oscillating already without the CPU must be built or oscillator used. Checksum When performing any kind of checksum in the emulated (code) area, note that all breakpoints must be removed before, otherwise the results are distorted. Note that the emulator forces "breakpoint" instruction on the data bus when executing the code at the address where breakpoint is set. Exchanging the CPU Standard CPUs are inserted on all HC11 PODs. When it is necessary to exchange the CPU, note that internal ROM and COP must be disabled, otherwise the emulation fails. Internal ROM is disabled by programming the ROMON bit in the CONFIG register. Refer to the hardware user's guide - chapter 'Technical Notes/HC11 family' for more information isystem, August /12

11 The Signal Connector Two signal connectors are available on the POD, marked ST3A and ST3B BSC PD0 PD1 PD2 PD3 PD4 BANK GND BS0 BS1 BS2 BS3 BS4 TA ST3A signal connector pinout Signal PD0 PD4 BS0 BS4 BSC BANK TA15 Description Port D output pins. Can be bridged with BS pins for memory banking through D port. Bank select lines for memory banking. CODE Bank size select. Open: <=32 KB; Bridged to GND: 64 KB If 32KB banks area used then this pin determines the position of the bank. If bank area is placed from 0 to 7FFFh, leave this pin not connected, otherwise (bank 8000h-FFFFh) bridge this pin with GND pin. For testing purposes only, A15 CPU Line ST3A Connector signal description Pin Signal Signal Description 1 GND Ground 2 GND Ground 3 BPE External Breakpoint Input 4 RO Reset Output 5 TR Target Reset Input 6 AU0 AUX Signal Input 7 AU1 AUX Signal Input 8 AU2 AUX Signal Input 9 AU3 AUX Signal Input ST3B Signal Connector Target Adapters isystem offers various adapter solutions for this POD. Please refer to the adapter documentation for more details. isystem, August /12

12 POD Target Layout The POD target layout is T_PLCC T_PLCC52 Top POD view The POD comes shipped with a standard PGA52 adapter PGA52 Top adapter view PGA52 (left) and T_PLCC52 (right) dimensions isystem, August /12

All information, including contact information, is available on our web site Feel free also to explore our alternative products.

All information, including contact information, is available on our web site   Feel free also to explore our alternative products. _ V1.1 POD Hardware Reference Intel 80186 EA POD POD rev. D Ordering code IC20011-1 Thank you for purchasing this product from isystem. This product has been carefully crafted to satisfy your needs. Should

More information

_ V1.1. Motorola 6809 B POD rev. C. POD Hardware Reference

_ V1.1. Motorola 6809 B POD rev. C. POD Hardware Reference _ V1.1 POD Hardware Reference Motorola 6809 B POD rev. C Ordering code IC81060 Thank you for purchasing this product from isystem. This product has been carefully crafted to satisfy your needs. Should

More information

All information, including contact information, is available on our web site Feel free also to explore our alternative products.

All information, including contact information, is available on our web site   Feel free also to explore our alternative products. _ V1.3 POD Hardware Reference Zilog Z180 POD rev. C Ordering code IC81012-20 Thank you for purchasing this product from isystem. This product has been carefully crafted to satisfy your needs. Should any

More information

_ V1.2. Motorola 68HC08 JL POD rev. D1. POD Hardware Reference

_ V1.2. Motorola 68HC08 JL POD rev. D1. POD Hardware Reference _ V1.2 POD Hardware Reference Motorola 68HC08 JL POD rev. D1 Ordering code IC20075 Thank you for purchasing this product from isystem. This product has been carefully crafted to satisfy your needs. Should

More information

_ V1.3. MPC564xB ActiveGT POD. POD Hardware Reference

_ V1.3. MPC564xB ActiveGT POD. POD Hardware Reference _ V1.3 POD Hardware Reference MPC564xB ActiveGT POD Ordering code IC30762 Thank you for purchasing this product from isystem. This product has been carefully crafted to satisfy your needs. Should any questions

More information

_ V Intel 8085 Family In-Circuit Emulation. Contents. Technical Notes

_ V Intel 8085 Family In-Circuit Emulation. Contents. Technical Notes _ V9.12. 225 Technical Notes Intel 8085 Family In-Circuit Emulation This document is intended to be used together with the CPU reference manual provided by the silicon vendor. This document assumes knowledge

More information

Renesas 78K/78K0R/RL78 Family In-Circuit Emulation

Renesas 78K/78K0R/RL78 Family In-Circuit Emulation _ Technical Notes V9.12.225 Renesas 78K/78K0R/RL78 Family In-Circuit Emulation This document is intended to be used together with the CPU reference manual provided by the silicon vendor. This document

More information

_ V Intel 8051 Family In-Circuit Emulation. Contents. Technical Notes

_ V Intel 8051 Family In-Circuit Emulation. Contents. Technical Notes _ V9.12. 225 Technical Notes Intel 8051 Family In-Circuit Emulation This document is intended to be used together with the CPU reference manual provided by the silicon vendor. This document assumes knowledge

More information

HCS12 BDM Getting Started V4.3

HCS12 BDM Getting Started V4.3 HCS12 BDM Getting Started V4.3 Background The term BDM stands for Background Debug Mode. It is used for the system development and FLASH programming. A BDM firmware is implemented on the CPU silicon providing

More information

All information, including contact information, is available on our web site Feel free also to explore our alternative products.

All information, including contact information, is available on our web site   Feel free also to explore our alternative products. _ V1.2 Hardware Reference ARM Cortex family icard Debug module Ordering codes IC30129 Thank you for purchasing this product from isystem. This product has been carefully crafted to satisfy your needs.

More information

All information, including contact information, is available on our web site Feel free also to explore our alternative products.

All information, including contact information, is available on our web site   Feel free also to explore our alternative products. _ V1.5 Hardware Reference ARM Cortex-M family icard Debug module Ordering codes IC30129 Thank you for purchasing this product from isystem. This product has been carefully crafted to satisfy your needs.

More information

Freescale S12X Family In-Circuit Emulation

Freescale S12X Family In-Circuit Emulation _ Technical Notes V9.9.86 Freescale S12X Family In-Circuit Emulation Contents Contents... 1 1 Introduction... 2 1.1 Differences from a standard environment... 2 1.2 Common Guidelines... 2 1.3 Port Replacement

More information

ST SPC58 B Line Emulation Adapter System

ST SPC58 B Line Emulation Adapter System _ V1.1 Hardware Reference ST SPC58 B Line Emulation Adapter ST SPC58 B Line Emulation Adapter System ST SPC58 B line emulation adapter primary use case is providing Nexus trace functionality for the SPC58

More information

_ V1.2. ione-bt Wireless Debugger. Hardware Reference

_ V1.2. ione-bt Wireless Debugger. Hardware Reference _ V1.2 Hardware Reference ione-bt Wireless Debugger Thank you for purchasing this product from isystem. This product has been carefully crafted to satisfy your needs. Should any questions arise, do not

More information

TEMIC 51T (Temic) EMULATION

TEMIC 51T (Temic) EMULATION Note: To use with frequencies above 40Mhz it will be required to use an emulator board that has been specially modified to obtain high frequency operation and will work only with the POD-51Temic. The EPROM

More information

Freescale 68HCS12 Family On-Chip Emulation

Freescale 68HCS12 Family On-Chip Emulation _ Technical Notes V9.9.87 Freescale 68HCS12 Family On-Chip Emulation Contents Contents... 1 1 Introduction... 2 2 Emulation Options... 3 2.1 Hardware Options... 3 2.2 Initialization Sequence... 4 3 CPU

More information

_ V Renesas R8C In-Circuit Emulation. Contents. Technical Notes

_ V Renesas R8C In-Circuit Emulation. Contents. Technical Notes _ V9.12. 225 Technical Notes Renesas R8C In-Circuit Emulation This document is intended to be used together with the CPU reference manual provided by the silicon vendor. This document assumes knowledge

More information

Bolero3M Nexus Emulation Adapter 256BGA 176TQ

Bolero3M Nexus Emulation Adapter 256BGA 176TQ _ V1.4 Adapters Bolero3M Nexus Emulation Adapter 256BGA 176TQ Ordering code IA256BGA176TQ-5646C Supported microcontrollers: Freescale MPC5644B, MPC5644C, MPC5645B, MPC5645C, MPC5646B and MPC5646C ST equivalent

More information

Bolero Nexus Emulation Adapter 208BGA 100TQ

Bolero Nexus Emulation Adapter 208BGA 100TQ _ V1.5 Adapters Bolero Nexus Emulation Adapter 208BGA 100TQ Ordering code IA208BGA100TQ-5607B Supported microcontrollers: Freescale MPC5605B, MPC5605BK, MPC5606BK ST equivalent devices (SPC560B54, SPC560B60)

More information

NEC 78K0- Family On-Chip Emulation

NEC 78K0- Family On-Chip Emulation _ Technical Notes V9.9.86 NEC 78K0- Family On-Chip Emulation Contents Contents... 1 1 Introduction... 2 2 Emulation options... 3 2.1 Hardware Options... 3 3 CPU Setup... 6 3.1 General Options... 6 3.2

More information

_ V ST STM8 Family On-Chip Emulation. Contents. Technical Notes

_ V ST STM8 Family On-Chip Emulation. Contents. Technical Notes _ V9.12. 225 Technical Notes ST STM8 Family On-Chip Emulation This document is intended to be used together with the CPU reference manual provided by the silicon vendor. This document assumes knowledge

More information

Intel 8051 Family Standard PODs

Intel 8051 Family Standard PODs Intel 8051 Family Standard PODs All 8051 family PODs are 8-bit PODs that can be used on ic181, ic1000 and the PowerEmulator unit with the exception of a few PODs, that can not be used on the ic181 unit.

More information

POD 51EH C517A 24 XH0 XH1 XH2 XH3 XH4 XH5 XH6 XH7 XL7 XL6 XL5 XL4 XL3 XL2 XL1 XL0 PE EA ALE PSEN JP1. Figure 1. POD 51EH C517A 24

POD 51EH C517A 24 XH0 XH1 XH2 XH3 XH4 XH5 XH6 XH7 XL7 XL6 XL5 XL4 XL3 XL2 XL1 XL0 PE EA ALE PSEN JP1. Figure 1. POD 51EH C517A 24 6 7.. P P POD 5EH C57A 4 RST R PWD Y IDL Y EML G MON Y MERR R JP T JP7 ANB FLF EMUL XH0 XH XH XH XH4 XH5 XH6 XH7 T XS MCU XS T 7 6 5 4 0 P P P6 P7 JP0 XL7 XL6 XL5 XL4 XL XL XL XL0 PE EA ALE PSEN JP P5

More information

Evaluation & Development Kit for Freescale PowerPC MPC5517 Microcontroller

Evaluation & Development Kit for Freescale PowerPC MPC5517 Microcontroller _ V1.0 User s Manual Evaluation & Development Kit for Freescale PowerPC MPC5517 Microcontroller Ordering code ITMPC5517 Copyright 2007 isystem AG. All rights reserved. winidea is a trademark of isystem

More information

GENTOS: CoreRiver s Total Solutions for Embedded System Development. Preliminary. Rev. 1.2 September 2005

GENTOS: CoreRiver s Total Solutions for Embedded System Development. Preliminary. Rev. 1.2 September 2005 GENTOS: CoreRiver s Total Solutions for Embedded System Development Preliminary Rev. 1.2 September 2005 Copyright CoreRiver Semiconductor Co., Ltd. 2005 All Rights Reserved Page 1 of 52 CoreRiver Semiconductor

More information

POD 51EH C505L XH0 XH1 XH2 XH3 XH4 XH5 XH6 XH7 XL7 XL6 XL5 XL4 XL3 XL2 XL1 XL0. Figure 1. POD 51EH C505L 20

POD 51EH C505L XH0 XH1 XH2 XH3 XH4 XH5 XH6 XH7 XL7 XL6 XL5 XL4 XL3 XL2 XL1 XL0. Figure 1. POD 51EH C505L 20 6 7.. P P POD 5EH C505L 0 RST R PWD Y IDL Y EML G MON Y MERR R JP T JP0 JP7 ANB FLF EMUL XH0 XH XH XH XH4 XH5 XH6 XH7 XL7 XL6 XL5 XL4 XL XL XL XL0 T XS GSL T MCU RSL T XS T P P4 5 4 0 7 6 5 4 0 NOHAU Corporation

More information

Leopard Nexus Emulation Adapter 257BGA 144TQ

Leopard Nexus Emulation Adapter 257BGA 144TQ _ V1.4 Adapters Leopard Nexus Emulation Adapter 257BGA 144TQ Ordering code IA257BGA144TQ-564XL Target CPU package: QFP144 Original microcontroller in the QFP144 package has only 4-bit Nexus port. Leopard

More information

_ V1.1. EVB-5566 Evaluation & Development Kit for Freescale PowerPC MPC5566 Microcontroller. User s Manual. Ordering code

_ V1.1. EVB-5566 Evaluation & Development Kit for Freescale PowerPC MPC5566 Microcontroller. User s Manual. Ordering code _ V1.1 User s Manual EVB-5566 Evaluation & Development Kit for Freescale PowerPC MPC5566 Microcontroller EVB-5566 Ordering code ITMPC5566 Copyright 2007 isystem AG. All rights reserved. winidea is a trademark

More information

3. The MC6802 MICROPROCESSOR

3. The MC6802 MICROPROCESSOR 3. The MC6802 MICROPROCESSOR This chapter provides hardware detail on the Motorola MC6802 microprocessor to enable the reader to use of this microprocessor. It is important to learn the operation and interfacing

More information

POD 51EH C541U 12 EA ALE PSEN XH0 XH1 XH2 XH3 XH4 XH5 XH6 XH7 XL7 XL6 XL5 XL4 XL3 XL2 XL1 XL0. Figure 1. POD 51EH C541U 12

POD 51EH C541U 12 EA ALE PSEN XH0 XH1 XH2 XH3 XH4 XH5 XH6 XH7 XL7 XL6 XL5 XL4 XL3 XL2 XL1 XL0. Figure 1. POD 51EH C541U 12 6 7.. P P POD 5EH C54U RST R PWD Y IDL Y EML G MON Y MERR R JP JP T JP7 ANB FLF EMUL XH0 XH XH XH XH4 XH5 XH6 XH7 EA ALE PSEN T XS MCU XS T 7 6 5 4 0 D P P P D M JP0 XL7 XL6 XL5 XL4 XL XL XL XL0 FULL USL

More information

M68EM05X4 EMULATOR MODULE USER'S MANUAL

M68EM05X4 EMULATOR MODULE USER'S MANUAL M68EM05X4/D Rev. 2 January 1996 M68EM05X4 EMULATOR MODULE USER'S MANUAL Third Edition MOTOROLA Ltd., 1993, 1995, 1996; All Rights Reserved Motorola reserves the right to make changes without further notice

More information

EMULATOR SETUP MB BIT COMPACT-ICE

EMULATOR SETUP MB BIT COMPACT-ICE Fujitsu Microelectronics Europe Application Note MCU-AN-390077-E-V11 F²MC-16L/LX FAMILY 16-BIT MICROCONTROLLER MB903XX/4XX/5XX/6XX EMULATOR SETUP MB2147-05 16BIT COMPACT-ICE APPLICATION NOTE Revision History

More information

indart -HCS08 In-Circuit Debugger/Programmer for Freescale HCS08 Family FLASH Devices User s Manual Rev. 2.0

indart -HCS08 In-Circuit Debugger/Programmer for Freescale HCS08 Family FLASH Devices User s Manual Rev. 2.0 indart -HCS08 In-Circuit Debugger/Programmer for Freescale HCS08 Family FLASH Devices User s Manual Rev. 2.0 Copyright 2006 SofTec Microsystems DC01028 We want your feedback! SofTec Microsystems is always

More information

How Nohau supports the Philips 8051MX Microcontroller

How Nohau supports the Philips 8051MX Microcontroller How Nohau supports the Philips 8051MX Microcontroller There are two options for the emulation of the 8xC51MB2 and 8xC51MC2 micros. One is the emulator with 768k of emulation memory that has been configured

More information

Trace Getting Started V8.02

Trace Getting Started V8.02 Trace Getting Started V8.02 1. Introduction This paper helps the user to entirely exploit the trace and troubleshoot most often situations that the developer is confronted with while debugging the application.

More information

EB-51 Low-Cost Emulator

EB-51 Low-Cost Emulator EB-51 Low-Cost Emulator Development Tool for 80C51 Microcontrollers FEATURES Emulates 80C51 Microcontrollers and Derivatives Real-Time Operation up to 40 MHz 3.3V or 5V Voltage Operation Source-Level Debugger

More information

8051 Microcontroller

8051 Microcontroller 8051 Microcontroller The 8051, Motorola and PIC families are the 3 leading sellers in the microcontroller market. The 8051 microcontroller was originally developed by Intel in the late 1970 s. Today many

More information

CEIBO FE-5111 Development System

CEIBO FE-5111 Development System CEIBO FE-5111 Development System Development System for Atmel W&M T89C5111 Microcontrollers FEATURES Emulates Atmel W&M T89C5111 4K Code Memory Real-Time Emulation and Trace Frequency up to 33MHz/5V ISP

More information

USB Debug Adapter. Power USB DEBUG ADAPTER. Silicon Laboratories. Stop. Run. Figure 1. Hardware Setup using a USB Debug Adapter

USB Debug Adapter. Power USB DEBUG ADAPTER. Silicon Laboratories. Stop. Run. Figure 1. Hardware Setup using a USB Debug Adapter C8051F2XX DEVELOPMENT KIT USER S GUIDE 1. Kit Contents The C8051F2xx Development Kits contain the following items: C8051F206 or C8051F226 Target Board C8051Fxxx Development Kit Quick-Start Guide Silicon

More information

M16C R8C FoUSB/UART Debugger. User s Manual REJ10J

M16C R8C FoUSB/UART Debugger. User s Manual REJ10J REJ10J1217-0100 M16C R8C FoUSB/UART Debugger User s Manual RENESAS MICROCOMPUTER Development Environment System M16C Family R8C/Tiny Series Precautions on Connecting R8C/20, R8C/21, R8C/22, R8C/23 Rev.1.00

More information

E8a Emulator Additional Document for User's Manual R0E00008AKCE00EP2

E8a Emulator Additional Document for User's Manual R0E00008AKCE00EP2 REJ10J1644-0100 E8a Emulator Additional Document for User's Manual R0E00008AKCE00EP2 Renesas Microcomputer Development Environment System M16C Family / R8C/Tiny Series Notes on Connecting the R8C/10, R8C/11,

More information

CMD711-EX Development Board

CMD711-EX Development Board CMD711-EX Development Board xiom anufacturing 1998 717 Lingco Dr., Suite 209 Richardson, TX 75081 (972) 994-9676 FAX (972) 994-9170 email: Gary@axman.com web: http://www.axman.com CONTENTS GETTING STARTED...

More information

RTE-V850E/GP1-IE USER'S MANUAL (REV.1.01) RealTimeEvaluator

RTE-V850E/GP1-IE USER'S MANUAL (REV.1.01) RealTimeEvaluator RTE-V850E/GP1-IE USER'S MANUAL (REV.1.01) RealTimeEvaluator REVISION HISTORY Rev. 1.00 June 20, 2002 Rev. 1.01 November 15, 2002 First edition Revising following chapters * "Measured value of execution

More information

_ V NEC V850ES/Fx3 Family In-Circuit Emulation. Contents. Technical Notes

_ V NEC V850ES/Fx3 Family In-Circuit Emulation. Contents. Technical Notes _ V9.12. 225 Technical Notes NEC V850ES/Fx3 Family In-Circuit Emulation This document is intended to be used together with the CPU reference manual provided by the silicon vendor. This document assumes

More information

P&E Microcomputer Systems, Inc. P.O. Box 2044, Woburn, MA 01888, USA

P&E Microcomputer Systems, Inc. P.O. Box 2044, Woburn, MA 01888, USA P&E Microcomputer Systems, Inc. P.O. Box 2044, Woburn, MA 01888, USA TEL: (617) 353-9206 FAX: (617) 353-9205 http://www.pemicro.com USB-ML-MON08 Rev D Technical Summary Document # PE3357, Version 1.01

More information

E8a Emulator Additional Document for User's Manual R0E00008AKCE00EP9

E8a Emulator Additional Document for User's Manual R0E00008AKCE00EP9 REJ10J1646-0100 E8a Emulator Additional Document for User's Manual R0E00008AKCE00EP9 Renesas Microcomputer Development Environment System M16C Family / R8C/Tiny Series Notes on Connecting the R8C/18, R8C/19,

More information

The Freescale MC908JL16 Microcontroller

The Freescale MC908JL16 Microcontroller Ming Hsieh Department of Electrical Engineering EE 459Lx - Embedded Systems Design Laboratory The Freescale MC908JL16 Microcontroller by Allan G. Weber 1 Introduction The Freescale MC908JL16 (also called

More information

CEIBO FE-51RD2 Development System

CEIBO FE-51RD2 Development System CEIBO FE-51RD2 Development System Development System for Atmel AT89C51RD2 Microcontrollers FEATURES Emulates Atmel AT89C51RD2 60K Code Memory Real-Time Emulation Frequency up to 40MHz / 3V, 5V ISP and

More information

Chapter 14. Motorola MC68HC11 Family MCU Architecture

Chapter 14. Motorola MC68HC11 Family MCU Architecture Chapter 14 Motorola MC68HC11 Family MCU Architecture Lesson 1 68HC11 MCU Architecture overview 2 Outline CPU Registers, MCU Architecture overview Address and Data Buses Execution Unit- ALU Ports 3 CPU

More information

USB Debug Adapter. Power USB DEBUG ADAPTER. Silicon Laboratories. Stop. Run. Figure 1. Hardware Setup using a USB Debug Adapter

USB Debug Adapter. Power USB DEBUG ADAPTER. Silicon Laboratories. Stop. Run. Figure 1. Hardware Setup using a USB Debug Adapter C8051F38X DEVELOPMENT KIT USER S GUIDE 1. Kit Contents The C8051F38x Development Kit contains the following items: C8051F380 Target Board C8051Fxxx Development Kit Quick-start Guide Silicon Laboratories

More information

SBAT90USB162 Atmel. SBAT90USB162 Development Board User s Manual

SBAT90USB162 Atmel. SBAT90USB162 Development Board User s Manual SBAT90USB162 Atmel AT90USB162 Development Board User s manual 1 1. INTRODUCTION Thank you for choosing the SBAT90USB162 Atmel AT90USB162 development board. This board is designed to give a quick and cost-effective

More information

S3 Flash In-System Programmer

S3 Flash In-System Programmer S3 Family of Microcontrollers S3 Flash In-System Programmer UM026604-0816 PRELIMINARY Copyright 2016 Zilog, Inc. All rights reserved. www.zilog.com ii Warning: DO NOT USE THIS PRODUCT IN LIFE SUPPORT SYSTEMS.

More information

Infineon DAP Active Probe

Infineon DAP Active Probe Infineon DAP Active Probe User Manual V1.4 This document and all documents accompanying it are copyrighted by isystem and all rights are reserved. Duplication of these documents is allowed for personal

More information

AN-HK-33. In-Circuit Programming of FLASH Memory in the MC68HC908JL3. Roger Fan Applications Engineering Microcontroller Division Hong Kong

AN-HK-33. In-Circuit Programming of FLASH Memory in the MC68HC908JL3. Roger Fan Applications Engineering Microcontroller Division Hong Kong Order this document by AN-HK-33/H Rev. 1 AN-HK-33 In-Circuit Programming of FLASH Memory in the MC68HC908JL3 By Roger Fan Applications Engineering Microcontroller Division Hong Kong This application note

More information

AVR Intermediate Development Board. Product Manual. Contents. 1) Overview 2) Features 3) Using the board 4) Troubleshooting and getting help

AVR Intermediate Development Board. Product Manual. Contents. 1) Overview 2) Features 3) Using the board 4) Troubleshooting and getting help AVR Intermediate Development Board Product Manual Contents 1) Overview 2) Features 3) Using the board 4) Troubleshooting and getting help 1. Overview 2. Features The board is built on a high quality FR-4(1.6

More information

NEW CEIBO DEBUGGER. Menus and Commands

NEW CEIBO DEBUGGER. Menus and Commands NEW CEIBO DEBUGGER Menus and Commands Ceibo Debugger Menus and Commands D.1. Introduction CEIBO DEBUGGER is the latest software available from Ceibo and can be used with most of Ceibo emulators. You will

More information

3.3V regulator. JA H-bridge. Doc: page 1 of 7

3.3V regulator. JA H-bridge. Doc: page 1 of 7 Digilent Cerebot Board Reference Manual Revision: 11/17/2005 www.digilentinc.com 215 E Main Suite D Pullman, WA 99163 (509) 334 6306 Voice and Fax Overview The Digilent Cerebot Board is a useful tool for

More information

Contents. Cortex M On-Chip Emulation. Technical Notes V

Contents. Cortex M On-Chip Emulation. Technical Notes V _ Technical Notes V9.12.225 Cortex M On-Chip Emulation Contents Contents 1 1 Introduction 2 2 Access Breakpoints 3 3 Trace 5 4 NXP LPC 5 4.1 Boot and Memory Remapping 5 4.2 LPC17xx Startup 5 4.1 LPC11A02/04

More information

Understanding the basic building blocks of a microcontroller device in general. Knows the terminologies like embedded and external memory devices,

Understanding the basic building blocks of a microcontroller device in general. Knows the terminologies like embedded and external memory devices, Understanding the basic building blocks of a microcontroller device in general. Knows the terminologies like embedded and external memory devices, CISC and RISC processors etc. Knows the architecture and

More information

EMUL51XA PC. User Guide. Edition 1. ICE Technology - All rights reserved worldwide.

EMUL51XA PC. User Guide. Edition 1. ICE Technology - All rights reserved worldwide. EMUL51XA PC User Guide Edition 1 ICE Technology - All rights reserved worldwide. EMUL51XA PC User Guide Contents About this Guide vii Downloading EMUL51XA PC Product Documentation vii Overview of the EMUL51XA

More information

M16C R8C FoUSB/UART Debugger. User Manual REJ10J

M16C R8C FoUSB/UART Debugger. User Manual REJ10J REJ10J1725-0100 M16C R8C FoUSB/UART Debugger User Manual Renesas Microcomputer Development Environment System R8C Family R8C/2x Series Notes on Connecting R8C/2A, R8C/2B, R8C/2C, R8C/2D Rev.1.00 Issued

More information

Application Note. EMC Design Guide. F 2 MC-8L Family. History 04 th Jul 02 NFL V1.0 new version

Application Note. EMC Design Guide. F 2 MC-8L Family. History 04 th Jul 02 NFL V1.0 new version Application Note EMC Design Guide F 2 MC-8L Family Fujitsu Mikroelektronik GmbH, Microcontroller Application Group History 04 th Jul 02 NFL V1.0 new version 1 Warranty and Disclaimer To the maximum extent

More information

EEE3410 Microcontroller Applications Department of Electrical Engineering Lecture 4 The 8051 Architecture

EEE3410 Microcontroller Applications Department of Electrical Engineering Lecture 4 The 8051 Architecture Department of Electrical Engineering Lecture 4 The 8051 Architecture 1 In this Lecture Overview General physical & operational features Block diagram Pin assignments Logic symbol Hardware description Pin

More information

ToolStick-EK TOOLSTICK USER S GUIDE. 1. Kit Contents. 2. ToolStick Overview. Green and Red LEDs. C8051F321 provides USB debug interface.

ToolStick-EK TOOLSTICK USER S GUIDE. 1. Kit Contents. 2. ToolStick Overview. Green and Red LEDs. C8051F321 provides USB debug interface. TOOLSTICK USER S GUIDE 1. Kit Contents The ToolStick kit contains the following items: ToolStick Silicon Laboratories Evaluation Kit IDE and Product Information CD-ROM. CD content includes: Silicon Laboratories

More information

indart -HC08 In-Circuit Debugger/Programmer for Freescale HC08 Family FLASH Devices User s Manual Rev. 2.0 Copyright 2006 SofTec Microsystems DC01027

indart -HC08 In-Circuit Debugger/Programmer for Freescale HC08 Family FLASH Devices User s Manual Rev. 2.0 Copyright 2006 SofTec Microsystems DC01027 indart -HC08 In-Circuit Debugger/Programmer for Freescale HC08 Family FLASH Devices User s Manual Rev. 2.0 Copyright 2006 SofTec Microsystems DC01027 SofTec Microsystems E-mail (general information): info@softecmicro.com

More information

CMS-8GP32. A Motorola MC68HC908GP32 Microcontroller Board. xiom anufacturing

CMS-8GP32. A Motorola MC68HC908GP32 Microcontroller Board. xiom anufacturing CMS-8GP32 A Motorola MC68HC908GP32 Microcontroller Board xiom anufacturing 2000 717 Lingco Dr., Suite 209 Richardson, TX 75081 (972) 994-9676 FAX (972) 994-9170 email: Gary@axman.com web: http://www.axman.com

More information

LBAT90USB162 Atmel. LBAT90USB162 Development Board User s Manual

LBAT90USB162 Atmel. LBAT90USB162 Development Board User s Manual LBAT90USB162 Atmel AT90USB162 Development Board User s manual 1 1. INTRODUCTION Thank you for choosing the LBAT90USB162 Atmel AT90USB162 development board. This board is designed to give quick and cost-effective

More information

Gottlieb Universal Test Board

Gottlieb Universal Test Board Gottlieb Universal Test Board Tester Overview The Gottlieb Universal Test Board is a design original created by Leon Borre to help diagnose Gottlieb System 80 MPU boards. It connects to the TC1 connector

More information

e-pg Pathshala Subject : Computer Science Paper: Embedded System Module: 8051 Architecture Module No: CS/ES/5 Quadrant 1 e-text

e-pg Pathshala Subject : Computer Science Paper: Embedded System Module: 8051 Architecture Module No: CS/ES/5 Quadrant 1 e-text e-pg Pathshala Subject : Computer Science Paper: Embedded System Module: 8051 Architecture Module No: CS/ES/5 Quadrant 1 e-text In this lecture the detailed architecture of 8051 controller, register bank,

More information

PK-HCS12C32 Starter Kit for Motorola MC9S12C32 User s Manual

PK-HCS12C32 Starter Kit for Motorola MC9S12C32 User s Manual PK-HCS12C32 Starter Kit for Motorola MC9S12C32 User s Manual Copyright 2003 SofTec Microsystems DC00685 We want your feedback! SofTec Microsystems is always on the look-out for new ways to improve its

More information

MICROCONTROLLER AND PLC LAB-436 SEMESTER-5

MICROCONTROLLER AND PLC LAB-436 SEMESTER-5 MICROCONTROLLER AND PLC LAB-436 SEMESTER-5 Exp:1 STUDY OF MICROCONTROLLER 8051 To study the microcontroller and familiarize the 8051microcontroller kit Theory:- A Microcontroller consists of a powerful

More information

E8a Emulator Additional Document for User's Manual R0E00008AKCE00EP21

E8a Emulator Additional Document for User's Manual R0E00008AKCE00EP21 REJ10J1641-0200 E8a Emulator Additional Document for User's Manual R0E00008AKCE00EP21 Renesas Microcomputer Development Environment System M16C Family / M16C/60 Series Notes on Connecting the M16C/6S Rev.2.00

More information

Shack Clock kit. U3S Rev 2 PCB 1. Introduction

Shack Clock kit. U3S Rev 2 PCB 1. Introduction Shack Clock kit U3S Rev 2 PCB 1. Introduction Thank you for purchasing the QRP Labs Shack Clock kit. This clock uses the Ultimate3S QRSS/WSPR kit hardware, but a different firmware version. It can be used

More information

Intel386 TM DX MICROPROCESSOR 32-BIT CHMOS MICROPROCESSOR WITH INTEGRATED MEMORY MANAGEMENT (PQFP SUPPLEMENT)

Intel386 TM DX MICROPROCESSOR 32-BIT CHMOS MICROPROCESSOR WITH INTEGRATED MEMORY MANAGEMENT (PQFP SUPPLEMENT) Intel386 TM DX MICROPROCESSOR 32-BIT CHMOS MICROPROCESSOR WITH INTEGRATED MEMORY MANAGEMENT (PQFP SUPPLEMENT) Y Flexible 32-Bit Microprocessor 8 16 32-Bit Data Types 8 General Purpose 32-Bit Registers

More information

F2MC MB90385 series Evaluation Board Documentation. Revision Date Comment V New document

F2MC MB90385 series Evaluation Board Documentation. Revision Date Comment V New document F2MC MB90385 series Evaluation Board Documentation Revision Date Comment V1.0 08.25.02 New document 1 Warranty and Disclaimer To the maximum extent permitted by applicable law, Fujitsu Microelectronics

More information

AC/DC. Adapter. Serial. Adapter. Figure 1. Hardware Setup

AC/DC. Adapter. Serial. Adapter. Figure 1. Hardware Setup C8051F35X DEVELOPMENT KIT USER S GUIDE 1. Kit Contents The C8051F35x Development Kit contains the following items: C8051F350 Target Board Serial Adapter (RS232 to Target Board Debug Interface Protocol

More information

ONYX-MM-XT PC/104 Format Counter/Timer & Digital I/O Module

ONYX-MM-XT PC/104 Format Counter/Timer & Digital I/O Module ONYX-MM-XT PC/104 Format Counter/Timer & Digital I/O Module User Manual V1.4 Copyright 2009 Diamond Systems Corporation 1255 Terra Bella Avenue Mountain View, CA 94043 USA Tel (650) 810-2500 Fax (650)

More information

Section 1 Introduction

Section 1 Introduction Section 1 Introduction The ATmegaICE is a real time In-Circuit Emulator (ICE) for all ATmega devices. It can be upgraded to support future ATmega parts. It is controlled by AVR Studio, which is a professional

More information

CEIBO FE-W7 Development System

CEIBO FE-W7 Development System CEIBO FE-W7 Development System Development System for Winbond W7xxxx Microcontrollers FEATURES Emulates Winbond W77xxx or W78xxx Microcontrollers 125K Code Memory Real-Time Emulation Frequency up to fmax

More information

Embedded Systems Lab Lab 1 Introduction to Microcontrollers Eng. Dalia A. Awad

Embedded Systems Lab Lab 1 Introduction to Microcontrollers Eng. Dalia A. Awad Embedded Systems Lab Lab 1 Introduction to Microcontrollers Eng. Dalia A. Awad Objectives To be familiar with microcontrollers, PIC18F4550 microcontroller. Tools PIC18F4550 Microcontroller, MPLAB software,

More information

EMUL16/300 PC. User Guide. ICE Technology

EMUL16/300 PC. User Guide. ICE Technology EMUL16/300 PC User Guide ICE Technology EMUL16/300 PC User Guide Downloading EMUL16/300 PC Product Documentation 2 Overview of the EMUL16/300 PC Emulator System 3 ISA Card Emulator (PC Plug-In) 4 High-Speed

More information

EMUL-AVR-PC. User Guide

EMUL-AVR-PC. User Guide EMUL-AVR-PC User Guide Nohau Corporation 51 E. Campbell Ave. Campbell, CA 95008 PH: (408) 866-1820 Fax: (408) 378-7869 E-mail: support@nohau.com www.nohau.com EMUL AVR PC User Guide Edition 1, July 24,

More information

SECTION 5 RESETS AND INTERRUPTS

SECTION 5 RESETS AND INTERRUPTS SECTION RESETS AND INTERRUPTS Resets and interrupt operations load the program counter with a vector that points to a new location from which instructions are to be fetched. A reset immediately stops execution

More information

AC/DC. Adapter. Ribbon. Cable Serial. Serial. Adapter. Figure 1. Hardware Setup using an EC2 Serial Adapter

AC/DC. Adapter. Ribbon. Cable Serial. Serial. Adapter. Figure 1. Hardware Setup using an EC2 Serial Adapter C8051F32X DEVELOPMENT KIT USER S GUIDE 1. Kit Contents The C8051F32x Development Kit contains the following items: C8051F320 Target Board C8051Fxxx Development Kit Quick-Start Guide C8051F32x Development

More information

8051 Intermidiate Development Board. Product Manual. Contents. 1) Overview 2) Features 3) Using the board 4) Troubleshooting and getting help

8051 Intermidiate Development Board. Product Manual. Contents. 1) Overview 2) Features 3) Using the board 4) Troubleshooting and getting help 8051 Intermidiate Development Board Product Manual Contents 1) Overview 2) Features 3) Using the board 4) Troubleshooting and getting help 1. Overview 2. Features The board is built on a high quality FR-4(1.6

More information

Figure 1. Proper Method of Holding the ToolStick. Figure 2. Improper Method of Holding the ToolStick

Figure 1. Proper Method of Holding the ToolStick. Figure 2. Improper Method of Holding the ToolStick TOOLSTICK C8051F931 DAUGHTER CARD USER S GUIDE 1. Handling Recommendations To enable development, the ToolStick Base Adapter and daughter cards are distributed without any protective plastics. To prevent

More information

EVB9S08DZ60. Demonstration Board for Freescale MC9S08DZ60. User s Manual

EVB9S08DZ60. Demonstration Board for Freescale MC9S08DZ60. User s Manual EVB9S08DZ60 Demonstration Board for Freescale MC9S08DZ60 User s Manual EVB9S08DZ60 Evaluation Board for Freescale MC9S08DZ60 (64-Pin LQFP) User s Manual Revision 1.0 Copyright 2006 SofTec Microsystems

More information

E8a Emulator Additional Document for User's Manual R0E00008AKCE00EP3

E8a Emulator Additional Document for User's Manual R0E00008AKCE00EP3 REJ10J1638-0200 E8a Emulator Additional Document for User's Manual R0E00008AKCE00EP3 Renesas Microcomputer Development Environment System M16C Family / M16C/Tiny Series Notes on Connecting the M16C/26,

More information

1. Attempt any three of the following: 15

1. Attempt any three of the following: 15 (2½ hours) Total Marks: 75 N. B.: (1) All questions are compulsory. (2) Make suitable assumptions wherever necessary and state the assumptions made. (3) Answers to the same question must be written together.

More information

Figure 1. JTAGAVRU1 application The JTAGAVRU1 is supported by AVR Studio. Updated versions of AVR Studio is found on

Figure 1. JTAGAVRU1 application The JTAGAVRU1 is supported by AVR Studio. Updated versions of AVR Studio is found on JTAG AVR Emulator through USB Main Features AVR Studio Compatible Supports AVR Devices with JTAG Interface Emulates Digital and Analog On-Chip Functions Data and Program Memory Breakpoints Supports Assembler

More information

S12VR Hardware Design. Guidelines. 1 Introduction. 2 Hardware Design. Guidelines. 2.1 Voltage regulator. Freescale Semiconductor

S12VR Hardware Design. Guidelines. 1 Introduction. 2 Hardware Design. Guidelines. 2.1 Voltage regulator. Freescale Semiconductor Freescale Semiconductor Document Number: AN4643 Application Note Rev 1, 10/2013 S12VR Hardware Design Guidelines by: Carlos Aceff 1 Introduction This document lists the required external components and

More information

Programming in the MAXQ environment

Programming in the MAXQ environment AVAILABLE The in-circuit debugging and program-loading features of the MAXQ2000 microcontroller combine with IAR s Embedded Workbench development environment to provide C or assembly-level application

More information

F²MC-8FX FAMILY MB95100 SERIES EMULATOR HW SETUP 8-BIT MICROCONTROLLER APPLICATION NOTE. Fujitsu Microelectronics Europe Application Note

F²MC-8FX FAMILY MB95100 SERIES EMULATOR HW SETUP 8-BIT MICROCONTROLLER APPLICATION NOTE. Fujitsu Microelectronics Europe Application Note Fujitsu Microelectronics Europe Application Note MCU-AN-395002-E-V10 F²MC-8FX FAMILY 8-BIT MICROCONTROLLER MB95100 SERIES EMULATOR HW SETUP APPLICATION NOTE Revision History Revision History Date 2004-10-12

More information

HandsOn Technology -- HT-MC-02 MODEL: HT-MC-02

HandsOn Technology -- HT-MC-02 MODEL: HT-MC-02 HandsOn Technology 8051 μcontroller Starter Kits FLASH μcontroller PROGRAMMER/DEVELOPMENT SYSTEM MODEL: HT-MC-02 8051 is one of the most popular 8-bit µcontroller architectures in use today, learn it the

More information

Figure 1.1: Some embedded device. In this course we shall learn microcontroller and FPGA based embedded system.

Figure 1.1: Some embedded device. In this course we shall learn microcontroller and FPGA based embedded system. Course Code: EEE 4846 International Islamic University Chittagong (IIUC) Department of Electrical and Electronic Engineering (EEE) Course Title: Embedded System Sessional Exp. 1: Familiarization with necessary

More information

eprom 1 Fri Oct 13 13:01:

eprom 1 Fri Oct 13 13:01: eprom 1 Fri Oct 1 1:01: 1.1 Introduction SECTION EPROM/OTPROM (PROM) This section describes erasable programmable read-only memory/one-time programmable read-only memory (EPROM/OTPROM (PROM)) programming..

More information

PropIO V2 User Guide. Wayne Warthen RetroBrew Computers

PropIO V2 User Guide. Wayne Warthen RetroBrew Computers PropIO V2 User Guide Wayne Warthen RetroBrew Computers August 25, 2017 Contents Summary... 2 Architecture... 3 Compatibility... 5 Construction... 5 Configuration... 8 Connectors... 8 Testing... 8 Usage...

More information

KNJN I2C bus development boards

KNJN I2C bus development boards KNJN I2C bus development boards 2005, 2006, 2007, 2008 fpga4fun.com & KNJN LLC http://www.knjn.com/ Document last revision on January 1, 2008 R12 KNJN I2C bus development boards Page 1 Table of Contents

More information

Embedded Systems and Software

Embedded Systems and Software Embedded Systems and Software Lecture 12 Some Hardware Considerations Hardware Considerations Slide 1 Logic States Digital signals may be in one of three states State 1: High, or 1. Using positive logic

More information

Megawin 8051 OCD ICE

Megawin 8051 OCD ICE Megawin User Manual This document information is the intellectual property of Megawin Technology Co., Ltd. 1 Contents 1 Introduction... 3 Features... 3 Description... 3 2 Hardware Setup... 4 3 Software

More information