SVC & TCSC for Minmum Operational Cost Under Different Loading Condition

Size: px
Start display at page:

Download "SVC & TCSC for Minmum Operational Cost Under Different Loading Condition"

Transcription

1 SVC & TCSC for Minmum Operational Cost Under Different ing Condition Biplab Bhattacharyya 1 Associate Professor, Electrical Engg. Indian School of Mines, Dhanbad, India biplabrec@yahoo.com S.K.Goswami 2 Professor, Electrical Engg. dept. Jadavpur University Kolkata, India skgoswami_ju@yahoo.co.in Vikash Kumar Gupta 3 Research Scholar, Electrical Engg. Indian School of Mines, Dhanbad, India vikash1146@gmail.com Abstract This paper presents Genetic Algorithm (GA) based approach for the allocation & coordinated operation of multiple (Flexible AC Transmission System) devices for the improvement of power transfer capacity in an interconnected power system. Static VAr Compensator (SVC) and the Thyristor Controlled Switched Capacitor, these two devices are used for the improvement of the power transfer ability of the system in our proposed method. The GA based approach is applied on IEEE 30-bus system. The system is reactively loaded starting from base to 200 % of base load. devices are installed in the different locations of the power system and system performance is noticed with and devices. First, the locations, where the devices to be placed is determined by calculating active and reactive power flows in the lines. A Genetic Algorithm based algorithm is then applied to find the amount of magnitudes of the devices. This approach of Genetic Algorithm based placement of devices is tremendous beneficial both in terms of performance and economy which is clearly observed from the result obtained. Keywords- Devices, Line, Optimal Location of Devices, Genetic Algorithm F I. INTRODUCTION ACTS technology is being considered to be an effective means for greater utilization & better control of existing current carrying capacity of a power system. It is known that the power flow through an ac transmission line is a function of line impedance, the magnitude and the phase angle between the sending end and the receiving end voltages. By proper coordination of UPFC (Unified Controller), TCSC (Thyristor controlled Series Capacitor) & SVC (Static Var Compensator) in the power system network, both the active and reactive power flow in the lines can be controlled. Tighter control of power flow and the increased use of transmission capacity by devices are discussed in [1]. A scheme of power flow control in lines is discussed in [2]. Use of static phase shifters and controllers for the purpose of increasing power transfer capacity in the transmission line is described in [3] & [4]. In [5] authors have discussed about the power flow control in transmission network. About the modeling and selection of possible locations for the installation of devices have been discussed in [6]. Assessment and impact on power networks by the use of devices have been discussed in [7] through the concept of steady state security regions. Allocation of variable series capacitor & static phase shifters in transmission lines was the main objective in [8] for the optimal power flow. A hybrid Genetic Algorithmic approach with devices for optimal power flow is dealt in [9]. In a congested power system, first the locations of the devices were decided based on the sensitivity factors and then dispatch problem was solved in [10]. A GA based separate & simultaneous use of Thyristor Controlled Series Capacitor (TCSC), Unified Controller (UPFC), Thyristor Controlled Voltage regulator (TCVR), and Static Var Compensator (SVC) were studied in [11] for increased power flow. The objective of this present work is the optimal allocation of devices in the transmission network so the transmission loss becomes minimized and also for the simultaneous increase of power transfer capacity of the transmission network. Minimization of transmission loss is a problem of reactive power optimization and can be done by controlling reactive generations of the generators, controlling transformer tap positions and adding shunt capacitors in the weak buses [12] but the active power flow pattern can not be controlled. GA based optimization technique [14] is discussed for the placement of devices in some Test systems. In the proposed work, first the locations of the devices are identified by calculating different line flows. Voltage magnitude and the phase angle of the sending end buses of the lines where major active power flow takes place are controlled by UPFC. TCSC s are placed in lines where reactive power flows are very high and the SVC s are connected at the receiving end buses of the other lines carrying significant amount of reactive power. In this proposed work, a Genetic Algorithm based approach considering the simultaneous effect of the three types of the devises are presented and the effectiveness of this technique is clearly evident from the result shown. 1

2 II. DEVICES A. Modelling of Devices & cost functions Mathematical modeling of devices are required for the steady state analysis. Here the devices used in the transmission network are TCSC and SVC. TCSC By modifying the line reactance TCSC acts as either inductive or capacitive compensator. The maximum value of the capacitance is fixed at -0.8 X Line and 0.2X Line is the maximum value of the inductance. Transmission line admittance in which TCSC is connected can be written as G tcsc +jb tcsc = (1) 1 R j(x Line Xtcsc) where R and X Line are the resistance and reactance of the line TCSC. SVC The SVC can be operated as either inductive or capacitive compensation. It can be modeled as a fixed capacitor and a thyristor controlled reactor. So function of the SVC is either to inject reactive power to bus or to absorb reactive power from the bus where it is connected. The SVC's effective reactance X SVC is determined by parallel combination of X C & X L and is given by X SVC = XCXL X [2( - ) 2sin ]- X C where is the firing angle. In our approach, obtaining the firing angle for the determination of X SVC is not required as GA itself generates the value of X SVC either as capacitive or inductive element. B. Devices cost Functions According to [13], cost functions for SVC, and TCSC are given below : TCSC: C TCSC =0.0015(OR) (OR) (US$/kVar) (3) SVC: C SVC =0.0003(OR) (OR) (US $/kvar) (4) Here, (OR) is the operating range of the Devices. L (2) III. OPTIMAL PLACEMENT OF DEVICES Having made the decision to install a device in the system, there are three main issues that are to be considered: types of device, its capacity and location. The decision where they are to be placed is largely dependent on the desired effect and the characteristics of the specific system. SVC s are mostly suitable when reactive power flow or voltage support is necessary. Also the costs of the devices play an important role for the choice of a device. There are two distinct means of placing a device in the system for the purpose of increasing the system s ability to transmit power, thereby allowing for the use of more economic generating units. That is why devices are placed in the more heavily loaded lines to limit the power flow in that line. This causes more power to be sent through the remaining portions of the system while protecting the line with the device for being overloaded. This method which sites the devices in the heavily loaded line is the most effective. If reactive power flow is a significant portion of the total flow on the limiting transmission line, either a TCSC device in the line or a SVC device located at the end of the line that receives the reactive power, may be used to reduce the reactive power flow, thereby increasing the active C. Genetic Algorithm in the proposed method The function of the GA is to find the optimum value of the different devices. Here two different types of devices are used. And for each type of devices, four positions are assigned. Four TCSC modifies reactance of four lines. Similarly four SVC s are to control reactive injection at four buses. In addition transformer tap positions along with reactive generations of the Generators are controlled. In IEEE 30y bus system there are four tap positions and five Generator Buses. So, as a whole seventeen values are to be optimized by Genetic Algorithm. These seventeen controlling parameters are represented with in a string. This is shown in figure 1. Initially a population of N strings is randomly created in such a way so that the parameter values should be with in their limits. Then the objective function is computed for every individual of the population. A biased roulette wheel is created from the values obtained after computing the objective function for all the individuals of the current population. Thereafter the usual Genetic operation such as Reproduction, Cross-over & Mutation takes place. Two individual are randomly selected from the current population for reproduction. Then Cross-over takes place with a probability close to one (here 0.8). Finally mutation with a specific probability (very low) completes one Genetic cycle and individuals of same population with improved characters are created in the next generation. The objective function is then again calculated for all the individual of the new generation and all the genetic operations are again 2

3 performed and the second generation of same population size is produced. This procedure is repeated till the final goal is achieved. IV. TEST RESULTS The proposed technique for the placement of devices is applied on IEEE 30 Bus system. The power system is loaded (reactive loading is considered) and devices are placed at different locations of the power system. The power system is loaded upto the limit of 200% of base reactive load and accordingly the system performance is observed with and devices. Table 1 shows the locations of different devices in the transmission network. Table 2 shows the active & reactive power flow pattern devices in different lines. Table 3 shows the active & reactive power flow pattern with devices in different lines using GA based approach, where as, the magnitude and phase angle of the bus voltages with & devices for highest reactive loading i.e. for 200% is shown in Table 4. Phase angles are given in radian. A comparative study of the operating cost of the system with and devices using GA is given in Table 5. It is observed from Table 1, that SVC s are connected at the buses 21, 7, 17 & 15, the finishing ends of the lines 27, 26, 9, 18 respectively, since these are the four lines carrying highest, second highest, third & fourth highest reactive power respectively, as seen from Table 2, devices. After connecting SVC s at these buses, voltage profile at these buses are improved, also reactive power flow reduces in the lines 27, 26, 9, 18. There is a slight increase of reactive power flow in line 9, in case of base loading with devices. TCSC s are placed in the lines 5, 18, 25 & 41, as these are the next four highest reactive power carriers as seen from Table 2. It is also to be noticed that no device is connected in line 1 because of the fact that it is in between bus 1 and bus 2 though it carries very large active power. Bus 1 is the slack bus and already a device regulates the voltage of the bus 2. Again in any line or in a bus connected with the line, only one device can be placed. From Table 5, we observe that transmission loss is reduced significantly with devices as compared to such devices. A significant economic gain is obtained even at a loading of 200% of base reactive loading which is also evident from Table 5. Here, energy cost is taken as 0.06$/kWh. V. TABLES & FIGURES TABLE I LOCATIONS OF DIFFERENT DEVICES IN THE TRANSMISSION NETWORK TABLE2: ACTIVE & REACTIVE POWER FLOW WITHOUT DEVICES Base TCSC in Lines 150% Base SVC in Buses 25, 41, 28, 5 21, 7, 17, % Base % Base Figure 1. Shows the different devices to be installed in the system with in a string. Figures 2 to 5 shows the variation of operating cost with generation for different cases of reactive loading of the system with GA based Algorithm. 3

4 Base TABLE3: ACTIVE & REACTIVE POWER FLOW WITH DEVICES 150% Base 175% Base 200% Base Bus Voltage TABLE 4: BUS VOLTAGES & PHASE ANGLES WITH AND WITHOUT DEVICES FOR 200% REACTIVE Bus Voltage with LOADING Bus Angle Bus Angle TABLE 5: COMPARATIVE ANALYSIS OF ACTIVE POWER LOSS AND OPERATING COST USING GA ing loss Operating cost due to energy loss 10 6 loss with using GA Operating cost with devices 10 6 Cost of devices Net Saving 10 6 (A) (in $) (in $) (in $) (B) (A-B) 100% % % %

5 TCSC Elements (4 nos) Shunt Elements (4 nos) Transfer Tap (4 nos) Generations (5 nos) Figure 1. String Representing the Control Variables Figure 4. Variation of operating cost with Generation for reactive loading of 175% with GA Figure 2. Variation of operating cost with Generation for base reactive loading with GA Figure 5. Variation of operating cost with Generation for reactive loading of 200 % with GA VI. CONCLUSIONS Figure 3. Variation of operating cost with Generation for reactive loading of 150 % with GA In this approach, GA (Genetic Algorithm) based optimal placement of devices in a transmission network is done for the increased load ability of the power system as well as to minimize the transmission loss. Two different types of devices are considered. It is clearly evident from the results that effective placement of devices at 5

6 proper locations by using suitable optimization technique can significantly improve system performance. Hence, this GA based approach could be a new technique for the installation of devices in the transmission system. REFERENCES [1] N. Hingorani, Flexible AC Transmission, IEEE Spectrum, Vol. 30, No. 4, pp , April [2] M. Noroozian, G. Anderson, Control by use of controllable Series Components, IEEE Trans. Delivery, Vol. 8, No. 3, pp , July [3] M. Iravani, P. L. Dandeno, and D. Maratukulam, Application of Static Phase Shifters in Systems, IEEE Trans Delivery, Vol. 9, No. 3, pp , July [4] D. Ramey, R. Nelson, J. Bian, and T. Lemak, Use of Controllers to enhance Transmission Transfer Limits, Proceedings American Conference, Vol. 56, Part 1, pp , April [5] R. Nelson, J. Bian, and S. Williams, Transmission Series Control, IEEE Trans. Delivery, Vol. 10, No. 1, pp , Jan [6] D.J. Gotham and G.T.Heydt, Control and Studies for System with Devices, IEEE Trans. System, Vol. 13, No. 1, pp , Feb [7] F.D. Galiana, K. Almeida, Assessment and Control Of The Impact Of Devices On System Performance, IEEE Transactions on Systems, Vol. 11, No. 4, pp , Nov [8] T.T. Lie and W. Deng, Optimal Flexible AC Transmission Systems () devices allocation, Int. Journal of Electrical & Energy Systems, Vol. 19, No. 2, pp , [9] T.S. Chung and Y.Z. Li, A Hybrid GA approach for OPF with Consideration of Devices, IEEE Engineering Review, pp , Aug [10] S.N. Singh and A.K. David, Optimal location of devices for congestion management, Electric System Research Vol. 58, pp , [11] S.Gerbex, R. Cherkaoui, and A.J. Germond, Optimal Location of Multitype Devices in a System by Genetic Algorithm, IEEE Trans. Systems, Vol. 16, pp , Aug [12] B.Bhattacharyya, S.K.Goswami, R.C.Bansal, Loss- Sensitivity Approach in Evolutionary Algorithms for Planning Electric Components & Systems, Vol. 37, No. 3, 2009, pp [13] L.J. Cai, Optimal Choice and Allocation of Devices in Deregulated Electricity Market Using Genetic Algorithms IEEE, X/04/2, [14] D.E. Goldberg, Genetic Algorithms in Search, Optimization & Learning, Addison-Wesley, New York USA. 6

Performance analysis of FACTS devices in steady state power flow

Performance analysis of FACTS devices in steady state power flow Performance analysis of FACTS devices in steady state power flow VELAMURI SURESH 1, SREEJITH.S 2 1 Research Scholar, 2 Associate Professor School of Electrical engineering, VIT University Vellore, INDIA

More information

POWER FACTOR CORRECTION USING SVC WITH FUZZY LOGIC CONTROLLER

POWER FACTOR CORRECTION USING SVC WITH FUZZY LOGIC CONTROLLER POWER FACTOR CORRECTION USING SVC WITH FUZZY LOGIC CONTROLLER Puranik Sahu 1, Arun Pachori 2 1 puranik1987@gmail.com Abstract: To transmit or distribute fixed amount of power at fixed voltage, the conductor

More information

CHAPTER 4 FACTS CONTROLLERS FOR OPTIMIZATION OF POWER SYSTEM

CHAPTER 4 FACTS CONTROLLERS FOR OPTIMIZATION OF POWER SYSTEM 52 CHAPTER 4 FACTS CONTROLLERS FOR OPTIMIZATION OF POWER SYSTEM 4.1 INTRODUCTION Flexible AC Transmission System (FACTS) controllers have been used in power systems with the objective of improving system

More information

IJETST- Volume 01 Issue 09 Pages November ISSN

IJETST- Volume 01 Issue 09 Pages November ISSN International Journal of Emerging Trends in Science and Technology Optimal Placement of SVC in Power System for Voltage Stability Enhancement Using Genetic Algorithm Authors Nithin A Skaria 1, Sarin Baby

More information

Optimization of Reactive Power by Using SVC and TCSC Devices for Reducing Transmission Losses

Optimization of Reactive Power by Using SVC and TCSC Devices for Reducing Transmission Losses Optimization of Reactive Power by Using SVC and TCSC Devices for Reducing Transmission Losses Abstract Kuldeep G, Thakre 1 Dr. Z. J. Khan 2 1 Department of electrical engineering, RCERT, Gondwana University,

More information

International Journal of Scientific & Engineering Research Volume 4, Issue 2, February ISSN

International Journal of Scientific & Engineering Research Volume 4, Issue 2, February ISSN International Journal of Scientific & Engineering Research Volume 4, Issue, February-1 1 Voltage Stability Enhancement through Static Var Compensator A.S. Siddiqui 1, Tanmoy Deb Jamia Millia Islamia, New

More information

MODELING AND SIMULATION OF SVC CONTROLLER FOR ENHANCEMENT OF POWER SYSTEM STABILITY

MODELING AND SIMULATION OF SVC CONTROLLER FOR ENHANCEMENT OF POWER SYSTEM STABILITY MODELING AND SIMULATION OF SVC CONTROLLER FOR ENHANCEMENT OF POWER SYSTEM STABILITY Alisha Banga 1 and S.S. Kaushik 2 1 Lecturer ECE Deptt., Advanced Institute of Technology & Management, Palwal. 2 Assistant

More information

Optimal Placement and Sizing of SVC for Improving Voltage Profile of Power System

Optimal Placement and Sizing of SVC for Improving Voltage Profile of Power System Optimal Placement and Sizing of SVC for Improving Voltage Profile of Power System Shraddha Udgir, Sarika Varshney & Laxmi Srivastava Deptt. of Electrical Engineering, Madhav Institute of Technology & Science,

More information

Transient Stability Improvement of Long Transmission Line System by Using SVC

Transient Stability Improvement of Long Transmission Line System by Using SVC Transient Stability Improvement of Long Transmission Line System by Using SVC Dr.Tarlochan Kaur 1 and Sandeep Kakran 2 1 Associate Professor, EED, PEC University of Technology, Chandigarh, India 2 Assistant

More information

Study of Transient Stability Improvement of IEEE 9-Bus System by using SVC

Study of Transient Stability Improvement of IEEE 9-Bus System by using SVC Study of Transient Stability Improvement of IEEE 9-Bus System by using SVC Rathnasagar Rangu 1, Poonam Upadhyay 2 1 PG Student, VNR VJIET, Hyderabad, India 2 Professor, VNR VJIET, Hyderabad, India Abstract

More information

Transient Stability Improvement in Transmission System Using SVC with fuzzy logic Control

Transient Stability Improvement in Transmission System Using SVC with fuzzy logic Control Transient Stability Improvement in Transmission System Using SVC with fuzzy logic Control Aashutosh Khasdeo Assistant Professor, Dept of Electrical & Electronics Engineering, LNCT Bhopal, MP, India ---------------------------------------------------------------------***---------------------------------------------------------------------

More information

OPTIMAL LOCATION OF SVC USING BENEFIT FACTORS TO IMPROVE THE VOLTAGE PROFILE IN POWER SYSTEMS

OPTIMAL LOCATION OF SVC USING BENEFIT FACTORS TO IMPROVE THE VOLTAGE PROFILE IN POWER SYSTEMS European International Journal of Science and Technology Vol. 4 No. 2 February, 2015 OPTIMAL LOCATION OF SVC USING BENEFIT FACTORS TO IMPROVE THE VOLTAGE PROFILE IN POWER SYSTEMS IRENE N. MUISYO a, KEREN

More information

IJSRD - International Journal for Scientific Research & Development Vol. 3, Issue 10, 2015 ISSN (online):

IJSRD - International Journal for Scientific Research & Development Vol. 3, Issue 10, 2015 ISSN (online): IJSRD - International Journal for Scientific Research & Development Vol. 3, Issue 10, 2015 ISSN (online): 2321-0613 Comparison of Shunt Facts Devices for the Improvement of Transient Stability of Two Machine

More information

Simulation and Analysis of Static Var Compensator with Matlab

Simulation and Analysis of Static Var Compensator with Matlab The International Journal Of Engineering And Science (IJES) Volume 4 Issue 12 Pages PP -07-11 2015 ISSN (e): 2319 1813 ISSN (p): 2319 1805 Simulation and Analysis of Static Var Compensator with Matlab

More information

Optimal TCSC and SVC Placement for Voltage Profile Enhancement and Loss Minimization Using Bee Colony Optimization

Optimal TCSC and SVC Placement for Voltage Profile Enhancement and Loss Minimization Using Bee Colony Optimization Optimal TCSC and SVC Placement for Voltage Profile Enhancement and Loss Minimization Using Bee Colony Optimization Sudipta Das, Biswa Ranjan Kuanr,Niladri Chakraborty Department of Power Engineering Jadavpur

More information

ISSN: ISO 9001:2008 Certified International Journal of Engineering and Innovative Technology (IJEIT) Volume 7, Issue 1, July 2017

ISSN: ISO 9001:2008 Certified International Journal of Engineering and Innovative Technology (IJEIT) Volume 7, Issue 1, July 2017 Congestion Management in Deregulated Power System Using Market Splitting Based Approach Manish Harchand 1, KanwardeepSingh 2 M.Tech student 1, Associate professor 2 Department of Electrical Engineering,

More information

Chapter 3 MODELING OF SHUNT FACTS DEVICES. The Shunt FACTS Devices are used for voltage control and

Chapter 3 MODELING OF SHUNT FACTS DEVICES. The Shunt FACTS Devices are used for voltage control and 44 Chapter 3 MODELING OF SHUNT FACTS DEVICES 3.0 Introduction The Shunt FACTS Devices are used for voltage control and power flow control, but these are good at for voltage control. These are not in a

More information

Modeling and Simulation of Static VAR Compensator Controller for Improvement of Voltage Level in Transmission Lines

Modeling and Simulation of Static VAR Compensator Controller for Improvement of Voltage Level in Transmission Lines Modeling and Simulation of Static VAR Compensator Controller for Improvement of Voltage Level in Transmission Lines 1 B.T.RAMAKRISHNA RAO, 2 N.GAYATRI, 3 P.BALAJI, 4 K.SINDHU 1 Associate Professor, Department

More information

Optimal Placement of SVC for the Transmission Congestion Management

Optimal Placement of SVC for the Transmission Congestion Management pp. 54-58 Krishi Sanskriti Publications http://www.krishisanskriti.org/areee.html Optimal Placement of SVC for the Transmission Congestion Management Nagarajakumari CH 1, K.Chandra Sekhar 2 1,2 RVR & JC

More information

The Study of Voltage Profile and Power Quality with SVC in Transmission System at Different Loads

The Study of Voltage Profile and Power Quality with SVC in Transmission System at Different Loads The Study of Voltage Profile and Power Quality with SVC in Transmission System at Different Loads S.RaviKumar, B.Ramoji Rao, D.Ramesh Abstract This paper illustrates the effect of different static load

More information

Optimal Reactive Power Dispatch Using Hybrid Loop-Genetic Based Algorithm

Optimal Reactive Power Dispatch Using Hybrid Loop-Genetic Based Algorithm Optimal Reactive Power Dispatch Using Hybrid Loop-Genetic Based Algorithm Md Sajjad Alam Student Department of Electrical Engineering National Institute of Technology, Patna Patna-800005, Bihar, India

More information

Minimization of Power Loss and Voltage Deviation by SVC Placement Using GA.

Minimization of Power Loss and Voltage Deviation by SVC Placement Using GA. International Journal of Control and Automation Vol.7, No.6 (2014), pp.95-108 http://dx.doi.org/10.14257/ijca.2014.7.6.10 Minimization of Power Loss and Voltage Deviation by SVC Placement Using GA Shishir

More information

Voltage Stability assessment by SVC Device Via CPF

Voltage Stability assessment by SVC Device Via CPF ICEN 2 International Conference on Electrical Networks. Sidi Bel-Abbès, September 28 & 29,2 Voltage Stability assessment by SVC Device Via CPF O. L. BEKI *, M.K. FELLAH** and M. F. BENKHOIS *** * ICEPS

More information

Static Var Compensator: Effect of Fuzzy Controller and Changing Membership Functions in its operation

Static Var Compensator: Effect of Fuzzy Controller and Changing Membership Functions in its operation International Journal of Electrical Engineering. ISSN 0974-2158 Volume 6, Number 2 (2013), pp. 189-196 International Research Publication House http://www.irphouse.com Static Var Compensator: Effect of

More information

Voltage Profile Improvement of Transmission Lines Using Static VAR Compensator

Voltage Profile Improvement of Transmission Lines Using Static VAR Compensator Voltage Profile Improvement of Transmission Lines Using Static VAR Compensator Devendra Kumar Sahu 1, Ankit Dubey 2 PG Student [ED&PS], Dept. of EEE, Disha Institute of Management & Technology, Raipur,

More information

Final Report. Mini Project TET Group nr 7 - Project nr 4. Students: Hans Lavoll Halvorson, NTNU

Final Report. Mini Project TET Group nr 7 - Project nr 4. Students: Hans Lavoll Halvorson, NTNU Final Report Mini Project TET4190 28.10.2010 Optimal Distance for connection of offshore wind farm with AC cable with SVC or STATCOM To increase the distance compensation technologies such as SVC and STATCOM

More information

Artificial Neural Network Controller With Static VAR Compensator to Improve Transient Stability for A Grid Connected Distributed Generation System

Artificial Neural Network Controller With Static VAR Compensator to Improve Transient Stability for A Grid Connected Distributed Generation System nternational Journal of Applied Sciences, Engineering and Management SSN 2320 3439, Vol. 07, No. 02, March 2018, pp. 01 05 Artificial Neural Network Controller With Static VAR Compensator to mprove Transient

More information

Analysis of Power System Stability by Using Optimally Located SVC and STATCOM

Analysis of Power System Stability by Using Optimally Located SVC and STATCOM Master Thesis on Analysis of Power System Stability by Using Optimally Located SVC and STATCOM XR EE ES 2009:010 Thesis Examiner: Thesis Supervisor: Submitted by: Mehrdad Ghandhari Hector Latorre / Jai

More information

Power Flow Method for Loss Allocation in Radial Distribution Networks with DGs

Power Flow Method for Loss Allocation in Radial Distribution Networks with DGs Power Flow Method for Loss Allocation in Radial Distribution Networks with DGs G.Naguraiah 1, K. Jithendra Goud 2 1M.Tech student, Electrical Department, JNTUA College of Engineering, Anantapur, India.

More information

Original Contribution EFFECTS OF PARALLEL FACTS CONTROLLERS ON STAEDY STATE VOLTAGE STABILITY MARGIN M. A. Kamarposhti 1 *, H.

Original Contribution EFFECTS OF PARALLEL FACTS CONTROLLERS ON STAEDY STATE VOLTAGE STABILITY MARGIN M. A. Kamarposhti 1 *, H. Trakia Journal of Sciences, Vol. 7, No. 3, pp 8-90, 2009 Copyright 2009 Trakia University Available online at: http://www.uni-sz.bg ISSN 33-7050 (print) ISSN 33-355 (online) Original Contribution EFFECTS

More information

MAHALAKSHMI ENGINEERING COLLEGE TIRUCHIRAPALLI EE-2401 POWER SYSTEM OPERATION AND CONTROL UNIT-III REACTIVE POWER VOLTAGE CONTROL

MAHALAKSHMI ENGINEERING COLLEGE TIRUCHIRAPALLI EE-2401 POWER SYSTEM OPERATION AND CONTROL UNIT-III REACTIVE POWER VOLTAGE CONTROL MAHALAKSHMI ENGINEERING COLLEGE TIRUCHIRAPALLI 621213 EE-2401 POWER SYSTEM OPERATION AND CONTROL UNIT-III REACTIVE POWER VOLTAGE CONTROL TWO MARKS: 1. What are the sources of reactive power? How it is

More information

Performance Analysis of Power Flow Control Through Statcom, SVC and UPFC

Performance Analysis of Power Flow Control Through Statcom, SVC and UPFC Volume-4, Issue-, February-204, ISSN No.: 2250-0758 International Journal of Engineering and Management Research Available at: www.ijemr.net Page Number: 84-89 Performance Analysis of Power Flow Control

More information

FUZZY LOGIC TECHNIQUE FOR CONGESTION LINE IDENTIFICATION IN POWER SYSTEM

FUZZY LOGIC TECHNIQUE FOR CONGESTION LINE IDENTIFICATION IN POWER SYSTEM FUZZY LOGIC TECHNIQUE FOR CONGESTION LINE IDENTIFICATION IN POWER SYSTEM Mohd Ali N. Z, I. Musirin, H. Abdullah and S. I. Suliman Faculty of Electrical Engineering, Universiti Teknologi Mara Malaysia,

More information

Simulation of FACTS Devices as Reactive Power Compensators and Voltage Controllers in the Smart Grid

Simulation of FACTS Devices as Reactive Power Compensators and Voltage Controllers in the Smart Grid Paper ID #6672 Simulation of FACTS Devices as Reactive Power Compensators and Voltage Controllers in the Smart Grid Ramadan Elmoudi, University at Buffalo Ramadan Elmoudi (IEEE Student M 10) received the

More information

Research Article Development of Inexpensive Static Var Compensator Using PIC

Research Article Development of Inexpensive Static Var Compensator Using PIC Research Journal of Applied Sciences, Engineering and Technology 7(5): 925-929, 2014 DOI:10.19026/rjaset.7.336 ISSN: 2040-7459; e-issn: 2040-7467 2014 Maxwell Scientific Publication Corp. Submitted: December

More information

Power Stability and Oscillation Damping Analysis of a Three Machine Nine Bus System

Power Stability and Oscillation Damping Analysis of a Three Machine Nine Bus System Power Stability and Oscillation Damping Analysis of a Three Machine Nine Bus System Suraj Kumar, Priyajit Dash M.Tech Student, Department of EEE, BRCM College of Engineering, Behal, Bhiwani Haryana, India

More information

Transient stability of 11-bus system using SVC and improvement of voltage profile in transmission line using series compensator

Transient stability of 11-bus system using SVC and improvement of voltage profile in transmission line using series compensator American Journal of Electrical Power and Energy Systems 2014; 3(4): 76-85 Published online August 30, 2014 (http://www.sciencepublishinggroup.com/j/epes) doi: 10.11648/j.epes.20140304.12 ISSN: 2326-912X

More information

Optimal Allocation of Distributed Generation (DGs) and Static VAR Compensator (SVC) in a power system using Revamp Voltage Stability Indicator

Optimal Allocation of Distributed Generation (DGs) and Static VAR Compensator (SVC) in a power system using Revamp Voltage Stability Indicator Optimal Allocation of Distributed Generation (DGs) and Static VAR Compensator (SVC) in a power system using Revamp Voltage Stability Indicator Abhilipsa Rath Sriparna Roy Ghatak Parag Goyal Department

More information

[Kashyap*, 5(2): February, 2016] ISSN: (I2OR), Publication Impact Factor: 3.785

[Kashyap*, 5(2): February, 2016] ISSN: (I2OR), Publication Impact Factor: 3.785 IJESRT INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY DETERMINATION OF OPTIMAL LOCATION OF SVC CONTROLLER DEVICES IN ELECTRIC TRANSMISSION SYSTEM BY USING PSO METHOD Vibha Kashyap*,

More information

A Genetic Based Fault Location Algorithm for Transmission Lines

A Genetic Based Fault Location Algorithm for Transmission Lines A Genetic Based Fault Location Algorithm for Transmission Lines K. M. EL-Naggar Assistant Professor, College of Technological Studies, Kuwait Summary Overhead transmission lines are parts of the electric

More information

Optimal Allocation of FACTS Devices for ATC Enhancement Using Bees Algorithm

Optimal Allocation of FACTS Devices for ATC Enhancement Using Bees Algorithm Optimal Allocation of FACTS Devices for ATC Enhancement Using Bees Algorithm R.Mohamad Idris, A.Khairuddin, and M.W.Mustafa International Science Index, Electrical and Computer Engineering waset.org/publication/11445

More information

A Novel Method for Power-Flow Solution of Radial Distribution Networks

A Novel Method for Power-Flow Solution of Radial Distribution Networks A Novel Method for Power-Flow Solution of Radial Distribution Networks 1 Narinder Singh, 2 Prof. Rajni Bala 1 Student-M.Tech(Power System), 2 Professor(Power System) BBSBEC, Fatehgarh Sahib, Punjab Abstract

More information

Enhancement of Voltage Stability by Optimal Location of Static Var Compensator Using Genetic Algorithm and Particle Swarm Optimization

Enhancement of Voltage Stability by Optimal Location of Static Var Compensator Using Genetic Algorithm and Particle Swarm Optimization American J. of Engineering and Applied Sciences 5 (): 70-77, 202 ISSN 94-7020 204 Kalaivani and Kamaraj, This open access article is distributed under a Creative Commons Attribution (CC-BY) 3.0 license

More information

ISSN: [Keswani* et al., 7(1): January, 2018] Impact Factor: 4.116

ISSN: [Keswani* et al., 7(1): January, 2018] Impact Factor: 4.116 IJESRT INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY AUTOMATIC TEST CASE GENERATION FOR PERFORMANCE ENHANCEMENT OF SOFTWARE THROUGH GENETIC ALGORITHM AND RANDOM TESTING Bright Keswani,

More information

CHAPTER-5 APPLICATION OF SYMBIOTIC ORGANISMS SEARCH ALGORITHM

CHAPTER-5 APPLICATION OF SYMBIOTIC ORGANISMS SEARCH ALGORITHM 100 CHAPTER-5 APPLICATION OF SYMBIOTIC ORGANISMS SEARCH ALGORITHM 5.1 INTRODUCTION The progressive increase in electrical demand has been the cause for technical problems to the utility companies such

More information

Distributed Load Flow using Partitioning and Equivalencing of Power Networks

Distributed Load Flow using Partitioning and Equivalencing of Power Networks 16th NATIONAL POWER SYSTEMS CONFERENCE, 15th-17th DECEMBER, 2010 335 Distributed Load Flow using Partitioning and Equivalencing of Power Networks G A Ezhilarasi Department of Electrical Engineering Indian

More information

A Svc Light Based Technique for Power Quality Improvement for Grid Connected Wind Energy System

A Svc Light Based Technique for Power Quality Improvement for Grid Connected Wind Energy System IOSR Journal of Electrical and Electronics Engineering (IOSR-JEEE) e-issn: 2278-1676,p-ISSN: 2320-3331, Volume 7, Issue 5 (Sep. - Oct. 2013), PP 52-58 A Svc Light Based Technique for Power Quality Improvement

More information

Automatic Control & Systems Engineering.

Automatic Control & Systems Engineering. Automatic Control & Systems Engineering. RECEDING-HORIZON CONTROL & OPTIMISATION OF POWER NETWORKS Rinu Ravikumar Vasudeva Panicker August 2013 Supervisor: Dr Paul Trodden A dissertation submitted in partial

More information

Modelling and Simulation of the SVC for Power System Flow Studies: Electrical Network in voltage drop

Modelling and Simulation of the SVC for Power System Flow Studies: Electrical Network in voltage drop eonardo Journal of Sciences ISSN 583-033 Issue 3, Jul-December 008 p. 53-70 odelling and Simulation of the SVC for ower Sstem Flow Studies: Electrical Networ in voltage drop Narimen Aouzellag AHAÇANI,

More information

THE MAIN purpose of optimal reactive power flow (ORPF)

THE MAIN purpose of optimal reactive power flow (ORPF) IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. 21, NO. 3, AUGUST 2006 1163 A Hybrid Genetic Algorithm Interior Point Method for Optimal Reactive Power Flow Wei Yan, Fang Liu, C. Y. Chung, Member, IEEE, and K.

More information

Congestion Management in Deregulated Power System by Fuzzy Based Optimal Location and Sizing of UPFC

Congestion Management in Deregulated Power System by Fuzzy Based Optimal Location and Sizing of UPFC Congestion Management in Deregulated Power System by Fuzzy Based Optimal Location and Sizing of UPFC UMA.V / P.LAKSHMI / J.D.ANUNCIYA Department of Electrical & Electronics Engineering Anna University

More information

Voltage Collapse Prediction and Voltage Stability Enhancement by Using Static Var Compensator

Voltage Collapse Prediction and Voltage Stability Enhancement by Using Static Var Compensator D. V. Bhaskar Reddy Int. Journal of Engineering Research and Applications RESEARCH ARTICLE OPEN ACCESS Voltage Collapse Prediction and Voltage Stability Enhancement by Using Static Var Compensator D. V.

More information

Optimal Location and Size of Distributed Energy Resources Using Sensitivity Analysis-Based Approaches

Optimal Location and Size of Distributed Energy Resources Using Sensitivity Analysis-Based Approaches Optimal Location and Size of Distributed Energy Resources Using Sensitivity Analysis-Based Approaches Mohammed Benidris Electrical & Biomedical Engineering University of Nevada, Reno Reno, NV 89557, USA

More information

Lessons Learned in Static VAR Compensator Protection

Lessons Learned in Static VAR Compensator Protection Lessons Learned in Static VAR Compensator Protection Aaron Findley, Mychal Hoffman POWER Engineers, Inc. Dan Sullivan, Jan Paramalingam Mitsubishi Electric Power Product Inc. Presented by: Aaron Findley

More information

A Genetic Algorithm for Solving the Optimal Power Flow Problem

A Genetic Algorithm for Solving the Optimal Power Flow Problem A Genetic Algorithm for Solving the Optimal Power Flow Problem Tarek BOUKTIR a, Linda SLIMANI a, M. BELKACEMI b a Department of Electrical Engineering, University of Oum El Bouaghi,04000, Algeria. Email:tbouktir@lycos.com;

More information

ACTIVE POWER LOSS MINIMIZATION IN RADIAL DISTRIBUTION SYSTEM USING NETWORK RECONFIGURATION IN THE PRESENCE OF DISTRIBUTED GENERATION

ACTIVE POWER LOSS MINIMIZATION IN RADIAL DISTRIBUTION SYSTEM USING NETWORK RECONFIGURATION IN THE PRESENCE OF DISTRIBUTED GENERATION ACTIVE POWER LOSS MINIMIZATION IN RADIAL DISTRIBUTION SYSTEM USING NETWORK RECONFIGURATION IN THE PRESENCE OF DISTRIBUTED GENERATION 1 K.SANDHYA, 2 D.SAI KRISHNA KANTH 1 PG Student, Dept of EEE, Annamacharya

More information

A Simple and Direct Approach for Unbalanced Radial Distribution System three phase Load Flow Solution

A Simple and Direct Approach for Unbalanced Radial Distribution System three phase Load Flow Solution Research Journal of Applied Sciences, Engineering and Technology 2(5): 452-459, 2010 ISSN: 2040-7467 Maxwell Scientific Organization, 2010 Submitted Date: May 16, 2010 Accepted Date: May 27, 2010 Published

More information

Unified PMU Placement Algorithm for Power Systems

Unified PMU Placement Algorithm for Power Systems Unified PMU Placement Algorithm for Power Systems Kunal Amare, and Virgilio A. Centeno Bradley Department of Electrical and Computer Engineering, Virginia Tech Blacksburg, VA-24061, USA. Anamitra Pal Network

More information

WECC Criterion MOD-(11 and 13)-WECC-CRT-1.1

WECC Criterion MOD-(11 and 13)-WECC-CRT-1.1 WECC Criterion MOD-(11 and 13)-WECC-CRT-1.1 A. Introduction 1. Title: Steady State and Dynamic Data Requirements 2. Number: MOD-(11 and 13)-WECC-CRT-1.1 3. Purpose: To establish the consistent data requirements

More information

AN EVOLUTIONARY APPROACH TO DISTANCE VECTOR ROUTING

AN EVOLUTIONARY APPROACH TO DISTANCE VECTOR ROUTING International Journal of Latest Research in Science and Technology Volume 3, Issue 3: Page No. 201-205, May-June 2014 http://www.mnkjournals.com/ijlrst.htm ISSN (Online):2278-5299 AN EVOLUTIONARY APPROACH

More information

OPTIMAL ALLOCATION OF DISTRIBUTED RESOURCES CONSIDERING CUMULATIVE VOLTAGE STABILITY INDEX FOR POWER DISTRIBUTION NETWORK USING TLBO

OPTIMAL ALLOCATION OF DISTRIBUTED RESOURCES CONSIDERING CUMULATIVE VOLTAGE STABILITY INDEX FOR POWER DISTRIBUTION NETWORK USING TLBO International Journal of Electrical Engineering & Technology (IJEET) Volume 9, Issue 6, November December 2018, pp. 14 23, Article ID: IJEET_09_06_002 Available online at http://www.iaeme.com/ijeet/issues.asp?jtype=ijeet&vtype=9&itype=6

More information

COMPARISON OF OPTIMIZATION TECHNIQUE TO FIND THE OPTIMAL LOCATION OF FACTS CONTROLLERS FOR TRANSMISSION LINE

COMPARISON OF OPTIMIZATION TECHNIQUE TO FIND THE OPTIMAL LOCATION OF FACTS CONTROLLERS FOR TRANSMISSION LINE American Journal of Applied Sciences 11 (2): 280-290, 2014 ISSN: 1546-9239 2014 Science Publication doi:10.3844/ajassp.2014.280.290 Published Online 11 (2) 2014 (http://www.thescipub.com/ajas.toc) COMPARISON

More information

IMPERIALISTIC COMPETITIVE ALGORITHM FOR VOLTAGE STABILITY ENHANCEMENT AND REAL POWER LOSS MINIMISATION

IMPERIALISTIC COMPETITIVE ALGORITHM FOR VOLTAGE STABILITY ENHANCEMENT AND REAL POWER LOSS MINIMISATION IMPERIALISTIC COMPETITIVE ALGORITHM FOR VOLTAGE STABILITY ENHANCEMENT AND REAL POWER LOSS MINIMISATION 1 B.RAJENDRA PRASAD, 2 P.B.CHENNAIAH, 3 P.SURESH BABU Student,Asst.Professor, Asst.Professor Email:

More information

LAB1 INTRODUCTION TO PSS/E EE461: POWER SYSTEMS COLORADO STATE UNIVERSITY

LAB1 INTRODUCTION TO PSS/E EE461: POWER SYSTEMS COLORADO STATE UNIVERSITY LAB1 INTRODUCTION TO PSS/E EE461: POWER SYSTEMS COLORADO STATE UNIVERSITY PURPOSE: The purpose of this lab is to introduce PSS/E. This lab will introduce the following aspects of PSS/E: Introduction to

More information

SMUD Model Data Requirements & Reporting Procedures MOD VERSION 1.2

SMUD Model Data Requirements & Reporting Procedures MOD VERSION 1.2 SMUD Model Data Requirements & Reporting Procedures MOD-032-1 VERSION 1.2 NOVEMBER 10, 2015 1 TABLE OF CONTENTS INTRODUCTION... 2 1.1 Purpose... 2 1.2 Audience... 3 1.3 Process Overview... 3 Figure 1-1:

More information

Power Quality Enhancement using Different FACTS Devices.

Power Quality Enhancement using Different FACTS Devices. International Journal of Engineering Research and Development e-issn: 2278-067X, p-issn: 2278-800X, www.ijerd.com Volume 10, Issue 7 (July 2014), PP.51-57 Power Quality Enhancement using Different FACTS

More information

SYNCHRONIZED PHASOR MEASUREMENTS FOR STATE ESTIMATION

SYNCHRONIZED PHASOR MEASUREMENTS FOR STATE ESTIMATION Électrotechnique et électroénergétique SYNCHRONIZED PHASOR MEASUREMENTS FOR STATE ESTIMATION MIHAI GAVRILAŞ, 1 IONUŢ RUSU, 1 GILDA GAVRILAŞ, 1 OVIDIU IVANOV 1 Key words: State estimation, Phasor measurements,

More information

Transmission Distribution Microgrid - DER

Transmission Distribution Microgrid - DER A Co-Simulation Approach for modeling Transmission Distribution Microgrid - DER Dr. Ning Lu PHD Students: Catie McEntee and Fuhong Xie North Carolina State University, Raleigh, NC USA 1 Challenges Voltage

More information

National Load Despatch Centre Power System Operation Corporation

National Load Despatch Centre Power System Operation Corporation Module on Procedure for Data Collection National Load Despatch Centre Power System Operation Corporation Background Algorithms/ Processes AC Load flow and transmission losses Slack bus determination- Average

More information

Reactive Power Control and Transmission Line Loss Reduction with Realization of FACT Controller

Reactive Power Control and Transmission Line Loss Reduction with Realization of FACT Controller International Journal of Electronics Engineering Research. ISSN 0975-6450 Volume 9, Number 8 (2017) pp. 1297-1310 Research India Publications http://www.ripublication.com Reactive Power Control and Transmission

More information

Dr. Ramesh Kumar, Nayan Kumar (Department of Electrical Engineering,NIT Patna, India, (Department of Electrical Engineering,NIT Uttarakhand, India,

Dr. Ramesh Kumar, Nayan Kumar (Department of Electrical Engineering,NIT Patna, India, (Department of Electrical Engineering,NIT Uttarakhand, India, Dr Ramesh Kumar, Nayan Kumar/ International Journal of Engineering Research and An Efficent Particle Swarm Optimisation (Epso) For Solving Economic Load Dispatch (Eld) Problems Dr Ramesh Kumar, Nayan Kumar

More information

Tutorials. Tutorial: Creating a New Case Page 1 of 13

Tutorials. Tutorial: Creating a New Case Page 1 of 13 Tutorial: Creating a New Case Page 1 of 13 This procedure describes how to create a simple power system model using PowerWorld Simulator. This procedure was developed for use with version 13 and later

More information

ABB static var compensator stabilizes Namibian grid voltage

ABB static var compensator stabilizes Namibian grid voltage Power ABB static var compensator stabilizes Namibian grid voltage factor! Rolf Grünbaum, Mikael Halonen, Staffan Rudin The spectacular dune landscapes of Namibia are a key factor in the country s booming

More information

Comparison of Online Record Linkage Techniques

Comparison of Online Record Linkage Techniques International Research Journal of Engineering and Technology (IRJET) e-issn: 2395-0056 Volume: 02 Issue: 09 Dec-2015 p-issn: 2395-0072 www.irjet.net Comparison of Online Record Linkage Techniques Ms. SRUTHI.

More information

FACTS and HVDC for Grid Connection of Large Wind Farms

FACTS and HVDC for Grid Connection of Large Wind Farms David Larsson Power-Gen Europe 2005 Milan, Italy FACTS and HVDC for Grid Connection of Large Wind Farms www.abb.com/facts FACTS Agenda Wind Generators Response to Grid Faults PICTURE JPG-FORMAT WEB OPTIMIZED

More information

Hybrid Real coded Genetic Algorithm - Differential Evolution for Optimal Power Flow

Hybrid Real coded Genetic Algorithm - Differential Evolution for Optimal Power Flow Hybrid Real coded Genetic Algorithm - Differential Evolution for Optimal Power Flow C.N. Ravi 1, G. Selvakumar 2, C. Christober Asir Rajan 3 1 Research Scholar, Sathyabama University, Chennai, Tamil Nadu,

More information

Simulation and modeling of grid connected TSC/TSR system using MATLAB

Simulation and modeling of grid connected TSC/TSR system using MATLAB Simulation and modeling of grid connected TSC/TSR system using MATLAB V. RAMALAKSHMI PG Scholar Guide : Er.S.T.Rama Department Of Electrical And Electronics Engineering Dr. M.G.R. Educational and Research

More information

ATPG for Faults Analysis in VLSI Circuits Using Immune Genetic Algorithm

ATPG for Faults Analysis in VLSI Circuits Using Immune Genetic Algorithm ATPG for Faults Analysis in VLSI Circuits Using Immune Genetic Algorithm P.K.Chakrabarty 1, S.N.Patnaik 2 1Professor, Department of CSE., IT,BHU, India 2Asst.Professor, ECE Department, DRIEMS, Cuttack,

More information

Hybrid Approach for Placement of Multiple DGs in Primary Distribution Networks

Hybrid Approach for Placement of Multiple DGs in Primary Distribution Networks Asian Journal of Electrical Sciences ISSN: 2249 6297, Vol. 7, No. 2, 2018, pp. 90-95 The Research Publication, www.trp.org.in Hybrid Approach for Placement of Multiple DGs in Primary Distribution Networks

More information

Synthesis of Supervisory Control of Discrete Event System for Static VAR Compansator

Synthesis of Supervisory Control of Discrete Event System for Static VAR Compansator Synthesis of Supervisory Control of Discrete Event System for Static VAR Compansator Tarun Jain Department of Electrical Engineering Indian Institute of Technology, BHU Varanasi, India tarun.jain.eee10@itbhu.ac.in

More information

Preprocessing of Stream Data using Attribute Selection based on Survival of the Fittest

Preprocessing of Stream Data using Attribute Selection based on Survival of the Fittest Preprocessing of Stream Data using Attribute Selection based on Survival of the Fittest Bhakti V. Gavali 1, Prof. Vivekanand Reddy 2 1 Department of Computer Science and Engineering, Visvesvaraya Technological

More information

Requirements for Data for Power System Modeling and Analysis (MOD-032-1) Arizona Public Service Company

Requirements for Data for Power System Modeling and Analysis (MOD-032-1) Arizona Public Service Company Requirements for Data for Power System Modeling and Analysis (MOD-032-1) Arizona Public Service Company December 29, 2016 APS Requirements for Data for Power System Modeling and Analysis Table of Contents

More information

A guide on PowerWorld Simulator ver. 12.0

A guide on PowerWorld Simulator ver. 12.0 A guide on PowerWorld Simulator ver. 12.0 This tutorial has been developed to aid the undergraduate and graduate students at the University of Cyprus to learn the basic features of PowerWorld. It is not

More information

Study on Power Transformer Inrush Current

Study on Power Transformer Inrush Current IOSR Journal of Electrical and Electronics Engineering (IOSR-JEEE) e-issn: 2278-1676,p-ISSN: 2320-3331, PP 59-63 www.iosrjournals.org Study on Power Transformer Inrush Current Gopika R, Deepa Sankar Department

More information

OPTIMAL MONITORING AND VISUALIZATION OF STEADY STATE POWER SYSTEM OPERATION. A Dissertation BEI XU

OPTIMAL MONITORING AND VISUALIZATION OF STEADY STATE POWER SYSTEM OPERATION. A Dissertation BEI XU OPTIMAL MONITORING AND VISUALIZATION OF STEADY STATE POWER SYSTEM OPERATION A Dissertation by BEI XU Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements

More information

Solving Economic Load Dispatch Problems in Power Systems using Genetic Algorithm and Particle Swarm Optimization

Solving Economic Load Dispatch Problems in Power Systems using Genetic Algorithm and Particle Swarm Optimization Solving Economic Load Dispatch Problems in Power Systems using Genetic Algorithm and Particle Swarm Optimization Loveleen Kaur 1, Aashish Ranjan 2, S.Chatterji 3, and Amod Kumar 4 1 Asst. Professor, PEC

More information

Journal of Asian Scientific Research, 1 (5), pp

Journal of Asian Scientific Research, 1 (5), pp AESS Publications, 2011 Page 277 Solution Of Multi Objective Optimization Power System Problems Using Hybrid Algorithm Abstract Author S.Jaganathan Assistant professor, Electrical Engineering RVS College

More information

Load Flow Analysis Using Real Coded Genetic Algorithm

Load Flow Analysis Using Real Coded Genetic Algorithm RESEARCH ARTICLE OPEN ACCESS Load Flow Analysis Using Real Coded Genetic Algorithm Himakar Udatha *, Dr. M. Damodar Reddy ** * M.tech Student, Department of EEE, S.V. University, Tirupati. ** Professor,

More information

Distribution Feeder Reconfiguration for minimum losses using Genetic Algorithms

Distribution Feeder Reconfiguration for minimum losses using Genetic Algorithms Distribution Feeder Reconfiguration for minimum losses using Genetic Algorithms K.K.S.V.V. Prakasa Rao, Member IEEE and V. C. Veera Reddy, Former Member IEEE K.K.S.V.V Prakasa Rao, SDSC SHAR, ISRO, Dept

More information

University of California, Santa Cruz Baskin Engineering School Electrical Engineering Department

University of California, Santa Cruz Baskin Engineering School Electrical Engineering Department Lab-2 Intro, rev2.0, page 1 University of California, Santa Cruz Baskin Engineering School Electrical Engineering Department Laboratory 2 Tutorial Addendum Introduction to POWERWORLD Simulator EE175L Power

More information

Aggregation of Buses for a Network Reduction HyungSeon Oh, Member, IEEE

Aggregation of Buses for a Network Reduction HyungSeon Oh, Member, IEEE IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. 27, NO. 2, MAY 2012 705 Aggregation of Buses a Network Reduction HyungSeon Oh, Member, IEEE Abstract A simple but precise model would improve the computation efficiency

More information

A Novel Approach to Small Signal Stability Enhancement using Fuzzy Thyristor Susceptance control of SVC using Lyapunov Stability

A Novel Approach to Small Signal Stability Enhancement using Fuzzy Thyristor Susceptance control of SVC using Lyapunov Stability 16th NATIONAL POWER SYSTEMS CONFERENCE, 15th-17th DECEMBER, 2010 278 A Novel Approach to Small Signal Stability Enhancement using Fuzzy Thyristor Susceptance control of SVC using Lyapunov Stability D.Harikrishna,

More information

SCADA and Systems Monitoring

SCADA and Systems Monitoring SCADA and Systems Monitoring SCADA stands for supervisory control and data acquisition system. There are locations, in most of the power systems, where operations, such as opening and closing circuit breakers,

More information

Optimization Technique for Maximization Problem in Evolutionary Programming of Genetic Algorithm in Data Mining

Optimization Technique for Maximization Problem in Evolutionary Programming of Genetic Algorithm in Data Mining Optimization Technique for Maximization Problem in Evolutionary Programming of Genetic Algorithm in Data Mining R. Karthick Assistant Professor, Dept. of MCA Karpagam Institute of Technology karthick2885@yahoo.com

More information

CONSCIENCE TECHNOLOGIES A Right Platform For All Engineers... CODE B.TECH EEE MAT LAB PROJECT TITLE

CONSCIENCE TECHNOLOGIES A Right Platform For All Engineers... CODE B.TECH EEE MAT LAB PROJECT TITLE CODE B.TECH EEE MAT LAB PROJECT TITLE 2015-16 CT EEE 001 CT EEE 002 CT EEE 003 CT EEE 004 CT EEE 005 ACTIVE BUCK BOOST INVERTER FUZZY LOGIC CONTROLLER BASED SEPIC CONVERTER FOR MAXIMUM POWER POINT TRACKING

More information

ANNA UNIVERSITY QB ( )

ANNA UNIVERSITY QB ( ) ANNA UNIVERSITY QB (2003--2008) UNIT I POWER SEMICONDUCTOR DEVICES PART A 1. Draw the V-I characteristics of SCR and mark the holding current and latching current in the characteristics. Nov/Dec04 2. What

More information

Micro physical simulation system of electric power systems

Micro physical simulation system of electric power systems International Journal of Smart Grid and Clean Energy Micro physical simulation system of electric power systems Xin Xu, Zongshuai Jin, Hengxu Zhang * Key Laboratory of Power System Intelligent Dispatch

More information

Main Components of a Static Var Compensator (SVC)

Main Components of a Static Var Compensator (SVC) Exercise 1 Main Components of a Static Var Compensator (SVC) EXERCISE OBJECTIVE When you have completed this exercise, you will be familiar with the simplified diagram of an SVC. You will also be familiar

More information

Optimal Power Flow of Distribution Network

Optimal Power Flow of Distribution Network Optimal Power Flow of Distribution Network Dr.R.Muthu Kumar 1 and Ms. Swathi M 2 1 Associate Professor, Department of EEE, Shree Venkateshwara Hi-Tech Engineering College, Erode, India 2 PG Scholar, ME

More information

USER DRIVEN FEEDBACK CONTROL SYSTEM DRIVEN USING CAN PROTOCOL

USER DRIVEN FEEDBACK CONTROL SYSTEM DRIVEN USING CAN PROTOCOL USER DRIVEN FEEDBACK CONTROL SYSTEM DRIVEN USING CAN PROTOCOL ABHINAV PALIWAL 1, ASHISH KUMAR GUPTA 2 Fourth Sem M TECH Scholar, Embedded System Student, Oriental University, Indore Asst. Professor, Dept.

More information