Intelligent Systems (AI-2)

Size: px
Start display at page:

Download "Intelligent Systems (AI-2)"

Transcription

1 Intelligent Systems (AI-2) Computer Science cpsc422, Lecture 34 Dec, 2, 2015 Slide source: from David Page (IT) (which were from From Lise Getoor, Nir Friedman, Daphne Koller, and Avi Pfeffer) and from Lise Getoor CPSC 422, Lecture 33 Slide 1

2 Lecture Overview Recap otivation and Representation for Probabilistic Relational odels (PRs) Full Relational Schema and its Instances Relational Skeleton and its Completion Instances Probabilistic odel of PRs Dependency Structure Parameters CPSC 422, Lecture 33 2

3 How PRs extend BNs? 1. PRs conceptually extend BNs to allow the specification of a probability model for classes of objects rather than a fixed set of simple attributes 2. PRs also allow properties of an entity to depend probabilistically on properties of other related entities CPSC 322, Lecture 33 3

4 apping PRs from Relational odels The representation of PRs is a direct mapping from that of relational databases A relational model consists of a set of classes X 1,,X n and a set of relations R 1,,R m, where each relation R i is typed CPSC 422, Lecture 33 4

5 CPSC 422, Lecture 33 University Domain Example Full Relational Schema Primary keys are indicated by a blue rectangle Indicates many-tomany relationship Dashed lines indicate the types of objects referenced Professor Popularity Teaching-Ability Course Instructor Rating Difficulty 1 Intelligence Ranking RegID Course 1 Indicates one-to-many relationship Underlined attributes are reference slots of the class 5

6 One professor is the instructor for both courses University Domain Example An Instance of the Schema Professor Prof. Gump Popularity high Teaching-Ability medium Course Course Phil101 Difficulty Phil101 Difficulty low Rating low Rating high high RegID RegID #5639 #5639 A RegID #5639 A 3 A 3 3 Jane Doe Intelligence Jane Doe high Intelligence Ranking high average Ranking average Jane Doe is registered for only one course, Phil101, while the other student is registered for both courses CPSC 422, Lecture 33 6

7 There are two professors instructing a course University Domain Example Another Instance of the Professor Professor Prof. Vincent Popularity Prof. Gump Popularity high Teaching-Ability high Teaching-Ability high medium Course Phil201 Difficulty low Rating high Schema RegID RegID #5639 #5639 A RegID #5723 A 3 A 3 3 Jane Doe Intelligence Jane Doe Intelligence high John Doe Ranking Intelligence high Ranking average high Ranking average average There are three students in the Phil201 course CPSC 422, Lecture 33 7

8 University Domain Example fixed vs. probabilistic attributes Professor 1 Popularity Teaching-Ability Intelligence Ranking Probabilistic Fixed attributes are are shown shown in italic in regular font Course Instructor Rating Difficulty 1 RegID Course Probabilistic Fixed attributes attributes are shown are shown in italic in regular font 8 CPSC 422, Lecture 33

9 PR Semantics: Skeleton Structure A skeleton structure σ of a relational schema is a partial specification of an instance of the schema. It specifies set of objects for each class, values of the fixed attributes of these objects, relations that hold between the objects The values of probabilistic attributes are left unspecified A completion I of the skeleton structure σ extends the skeleton by also specifying the values of the probabilistic attributes CPSC 422, Lecture 33 9

10 University Domain Example Professor Professor Prof. Vincent Popularity Prof. Gump Popularity Teaching-Ability high Teaching-Ability Relational Skeleton Course Phil201 Difficulty Rating CPSC 422, Lecture 33 Jane Doe Intelligence Jane Doe Intelligence high John Doe Ranking Intelligence high Ranking average Ranking average RegID RegID #5639 #5639 A RegID #5723 A

11 University Domain Example The Completion Instance I CPSC 422, Lecture 33 Professor Professor Prof. Vincent Popularity Prof. Gump Popularity high Teaching-Ability high Teaching-Ability high medium Course Phil201 Difficulty low Rating high RegID RegID #5639 #5639 A RegID #5723 A 3 A 3 3 Jane Doe Intelligence Jane Doe Intelligence high John Doe Ranking Intelligence high Ranking average high Ranking average average PRs also allow multiple possible instances and values 11

12 Lecture Overview Recap otivation and Representation for Probabilistic Relational odels (PRs) Full Relational Schema and its Instances Relational Skeleton and its Completion Instances Probabilistic odel of PRs Dependency Structure Parameters CPSC 422, Lecture 33 12

13 PRs: Probabilistic odel The probabilistic model consists of two components: the qualitative dependency structure, S the parameters associated with it, θ S The dependency structure is defined by associating with each attribute X.A a set of parents Pa(X.A); parents are attributes that are direct influences on X.A. This dependency holds for any object of class X CPSC 422, Lecture 33 13

14 Dependencies within a class The prob. attribute X.A can depend on another probabilistic attribute B of X. This induces a corresponding dependency for individual objects RegID Course RegID # CPSC 422, Lecture 33 14

15 Dependencies across classes The attribute X.A can also depend on attributes of related objects X.τ.B, where τ is a slot chain Professor Popularity Teaching-Ability Course Instructor Rating Difficulty 1 RegID Course Professor Popularity Teaching-Ability CPSC 422, Lecture 33 15

16 Possible PR Dependency Structure for the University Domain Professor Teaching-Ability Edges correspond to probabilistic dependency for objects in that class Course Rating Difficulty CPSC 422, Lecture 33 1 Popularity 1 Intelligence Ranking Edges from one class to another are routed through slot-chains 16

17 Let s derive the Corresponding grounded Dependency Structure for this Skeleton Professor Prof. Gump Popularity Teaching-Ability Course CS101 Difficulty Course Rating?? Phil101 Difficulty Rating Professor Prof. Vincent Popularity Teaching-Ability RegID #3 RegID #5 RegID #6 Jane Doe Intelligence high Ranking average Sue Chu Intelligence Ranking CPSC 422, Lecture 33 17

18 CPSC 422, Lecture 33 18

19 Parameters of PRs A PR contains a conditional probability distribution (CPD) P(X.A Pa(X.A)) for each attribute X.A of each class ore precisely, let U be the set of parents of X.A. For each tuple of values u V(U), the CPD specifies a distribution P(X.A u) over V(X.A). The parameters in all of these CPDs comprise θ S CPSC 422, Lecture 33 19

20 Now, what are the parameters θ S Professor Teaching-Ability Course Rating Difficulty 1 Popularity 1 Intelligence Ranking D.I A B C h,h h,l l,h l,l CPSC 422, Lecture 33 20

21 CPSC 422, Lecture 33 Problem with some parameters θ S Professor Teaching-Ability Course Rating Difficulty 1 Popularity 1 Intelligence Ranking 21

22 CPSC 422, Lecture 33 Problem with some parameters θ S Professor Teaching-Ability Course Rating Difficulty 1 Popularity 1 Intelligence Ranking When the slot chain τ is not guaranteed to be single-valued, we must specify the probabilistic dependence of x.a on the set {y.b:y x.τ} 22

23 How to specify cond. Prob. When # of parents can vary? The notion of aggregation from database theory gives us the tool to address this issue; i.e., x.a will depend probabilistically on some aggregate property of this set CPSC 422, Lecture 33 23

24 Aggregation in PRs Examples of aggregation are: the mode of the set (most frequently occurring value); mean value of the set (if values are numerical); median, maximum, or minimum (if values are ordered); cardinality of the set; etc. CPSC 422, Lecture 33 24

25 PR Dependency Structure with The same course can be taught by multiple profs aggregations Professor Teaching-Ability A course satisfaction depends on the teaching abilities of its instructors A student may take multiple courses Course Rating Difficulty 1 AGG A course rating depends on the average satisfaction of students in the course Popularity AGG CPSC 422, Lecture 33 1 AGG Intelligence Ranking The student s ranking depends on the average of his grades 25

26 CPDs in PRs Professor Teaching-Ability Course Rating Difficulty 1 Popularity AGG D.I A B C h,h h,l l,h l,l AGG Intelligence Ranking agg l m h A B C CPSC 422, Lecture 33 26

27 JPD in PRs Given a skeleton structure σ for our schema, we can apply these local conditional probabilities to define a JPD (joint probability distribution) over all completions of the skeleton Note that the objects and relations between objects in a skeleton are always specified by σ, hence we are disallowing uncertainty over the relational structure of the model CPSC 422, Lecture 33 27

28 Parameter Sharing / CPTs reuse, where else? Temporal odels Because of the stationary assumption! CPSC 422, Lecture 33 28

29 Final Issue. To define a coherent probabilistic model, we must ensure that our probabilistic dependencies are.. Acyclic! CPSC 422, Lecture 33 30

30 Class Dependency Graph for the University Domain Course.Difficulty.Intelligence Professor.Teaching-Ability. Professor.Popularity..Ranking Course.Rating CPSC 422, Lecture 33 31

31 Ensuring Acyclic Dependencies In general, however, a cycle in the class dependency graph does not imply that all skeletons induce cyclic dependencies A model may appear to be cyclic at the class level, however, this cyclicity is always resolved at the level of individual objects The ability to guarantee that the cyclicity is resolved relies on some prior knowledge about the domain. The user can specify that certain slots are guaranteed acyclic CPSC 422, Lecture 33 32

32 Relational Schema for the Genetics Domain Person Blood-Type P-Chromosome -Chromosome 1 Blood Test BT-ID Patient Results Contaminated CPSC 422, Lecture 33 33

33 Dependency Graph for Genetics Domain Person.-chromosome Person.P-chromosome Person.BloodType BloodTest.Contaminated BloodTest.Result CPSC 422, Lecture 33 34

34 PR for the Genetics Domain BloodType (Father) Person BloodType (other) Person P-chromosome -chromosome P-chromosome P-chromosome Person -chromosome -chromosome BloodType Contaminated Result BloodTest CPSC 422, Lecture 33 35

35 Dependency Graph for Genetics Domain Person.-chromosome Person.P-chromosome Dashed edges correspond to guaranteed acyclic dependencies Person.BloodType BloodTest.Contaminated BloodTest.Result CPSC 422, Lecture 33 36

36 Learning Goals for today s class You can: Build the grounded Bnet, given a Relational Skeleton, a dependency structure, and the corresponding parameters Define and apply guaranteed acyclicity CPSC 422, Lecture 33 37

37 422 big picture: Where are we? Query Planning Deterministic Logics First Order Logics Ontologies Full Resolution SAT Stochastic Belief Nets Approx. : Gibbs arkov Chains and Hs Forward, Viterbi. Undirected Graphical odels arkov Networks Conditional Random Fields arkov Decision Processes and Partially Observable DP Value Iteration Applications of AI Approx. : Particle Filtering Approx. Inference Reinforcement Learning StarAI (statistical relational AI) Hybrid: Det +Sto Prob CFG Prob Relational odels arkov Logics Representation Reasoning Technique CPSC 322, Lecture 33 Slide 38

38 Last class on Fri Beyond 322/422 (L + grad courses) Watson. Final Exam Fill out on-line Teaching Evaluation CPSC 422, Lecture 33 39

Learning Probabilistic Relational Models

Learning Probabilistic Relational Models Learning Probabilistic Relational Models Overview Motivation Definitions and semantics of probabilistic relational models (PRMs) Learning PRMs from data Parameter estimation Structure learning Experimental

More information

Learning Probabilistic Relational Models. Probabilistic Relational Models

Learning Probabilistic Relational Models. Probabilistic Relational Models Learning Probabilistic Relational Models Getoor, Friedman, Koller, Pfeffer Probabilistic Relational Models.Instructor is foreign key for Professor relation Registration. is foreign key for Registration.

More information

Learning Statistical Models From Relational Data

Learning Statistical Models From Relational Data Slides taken from the presentation (subset only) Learning Statistical Models From Relational Data Lise Getoor University of Maryland, College Park Includes work done by: Nir Friedman, Hebrew U. Daphne

More information

Join Bayes Nets: A New Type of Bayes net for Relational Data

Join Bayes Nets: A New Type of Bayes net for Relational Data Join Bayes Nets: A New Type of Bayes net for Relational Data Oliver Schulte oschulte@cs.sfu.ca Hassan Khosravi hkhosrav@cs.sfu.ca Bahareh Bina bba18@cs.sfu.ca Flavia Moser fmoser@cs.sfu.ca Abstract Many

More information

Learning Probabilistic Relational Models

Learning Probabilistic Relational Models Learning Probabilistic Relational Models Nir Friedman Hebrew University nir@cs.huji.ac.il Lise Getoor Stanford University getoor@cs.stanford.edu Daphne Koller Stanford University koller@cs.stanford.edu

More information

CS 343: Artificial Intelligence

CS 343: Artificial Intelligence CS 343: Artificial Intelligence Bayes Nets: Independence Prof. Scott Niekum The University of Texas at Austin [These slides based on those of Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley.

More information

Logic: TD as search, Datalog (variables)

Logic: TD as search, Datalog (variables) Logic: TD as search, Datalog (variables) Computer Science cpsc322, Lecture 23 (Textbook Chpt 5.2 & some basic concepts from Chpt 12) June, 8, 2017 CPSC 322, Lecture 23 Slide 1 Lecture Overview Recap Top

More information

Learning Directed Probabilistic Logical Models using Ordering-search

Learning Directed Probabilistic Logical Models using Ordering-search Learning Directed Probabilistic Logical Models using Ordering-search Daan Fierens, Jan Ramon, Maurice Bruynooghe, and Hendrik Blockeel K.U.Leuven, Dept. of Computer Science, Celestijnenlaan 200A, 3001

More information

ECE 6504: Advanced Topics in Machine Learning Probabilistic Graphical Models and Large-Scale Learning

ECE 6504: Advanced Topics in Machine Learning Probabilistic Graphical Models and Large-Scale Learning ECE 6504: Advanced Topics in Machine Learning Probabilistic Graphical Models and Large-Scale Learning Topics Bayes Nets: Inference (Finish) Variable Elimination Graph-view of VE: Fill-edges, induced width

More information

An Introduction to Probabilistic Graphical Models for Relational Data

An Introduction to Probabilistic Graphical Models for Relational Data An Introduction to Probabilistic Graphical Models for Relational Data Lise Getoor Computer Science Department/UMIACS University of Maryland College Park, MD 20740 getoor@cs.umd.edu Abstract We survey some

More information

Machine Learning

Machine Learning Machine Learning 10-601 Tom M. Mitchell Machine Learning Department Carnegie Mellon University February 25, 2015 Today: Graphical models Bayes Nets: Inference Learning EM Readings: Bishop chapter 8 Mitchell

More information

CS 343: Artificial Intelligence

CS 343: Artificial Intelligence CS 343: Artificial Intelligence Bayes Nets: Inference Prof. Scott Niekum The University of Texas at Austin [These slides based on those of Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley.

More information

PER - Models Seminar in machine learning WT 09/10

PER - Models Seminar in machine learning WT 09/10 PER - Models Seminar in machine learning WT 09/10 Agenda Motivation for the PER-Model What is the PER-Model? Entity-Relationship-Model Extending ER-Model to PER-Model A look on DAPER-Model DAPER-Model

More information

Introduction to Statistical Relational Learning

Introduction to Statistical Relational Learning Introduction to Statistical Relational Learning Series Foreword Preface xi xiii 1 Introduction 1 Lise Getoor, Ben Taskar 1.1 Overview 1 1.2 Brief History of Relational Learning 2 1.3 Emerging Trends 3

More information

CS 146 Database Systems

CS 146 Database Systems DBMS CS 146 Database Systems Entity-Relationship (ER) Model CS 146 1 CS 146 2 A little history Progression of Database Systems In DBMS: single instance of data maintained and accessed by different users

More information

Causal Modelling for Relational Data. Oliver Schulte School of Computing Science Simon Fraser University Vancouver, Canada

Causal Modelling for Relational Data. Oliver Schulte School of Computing Science Simon Fraser University Vancouver, Canada Causal Modelling for Relational Data Oliver Schulte School of Computing Science Simon Fraser University Vancouver, Canada Outline Relational Data vs. Single-Table Data Two key questions Definition of Nodes

More information

CS 188: Artificial Intelligence

CS 188: Artificial Intelligence CS 188: Artificial Intelligence Bayes Nets: Inference Instructors: Dan Klein and Pieter Abbeel --- University of California, Berkeley [These slides were created by Dan Klein and Pieter Abbeel for CS188

More information

CS 582 Database Management Systems II

CS 582 Database Management Systems II Review of SQL Basics SQL overview Several parts Data-definition language (DDL): insert, delete, modify schemas Data-manipulation language (DML): insert, delete, modify tuples Integrity View definition

More information

COMP90051 Statistical Machine Learning

COMP90051 Statistical Machine Learning COMP90051 Statistical Machine Learning Semester 2, 2016 Lecturer: Trevor Cohn 21. Independence in PGMs; Example PGMs Independence PGMs encode assumption of statistical independence between variables. Critical

More information

Machine Learning

Machine Learning Machine Learning 10-601 Tom M. Mitchell Machine Learning Department Carnegie Mellon University April 1, 2019 Today: Inference in graphical models Learning graphical models Readings: Bishop chapter 8 Bayesian

More information

Lecture 5: Exact inference. Queries. Complexity of inference. Queries (continued) Bayesian networks can answer questions about the underlying

Lecture 5: Exact inference. Queries. Complexity of inference. Queries (continued) Bayesian networks can answer questions about the underlying given that Maximum a posteriori (MAP query: given evidence 2 which has the highest probability: instantiation of all other variables in the network,, Most probable evidence (MPE: given evidence, find an

More information

STAT 598L Probabilistic Graphical Models. Instructor: Sergey Kirshner. Exact Inference

STAT 598L Probabilistic Graphical Models. Instructor: Sergey Kirshner. Exact Inference STAT 598L Probabilistic Graphical Models Instructor: Sergey Kirshner Exact Inference What To Do With Bayesian/Markov Network? Compact representation of a complex model, but Goal: efficient extraction of

More information

Relational Model 2: Relational Algebra

Relational Model 2: Relational Algebra Yufei Tao Department of Computer Science and Engineering Chinese University of Hong Kong The relational model defines: 1 the format by which data should be stored; 2 the operations for querying the data.

More information

Probabilistic Graphical Models

Probabilistic Graphical Models Probabilistic Graphical Models Raquel Urtasun and Tamir Hazan TTI Chicago April 22, 2011 Raquel Urtasun and Tamir Hazan (TTI-C) Graphical Models April 22, 2011 1 / 22 If the graph is non-chordal, then

More information

An Approach to Inference in Probabilistic Relational Models using Block Sampling

An Approach to Inference in Probabilistic Relational Models using Block Sampling JMLR: Workshop and Conference Proceedings 13: 315-330 2nd Asian Conference on Machine Learning (ACML2010), Tokyo, Japan, Nov. 8 10, 2010. An Approach to Inference in Probabilistic Relational Models using

More information

Decision Theory: Single & Sequential Decisions. VE for Decision Networks.

Decision Theory: Single & Sequential Decisions. VE for Decision Networks. Decision Theory: Single & Sequential Decisions. VE for Decision Networks. Alan Mackworth UBC CS 322 Decision Theory 2 March 27, 2013 Textbook 9.2 Announcements (1) Assignment 4 is due next Wednesday, 1pm.

More information

Machine Learning

Machine Learning Machine Learning 10-701 Tom M. Mitchell Machine Learning Department Carnegie Mellon University February 17, 2011 Today: Graphical models Learning from fully labeled data Learning from partly observed data

More information

Warm-up as you walk in

Warm-up as you walk in arm-up as you walk in Given these N=10 observations of the world: hat is the approximate value for P c a, +b? A. 1/10 B. 5/10. 1/4 D. 1/5 E. I m not sure a, b, +c +a, b, +c a, b, +c a, +b, +c +a, b, +c

More information

Problem. Carnegie Mellon Univ. Dept. of Computer Science /615 - DB Applications

Problem. Carnegie Mellon Univ. Dept. of Computer Science /615 - DB Applications Carnegie ellon Univ. Dept. of Computer Science 15-415/615 - DB Applications C. Faloutsos - A. Pavlo Lecture#2: E-R diagrams Problem Develop an application for U.G. admin: Student info Who--what class Class

More information

RNNs as Directed Graphical Models

RNNs as Directed Graphical Models RNNs as Directed Graphical Models Sargur Srihari srihari@buffalo.edu This is part of lecture slides on Deep Learning: http://www.cedar.buffalo.edu/~srihari/cse676 1 10. Topics in Sequence Modeling Overview

More information

1/24/2012. Chapter 7 Outline. Chapter 7 Outline (cont d.) CS 440: Database Management Systems

1/24/2012. Chapter 7 Outline. Chapter 7 Outline (cont d.) CS 440: Database Management Systems CS 440: Database Management Systems Chapter 7 Outline Using High-Level Conceptual Data Models for Database Design A Sample Database Application Entity Types, Entity Sets, Attributes, and Keys Relationship

More information

Chapter 2 Introduction to Relational Models

Chapter 2 Introduction to Relational Models CMSC 461, Database Management Systems Spring 2018 Chapter 2 Introduction to Relational Models These slides are based on Database System Concepts book and slides, 6th edition, and the 2009 CMSC 461 slides

More information

Carnegie Mellon Univ. Dept. of Computer Science /615 - DB Applications. Problem. Faloutsos - Pavlo CMU SCS /615

Carnegie Mellon Univ. Dept. of Computer Science /615 - DB Applications. Problem. Faloutsos - Pavlo CMU SCS /615 Faloutsos - Pavlo 15-415/615 Carnegie ellon Univ. Dept. of Computer Science 15-415/615 - DB Applications C. Faloutsos - A. Pavlo Lecture#2: E-R diagrams Problem Develop an application for U.G. admin: Student

More information

Machine Learning

Machine Learning Machine Learning 10-701 Tom M. Mitchell Machine Learning Department Carnegie Mellon University February 15, 2011 Today: Graphical models Inference Conditional independence and D-separation Learning from

More information

Administrivia. Carnegie Mellon Univ. Dept. of Computer Science /615 - DB Applications. Course Topics. Problem

Administrivia. Carnegie Mellon Univ. Dept. of Computer Science /615 - DB Applications. Course Topics. Problem Faloutsos - Pavlo 15-415/615 Carnegie ellon Univ. Dept. of Computer Science 15-415/615 - DB Applications C. Faloutsos - A. Pavlo Lecture#2: E-R diagrams Administrivia Course url: http://15415.courses.cs.cmu.edu/

More information

Dependency Networks for Relational Data

Dependency Networks for Relational Data Dependency Networks for Relational Data Jennifer Neville, David Jensen Computer Science Department University of assachusetts mherst mherst, 01003 {jneville jensen}@cs.umass.edu bstract Instance independence

More information

Lecture 5: Exact inference

Lecture 5: Exact inference Lecture 5: Exact inference Queries Inference in chains Variable elimination Without evidence With evidence Complexity of variable elimination which has the highest probability: instantiation of all other

More information

Graphical models are a lot like a circuit diagram they are written down to visualize and better understand a problem.

Graphical models are a lot like a circuit diagram they are written down to visualize and better understand a problem. Machine Learning (ML, F16) Lecture#15 (Tuesday, Nov. 1st) Lecturer: Byron Boots Graphical Models 1 Graphical Models Often, one is interested in representing a joint distribution P over a set of n random

More information

Local Probabilistic Models: Context-Specific CPDs. Sargur Srihari

Local Probabilistic Models: Context-Specific CPDs. Sargur Srihari Local Probabilistic Models: Context-Specific CPDs Sargur srihari@cedar.buffalo.edu 1 Context-Specific CPDs Topics 1. Regularity in parameters for different values of parents 2. Tree CPDs 3. Rule CPDs 4.

More information

Databases and Information Retrieval Integration TIETS42. Kostas Stefanidis Autumn 2016

Databases and Information Retrieval Integration TIETS42. Kostas Stefanidis Autumn 2016 + Databases and Information Retrieval Integration TIETS42 Autumn 2016 Kostas Stefanidis kostas.stefanidis@uta.fi http://www.uta.fi/sis/tie/dbir/index.html http://people.uta.fi/~kostas.stefanidis/dbir16/dbir16-main.html

More information

Machine Learning

Machine Learning Machine Learning 10-601 Tom M. Mitchell Machine Learning Department Carnegie Mellon University October 2, 2012 Today: Graphical models Bayes Nets: Representing distributions Conditional independencies

More information

CSCC43H: Introduction to Databases

CSCC43H: Introduction to Databases CSCC43H: Introduction to Databases Lecture 2 Wael Aboulsaadat Acknowledgment: these slides are partially based on Prof. Garcia-Molina & Prof. Ullman slides accompanying the course s textbook. CSCC43: Introduction

More information

Machine Learning

Machine Learning Machine Learning 10-601 Tom M. Mitchell Machine Learning Department Carnegie Mellon University February 18, 2015 Today: Graphical models Bayes Nets: Representing distributions Conditional independencies

More information

Computer Vision Group Prof. Daniel Cremers. 4. Probabilistic Graphical Models Directed Models

Computer Vision Group Prof. Daniel Cremers. 4. Probabilistic Graphical Models Directed Models Prof. Daniel Cremers 4. Probabilistic Graphical Models Directed Models The Bayes Filter (Rep.) (Bayes) (Markov) (Tot. prob.) (Markov) (Markov) 2 Graphical Representation (Rep.) We can describe the overall

More information

Semantics and Inference for Recursive Probability Models

Semantics and Inference for Recursive Probability Models From: AAAI-00 Proceedings. Copyright 2000, AAAI (www.aaai.org). All rights reserved. Semantics and Inference for Recursive Probability Models Avi Pfeffer Division of Engineering and Applied Sciences Harvard

More information

Ch9: Exact Inference: Variable Elimination. Shimi Salant, Barak Sternberg

Ch9: Exact Inference: Variable Elimination. Shimi Salant, Barak Sternberg Ch9: Exact Inference: Variable Elimination Shimi Salant Barak Sternberg Part 1 Reminder introduction (1/3) We saw two ways to represent (finite discrete) distributions via graphical data structures: Bayesian

More information

Planning: Wrap up CSP Planning Logic: Intro

Planning: Wrap up CSP Planning Logic: Intro Planning: Wrap up CSP Planning Logic: Intro Alan Mackworth UBC CS 322 Planning 3 ebruary 25, 2013 Textbook 8.4, 5.1 GAC vs. AC GAC = Generalized Arc Consistency (for k-ary constraints) AC = Arc Consistency

More information

COMP Instructor: Dimitris Papadias WWW page:

COMP Instructor: Dimitris Papadias WWW page: COMP 5311 Instructor: Dimitris Papadias WWW page: http://www.cse.ust.hk/~dimitris/5311/5311.html Textbook Database System Concepts, A. Silberschatz, H. Korth, and S. Sudarshan. Reference Database Management

More information

Markov Decision Processes. (Slides from Mausam)

Markov Decision Processes. (Slides from Mausam) Markov Decision Processes (Slides from Mausam) Machine Learning Operations Research Graph Theory Control Theory Markov Decision Process Economics Robotics Artificial Intelligence Neuroscience /Psychology

More information

Database Applications (15-415)

Database Applications (15-415) Database Applications (15-415) The Entity Relationship Model Lecture 2, January 15, 2014 Mohammad Hammoud Today Last Session: Course overview and a brief introduction on databases and database systems

More information

In Proceedings of the Fifteenth Annual Conference on Uncertainty in Artificial Intelligence (UAI-99), pages , Stockholm, Sweden, August 1999

In Proceedings of the Fifteenth Annual Conference on Uncertainty in Artificial Intelligence (UAI-99), pages , Stockholm, Sweden, August 1999 In Proceedings of the Fifteenth Annual Conference on Uncertainty in Artificial Intelligence (UAI-99), pages 541-550, Stockholm, Sweden, August 1999 SPOOK: A system for probabilistic object-oriented knowledge

More information

Learning Probabilistic Relational Models with Structural Uncertainty

Learning Probabilistic Relational Models with Structural Uncertainty From: AAAI Technical Report WS-00-06. Compilation copyright 2000, AAAI (www.aaai.org). All rights reserved. Learning Probabilistic Relational Models with Structural Uncertainty Lise Getoor Computer Science

More information

Computer Vision Group Prof. Daniel Cremers. 4. Probabilistic Graphical Models Directed Models

Computer Vision Group Prof. Daniel Cremers. 4. Probabilistic Graphical Models Directed Models Prof. Daniel Cremers 4. Probabilistic Graphical Models Directed Models The Bayes Filter (Rep.) (Bayes) (Markov) (Tot. prob.) (Markov) (Markov) 2 Graphical Representation (Rep.) We can describe the overall

More information

Reinforcing the Object-Oriented Aspect of Probabilistic Relational Models

Reinforcing the Object-Oriented Aspect of Probabilistic Relational Models Reinforcing the Object-Oriented Aspect of Probabilistic Relational Models Lionel Torti - Pierre-Henri Wuillemin - Christophe Gonzales LIP6 - UPMC - France firstname.lastname@lip6.fr Abstract Representing

More information

Lecture 9 Arc Consistency

Lecture 9 Arc Consistency Computer Science CPSC 322 Lecture 9 Arc Consistency (4.5, 4.6) Slide 1 Lecture Overview Recap of Lecture 8 Arc Consistency for CSP Domain Splitting 2 Problem Type Static Sequential Constraint Satisfaction

More information

Probabilistic Graphical Models

Probabilistic Graphical Models Probabilistic Graphical Models Lecture 8 Junction Trees CS/CNS/EE 155 Andreas Krause Announcements Homework 2 due next Wednesday (Nov 4) in class Start early!!! Project milestones due Monday (Nov 9) 4

More information

Database Concepts. CS 377: Database Systems

Database Concepts. CS 377: Database Systems Database Concepts CS 377: Database Systems Introduction Recap Course Logistics Course website contains syllabus, lectures, assignments and example code http://joyceho.github.io/cs377_s17/index.html Piazza:

More information

Learning Bayesian Networks (part 3) Goals for the lecture

Learning Bayesian Networks (part 3) Goals for the lecture Learning Bayesian Networks (part 3) Mark Craven and David Page Computer Sciences 760 Spring 2018 www.biostat.wisc.edu/~craven/cs760/ Some of the slides in these lectures have been adapted/borrowed from

More information

OSU CS 536 Probabilistic Graphical Models. Loopy Belief Propagation and Clique Trees / Join Trees

OSU CS 536 Probabilistic Graphical Models. Loopy Belief Propagation and Clique Trees / Join Trees OSU CS 536 Probabilistic Graphical Models Loopy Belief Propagation and Clique Trees / Join Trees Slides from Kevin Murphy s Graphical Model Tutorial (with minor changes) Reading: Koller and Friedman Ch

More information

Modelling Relational Statistics With Bayes Nets (Poster Presentation SRL Workshop)

Modelling Relational Statistics With Bayes Nets (Poster Presentation SRL Workshop) (Poster Presentation SRL Workshop) Oliver Schulte, Hassan Khosravi, Arthur Kirkpatrick, Tianxiang Gao, Yuke Zhu School of Computing Science, Simon Fraser University,VancouverBurnaby, Canada Abstract Classlevel

More information

STAT 598L Probabilistic Graphical Models. Instructor: Sergey Kirshner. Introduction

STAT 598L Probabilistic Graphical Models. Instructor: Sergey Kirshner. Introduction STAT 598L Probabilistic Graphical Models Instructor: Sergey Kirshner Introduction You = 2 General Reasoning Scheme Data Conclusion 1010..00 0101..00 1010..11... Observations 3 General Reasoning Scheme

More information

Chapter 4. In this chapter, you will learn:

Chapter 4. In this chapter, you will learn: Chapter Entity Relationship (ER) Modeling Database Systems: Design, Implementation, and Management, Seventh Edition, Rob and Coronel 1 In this chapter, you will learn: The main characteristics of entity

More information

CS 4604: Introduction to Database Management Systems. B. Aditya Prakash Lecture #5: Entity/Relational Models---Part 1

CS 4604: Introduction to Database Management Systems. B. Aditya Prakash Lecture #5: Entity/Relational Models---Part 1 CS 4604: Introduction to Database Management Systems B. Aditya Prakash Lecture #5: Entity/Relational Models---Part 1 E/R: NOT IN BOOK! IMPORTANT: Follow only lecture slides for this topic! Differences

More information

Introduction and Overview

Introduction and Overview Introduction and Overview Instructor: Leonard McMillan Comp 521 Files and Databases Fall 2016 1 Course Administrivia Optional Book Cow book Somewhat Dense Cover about 80% Instructor Leonard McMillan Teaching

More information

Approximate inference in probabilistic relational models

Approximate inference in probabilistic relational models Approximate inference in probabilistic relational models by Fabian Kaelin School of Computer Science McGill University, Montreal, Canada August 2011 A thesis submitted to McGill University in partial fulfillment

More information

Search. (Textbook Chpt ) Computer Science cpsc322, Lecture 2. May, 10, CPSC 322, Lecture 2 Slide 1

Search. (Textbook Chpt ) Computer Science cpsc322, Lecture 2. May, 10, CPSC 322, Lecture 2 Slide 1 Search Computer Science cpsc322, Lecture 2 (Textbook Chpt 3.0-3.4) May, 10, 2012 CPSC 322, Lecture 2 Slide 1 Colored Cards You need to have 4 colored index cards Come and get them from me if you still

More information

Keyword Search on Form Results

Keyword Search on Form Results Keyword Search on Form Results Aditya Ramesh (Stanford) * S Sudarshan (IIT Bombay) Purva Joshi (IIT Bombay) * Work done at IIT Bombay Keyword Search on Structured Data Allows queries to be specified without

More information

Statistical Techniques in Robotics (STR, S15) Lecture#06 (Wednesday, January 28)

Statistical Techniques in Robotics (STR, S15) Lecture#06 (Wednesday, January 28) Statistical Techniques in Robotics (STR, S15) Lecture#06 (Wednesday, January 28) Lecturer: Byron Boots Graphical Models 1 Graphical Models Often one is interested in representing a joint distribution P

More information

): Constraint Logic Programming for Probabilistic Knowledge

): Constraint Logic Programming for Probabilistic Knowledge CLP( ): Constraint Logic Programming for Probabilistic Knowledge Vítor Santos Costa COPPE/Sistemas UFRJ, Brasil David Page and Maleeha Qazi Department of Biostatistics and Medical Informatics University

More information

Chapter 2. Database Design. Database Systems p. 25/540

Chapter 2. Database Design. Database Systems p. 25/540 Chapter 2 Database Design Database Systems p. 25/540 Database Design Phases requirements analysis specification conceptual design conceptual schema logical design logical schema physical design physical

More information

Dynamic Bayesian network (DBN)

Dynamic Bayesian network (DBN) Readings: K&F: 18.1, 18.2, 18.3, 18.4 ynamic Bayesian Networks Beyond 10708 Graphical Models 10708 Carlos Guestrin Carnegie Mellon University ecember 1 st, 2006 1 ynamic Bayesian network (BN) HMM defined

More information

COMP90051 Statistical Machine Learning

COMP90051 Statistical Machine Learning COMP90051 Statistical Machine Learning Semester 2, 2016 Lecturer: Trevor Cohn 20. PGM Representation Next Lectures Representation of joint distributions Conditional/marginal independence * Directed vs

More information

Introduction and Overview

Introduction and Overview Introduction and Overview (Read Cow book Chapter 1) Instructor: Leonard McMillan mcmillan@cs.unc.edu Comp 521 Files and Databases Spring 2010 1 Course Administrivia Book Cow book New (to our Dept) More

More information

COS 513: Foundations of Probabilistic Modeling. Lecture 5

COS 513: Foundations of Probabilistic Modeling. Lecture 5 COS 513: Foundations of Probabilistic Modeling Young-suk Lee 1 Administrative Midterm report is due Oct. 29 th. Recitation is at 4:26pm in Friend 108. Lecture 5 R is a computer language for statistical

More information

CSE Midterm - Spring 2017 Solutions

CSE Midterm - Spring 2017 Solutions CSE Midterm - Spring 2017 Solutions March 28, 2017 Question Points Possible Points Earned A.1 10 A.2 10 A.3 10 A 30 B.1 10 B.2 25 B.3 10 B.4 5 B 50 C 20 Total 100 Extended Relational Algebra Operator Reference

More information

Modeling and Reasoning with Bayesian Networks. Adnan Darwiche University of California Los Angeles, CA

Modeling and Reasoning with Bayesian Networks. Adnan Darwiche University of California Los Angeles, CA Modeling and Reasoning with Bayesian Networks Adnan Darwiche University of California Los Angeles, CA darwiche@cs.ucla.edu June 24, 2008 Contents Preface 1 1 Introduction 1 1.1 Automated Reasoning........................

More information

arxiv: v2 [cs.cv] 30 Jul 2018

arxiv: v2 [cs.cv] 30 Jul 2018 Scene Grammars, Factor Graphs, and Belief Propagation Jeroen Chua Brown University Providence, RI, USA jeroen chua@alumni.brown.edu Pedro F. Felzenszwalb Brown University Providence, RI, USA pff@brown.edu

More information

Sequential Dependency and Reliability Analysis of Embedded Systems. Yu Jiang Tsinghua university, Beijing, China

Sequential Dependency and Reliability Analysis of Embedded Systems. Yu Jiang Tsinghua university, Beijing, China Sequential Dependency and Reliability Analysis of Embedded Systems Yu Jiang Tsinghua university, Beijing, China outline Motivation Background Reliability Block Diagram, Fault Tree Bayesian Network, Dynamic

More information

10708 Graphical Models: Homework 2

10708 Graphical Models: Homework 2 10708 Graphical Models: Homework 2 Due October 15th, beginning of class October 1, 2008 Instructions: There are six questions on this assignment. Each question has the name of one of the TAs beside it,

More information

GRAPHICAL MODELS FOR UNCERTAIN DATA

GRAPHICAL MODELS FOR UNCERTAIN DATA Chapter 1 GRAPHICAL MODELS FOR UNCERTAIN DATA Amol Deshpande University of Maryland, College Park, MD amol@cs.umd.edu Lise Getoor University of Maryland, College Park, MD getoor@cs.umd.edu Prithviraj Sen

More information

Entity-Relationship Modelling. Entities Attributes Relationships Mapping Cardinality Keys Reduction of an E-R Diagram to Tables

Entity-Relationship Modelling. Entities Attributes Relationships Mapping Cardinality Keys Reduction of an E-R Diagram to Tables Entity-Relationship Modelling Entities Attributes Relationships Mapping Cardinality Keys Reduction of an E-R Diagram to Tables 1 Entity Sets A enterprise can be modeled as a collection of: entities, and

More information

Exam Topics. Search in Discrete State Spaces. What is intelligence? Adversarial Search. Which Algorithm? 6/1/2012

Exam Topics. Search in Discrete State Spaces. What is intelligence? Adversarial Search. Which Algorithm? 6/1/2012 Exam Topics Artificial Intelligence Recap & Expectation Maximization CSE 473 Dan Weld BFS, DFS, UCS, A* (tree and graph) Completeness and Optimality Heuristics: admissibility and consistency CSPs Constraint

More information

1 : Introduction to GM and Directed GMs: Bayesian Networks. 3 Multivariate Distributions and Graphical Models

1 : Introduction to GM and Directed GMs: Bayesian Networks. 3 Multivariate Distributions and Graphical Models 10-708: Probabilistic Graphical Models, Spring 2015 1 : Introduction to GM and Directed GMs: Bayesian Networks Lecturer: Eric P. Xing Scribes: Wenbo Liu, Venkata Krishna Pillutla 1 Overview This lecture

More information

Pattern Recognition Lecture Sequential Clustering

Pattern Recognition Lecture Sequential Clustering Pattern Recognition Lecture Prof. Dr. Marcin Grzegorzek Research Group for Pattern Recognition Institute for Vision and Graphics University of Siegen, Germany Pattern Recognition Chain patterns sensor

More information

The Relational Model. Week 2

The Relational Model. Week 2 The Relational Model Week 2 1 Relations A relation is a more concrete construction, of something we have seen before, the ER diagram. name S.S.N students street city A relation is (just!) a table! We will

More information

Notes slides from before lecture. CSE 21, Winter 2017, Section A00. Lecture 9 Notes. Class URL:

Notes slides from before lecture. CSE 21, Winter 2017, Section A00. Lecture 9 Notes. Class URL: Notes slides from before lecture CSE 21, Winter 2017, Section A00 Lecture 9 Notes Class URL: http://vlsicad.ucsd.edu/courses/cse21-w17/ Notes slides from before lecture Notes February 8 (1) HW4 is due

More information

BBM371- Data Management. Lecture 1: Course policies, Introduction to DBMS

BBM371- Data Management. Lecture 1: Course policies, Introduction to DBMS BBM371- Data Management Lecture 1: Course policies, Introduction to DBMS 26.09.2017 Today Introduction About the class Organization of this course Introduction to Database Management Systems (DBMS) About

More information

Introduction to the Semantic Web

Introduction to the Semantic Web Introduction to the Semantic Web Charlie Abela Department of Artificial Intelligence charlie.abela@um.edu.mt Lecture Outline Course organisation Today s Web limitations Machine-processable data The Semantic

More information

A Brief Introduction to Bayesian Networks AIMA CIS 391 Intro to Artificial Intelligence

A Brief Introduction to Bayesian Networks AIMA CIS 391 Intro to Artificial Intelligence A Brief Introduction to Bayesian Networks AIMA 14.1-14.3 CIS 391 Intro to Artificial Intelligence (LDA slides from Lyle Ungar from slides by Jonathan Huang (jch1@cs.cmu.edu)) Bayesian networks A simple,

More information

Graphical Models. Pradeep Ravikumar Department of Computer Science The University of Texas at Austin

Graphical Models. Pradeep Ravikumar Department of Computer Science The University of Texas at Austin Graphical Models Pradeep Ravikumar Department of Computer Science The University of Texas at Austin Useful References Graphical models, exponential families, and variational inference. M. J. Wainwright

More information

Review The Big Picture

Review The Big Picture CS445 - Introduction to Database Management Systems Fall Semester 2015 LECTURE 6 The Entity-Relationship Model Introduction TEXTBOOK REFERENCE: CHAPTERS 2,3 R&G 1 Review The Big Picture Data Modeling Relational

More information

Class-Level Bayes Nets for Relational Data

Class-Level Bayes Nets for Relational Data Class-Level Bayes Nets for Relational Data Oliver Schulte, Hassan Khosravi, Flavia Moser, Martin Ester {oschulte, hkhosrav, fmoser, ester}@cs.sfu.ca School of Computing Science Simon Fraser University

More information

Learning and Recognizing Visual Object Categories Without First Detecting Features

Learning and Recognizing Visual Object Categories Without First Detecting Features Learning and Recognizing Visual Object Categories Without First Detecting Features Daniel Huttenlocher 2007 Joint work with D. Crandall and P. Felzenszwalb Object Category Recognition Generic classes rather

More information

IS 263 Database Concepts

IS 263 Database Concepts IS 263 Database Concepts Lecture 1: Database Design Instructor: Henry Kalisti 1 Department of Computer Science and Engineering The Entity-Relationship Model? 2 Introduction to Data Modeling Semantic data

More information

Relational Algebra for sets Introduction to relational algebra for bags

Relational Algebra for sets Introduction to relational algebra for bags Relational Algebra for sets Introduction to relational algebra for bags Thursday, September 27, 2012 1 1 Terminology for Relational Databases Slide repeated from Lecture 1... Account Number Owner Balance

More information

Graph Databases. Graph Databases. May 2015 Alberto Abelló & Oscar Romero

Graph Databases. Graph Databases. May 2015 Alberto Abelló & Oscar Romero Graph Databases 1 Knowledge Objectives 1. Describe what a graph database is 2. Explain the basics of the graph data model 3. Enumerate the best use cases for graph databases 4. Name two pros and cons of

More information

Introduction to Database Management Systems

Introduction to Database Management Systems Relational Data Model Relational Data Model 1 o Relations o Attributes o Tuples o Relations o Primary Keys o Objectives o Comparison to other models o Components o Relation Properties o Kinds of Relations

More information

Structure Learning in Bayesian Networks with Parent Divorcing

Structure Learning in Bayesian Networks with Parent Divorcing Structure Learning in Bayesian Networks with Parent Divorcing Ulrich von Waldow (waldow@in.tum.de) Technische Universität München, Arcisstr. 21 80333 Munich, Germany Florian Röhrbein (florian.roehrbein@in.tum.de)

More information

08 An Introduction to Dense Continuous Robotic Mapping

08 An Introduction to Dense Continuous Robotic Mapping NAVARCH/EECS 568, ROB 530 - Winter 2018 08 An Introduction to Dense Continuous Robotic Mapping Maani Ghaffari March 14, 2018 Previously: Occupancy Grid Maps Pose SLAM graph and its associated dense occupancy

More information

Probabilistic Graphical Models

Probabilistic Graphical Models Probabilistic Graphical Models Lecture 17 EM CS/CNS/EE 155 Andreas Krause Announcements Project poster session on Thursday Dec 3, 4-6pm in Annenberg 2 nd floor atrium! Easels, poster boards and cookies

More information