Workflow Support for Complex Grid Applications: Integrated and Portal Solutions 1

Size: px
Start display at page:

Download "Workflow Support for Complex Grid Applications: Integrated and Portal Solutions 1"

Transcription

1 Workflow Support for Complex Grid Applications: Integrated and Portal Solutions 1 R. Lovas, G. Dózsa, P. Kacsuk, N. Podhorszki, D. Drótos MTA SZTAKI Laboratory of Parallel and Distributed Systems, H-1518 Budapest P.O.Box 63, Hungary {rlovas dozsa kacsuk pnorbert drotos}@sztaki.hu Abstract. In this paper we present a workflow solution to support graphically the design, execution, monitoring, and performance visualisation of complex grid applications. The described workflow concept can provide interoperability among different types of legacy applications on heterogeneous computational platforms, such as Condor or Globus based grids. The major design and implementation issues concerning the integration of Condor/Condor- G/DAGman tools, Mercury/GRM grid monitoring infrastructure, PROVE performance visualisation tool, and the new high-level workflow editor and manager of P-GRADE development environment are discussed in the case of the integrated and the portal version as well. The integrated version of P- GRADE represents the thick client concept, while the portal version needs only a thin client and can be accessed by a standard web browser. To illustrate the application of our approach in the grid, an ultra-short range weather prediction system is presented that can be executed on a Condor-G/Globus based testbed and its execution can also be visualised not only at workflow level but at the level of individual jobs, too. 1 Introduction The workflow concept is a widely accepted approach to compose large scale applications by connecting programs into an interoperating set of jobs in the Grid [6][12][17][19][20]. Our main aim was to develop a workflow solution for complex grid applications to support the design, execution, monitoring, and performance visualisation phases of development in a user-friendly way. In the presented approach the interoperability among different types of legacy applications executed on heterogeneous platforms, such as Condor or Globus based computational grids, is the particularly addressed issue beside the efficient monitoring and visualisation facilities in the grid. Several achievements of different grid-related projects have been exploited in the presented work to hide the low-level details of heterogeneous software components as well as to provide a unified view for application developers. These targets are crucial 1 The work presented in this paper was partially supported by the following grants: EU- GridLab IST , Hungarian SuperGrid (IKTA4-075), IHM 4671/1/2003, and Hungarian Scientific Research Fund (OTKA) No. T projects.

2 for the successful utilisation of grid environments by the users from other scientific areas, such as physics, chemists, or meteorology. The design and implementation issues concerning the integration of Condor/Condor-G/DAGman tools [1][2][20], Mercury/GRM grid monitoring infrastructure [3], PROVE performance visualisation tool [4], and the new high-level workflow editor and manager layer of P-GRADE programming environment [10] are discussed in Section 2 and Section 3. As the main result a new extension of P-GRADE graphical programming environment was developed; the integrated workflow support enables construction, execution, and monitoring of complex applications on both Condor and Globus based grids (see Section 2 and Section 3). The portal version of workflow layer offers similar facilities via web interface to the integrated version but the occasionally slow and unreliable network connection must be taken into consideration more rigorously during the separation of client and server side functionalities. (see Section 4). To illustrate the application of our approach in the grid, an ultra-short range weather prediction system is presented that can be executed on a Condor-G/Globus based testbed and visualised the execution not only at workflow level but at the level of individual jobs, too. 2 Component Based Grid Programming by Workflow The presented workflow connects existing sequential or parallel programs into an interoperating set of jobs. Connections define dependency relations among the components of the workflow with respect to their execution order that can naturally be represented as graphs. Such representation of a meteorological application is depicted in Fig. 1. Nodes (labelled as delta, visib, etc. in Fig. 1.) represent different jobs from the following four types: sequential, PVM, MPI, or GRAPNEL job (generated by P- GRADE programming environment). Small rectangles (labelled by numbers) around nodes represent data files (dark grey ones are input files, light grey ones are output files) of the corresponding job, and directed arcs interconnect pairs of input and output files if an output file serves as input for another job. In other words, arcs denote the necessary file transfers between jobs. Therefore, the workflow describes both the control-flow and the data-flow of the application. A job can be started when all the necessary input files are available and transferred by GridFTP to the site where the job is allocated for execution. Managing the file-transfers and recognition of the availability of the necessary files is the task of our workflow manager that extends the Condor DAGMan capabilities. For illustration purpose we use a meteorological application [5] called MEANDER developed by the Hungarian Meteorological Service. The main aim of MEANDER is to analyse and predict in the ultra short-range (up to 6 hours) those weather phenomena, which might be dangerous for life and property. Typically such events are snowstorms, freezing rain, fog, convective storms, wind gusts, hail storms and flash floods. The complete MEANDER package consists of more than ten different algorithms from which we have selected four ones to compose a workflow

3 application for demonstration purpose. Each calculation algorithm is computation intensive and implemented as a parallel program containing C/C++ and FORTRAN sequential code. Fig. 1. Workflow representation of MEANDER meteorological application and the underlying design layers of P-GRADE parallel programming environment The first graph depicted in Fig. 1 (see Workflow Layer) consists of four jobs (nodes) corresponding four different parallel algorithms of the MEANDER ultra-short

4 range weather prediction package and a sequential visualisation job that collects the final results and presents them to the user as a kind of meteorological map: Delta: a P-GRADE/GRAPNEL program compiled as a PVM program with 25 processes Cummu: a PVM application with 10 processes Visib: a P-GRADE/GRAPNEL program compiled as an MPI program with 20 worker processes (see the Application window with the process farm and the master process in Fig. 1.) Satel: an MPI program with 5 processes Ready: a sequential C program This distinction among job types is necessary because the job manager on the selected grid site should be able to support the corresponding parallel execution mode, and the workflow manager is responsible for the handling of various job types by generating the appropriate submit files. Generally, the executables of the jobs can be existing legacy applications or can be developed by P-GRADE. A GRAPNEL job can be translated into either a PVM or an MPI job but it should be distinguished from the other types of parallel jobs since P- GRADE provides fully interactive development support for GRAPNEL jobs; for designing, debugging, performance evaluation and testing the parallel code [10]. By simply clicking on such a node of the workflow graph P-GRADE invokes the Application window in which the inter-process communication topology of the GRAPNEL job can be defined and modified graphically [23] (see Fig. 1. Application window) using similar notations than that at workflow level. Then, from this Application window the lower design layers, such as the Process and the Text levels, are also accessible by the user to change the graphically or the textually described program code of the current parallel algorithm (see the Process and Text window of visibility calculation in Fig. 1.). It means that the introduced workflow represents a new P-GRADE layer on the top of its three existing hierarchical design layers [13]. Besides the type of the job and the name of the executable (see Fig. 1), the user can specify the necessary arguments and the hardware/software requirements (architecture, operating system, minimal memory and disk size, number of processors, etc.) for each job. To specify the resource requirements, the application developer can currently use either the Condor resource specification syntax and semantics for Condor based grids or the explicit declaration of grid site where the job is to be executed for Globus based grids (see Fig. 1. Job Attributes window, Requirement field). In order to define the necessary file operations (see Fig. 1) of the workflow execution, the user should define the attributes of the file symbols (ports of the workflow graph) and file transfer channels (arcs of the workflow graph). The main attributes of the file symbols are as follows: file name type The type can be permanent or temporary. Permanent files should be preserved during the workflow execution but temporary files can be removed immediately when the job using it (as input file) has been finished. It is the task of the workflow manager to transfer the input files to the selected site where the corresponding job will run. The

5 transfer can be done in two ways. The off-line transfer mode means that the whole file should be transferred to the site before the job is started. The on-line transfer mode enables the producer job and the consumer job of the file to run in parallel. When a part of the file is produced the workflow manager will transfer it to the consumer's site. However, this working mode obviously assumes a restricted usage of the file both at the producer and consumer site and hence, it should be specified by the user that the producer and consumer meet these special conditions. In the current implementation only the off-line transfer mode is supported. 3 Execution and Monitoring of Workflow Two different scenarios can be distinguished according to the underlying grid infrastructure: Condor-G/Globus based grid Pure Condor based grid In this section we describe the more complex Condor-G/Globus scenario in details but the major differences concerning the pure Condor support are also pointed out. The execution of the designed workflow is a generalisation of the Condor job mode of P-GRADE [9]; but to execute the workflow in grid we utilise the Condor-G and DAGMan tools [1][2] to schedule and control the execution of the workflow on Globus resources by generating a Condor submit file for each node of the workflow graph a DAGman input file that contains the following information: 1 List of jobs of the workflow (associating the jobs with their submit files) 2 Execution order of jobs in textual form as relations 3 The number of re-executions for each job's abort 4 Tasks to be executed before starting a job and after finishing the job (implemented in PRE and POST scripts). The PRE and POST scripts generated automatically from the workflow description realise the necessary input and output file transfer operations between jobs. In the current implementation GridFTP commands [19] are applied to deliver the input and output files between grid sites in a secure way (in the pure Condor scenario it can be done by simple file operations). These scripts are also responsible for the detection of successful file transfers, since a job can be started only if its all input files are already available. In order to improve the efficiency the data files are transferred in parallel if the same output file serves as an input file of more than one jobs. Additionally, before the execution of each job a new instance of GRM monitor [3] is launched and attached (via a subscription protocol) to Mercury main monitor [4] located at the grid site where the current job will be executed. In order to visualise the trace information, collected on jobs by the GRM/Mercury monitor infrastructure, PROVE performance visualisation tool [4] is used (see Fig. 2.). Furthermore, these

6 scripts also generate a PROVE-compliant tracefile for the whole workflow including events regarding the start/finish of job as well as file transfers. The actual execution of the workflow can be automatically started from P- GRADE. If the P-GRADE system is running on a Condor pool, the command is immediately interpreted and executed by Condor. If the P-GRADE submit machine is not in a Condor pool, the following extra operations are supported by P-GRADE: 1. A remote Condor pool should be selected by the user via the Mapping Window of P-GRADE. 2. All the necessary files (executables, input files, DAGman input file, Condor submit files) are transferred to a machine of the selected Condor pool. 3. The "condor_submit_dag" command is called in the selected Condor pool. 4. After finishing the workflow execution, the necessary files are transferred back to the P-GRADE client machine. 5. The on-line visualisation with PROVE can be performed locally. Notice that currently we use Condor DAGman as the base of workflow engine. However, in the near future we are going to create a general Grid Application Manager that takes care of possible optimisations concerning the selection of computing sites and file resources in the grid, controlling the migration of jobs of the workflow among different grid resources, handling the user s control request during the execution, etc. During the execution, job status information (like submitted, idle, running, finished) of each component job is reflected by different colour of the corresponding node in the graph, i.e. the progress of the whole workflow is animated within the editor. Fig. 2. Space-time diagram of the whole workflow and one of its component jobs PROVE visualisation tool provides much more detailed view of the progress of the whole workflow and each component job than that shown by the status animation within the workflow editor. PROVE co-operates with the Mercury/GRM grid monitor system (developed within the EU GridLab project [15]) to collect the trace events

7 generated by any of the component jobs running on any of the grid resources if the corresponding programs are instrumented and linked against the GRM library and Mercury is installed on each grid site. Having accessed the appropriate trace events, PROVE displays them on-line in separated space-time diagrams for each component job. An overall view on the progress of workflow execution is also displayed as the same kind of space-time diagram. Fig. 2 depicts the space-time diagram of our workflow-based meteorological application and one of its parallel component job cummu. In the workflow space-time diagram, horizontal bars represent the progress of each component job in time (see the time axis at the bottom of the diagram) and the arrows among bars represents the file operations performed to make accessible the output file of a job as an input of another one. Interpretation of the same diagram elements is a bit different in case of (parallel) component jobs (like job cummu in Fig. 2.). Here the horizontal bars represent the progress of each process comprising the parallel job whereas arrows between bars represent (PVM or MPI) message transfers among the processes. 4 Grid Portal Support The aim of our Grid portal - developed partly within the EU GridLab [15] project and partly within national Hungarian Supercomputing Grid [8] projects is to provide the potential users a high-level graphical interface to build up and execute workflow like grid applications. The portal is relying on the GridSphere portal technology [15] that is the result of the EU GridLab project. We have implemented three different portlets in GridSphere to provide services for Grid certificate management, creation, modification and execution of workflow applications on grid resources available via Globus, and visualisation of workflow progress as well as each component job. The certificate management portlet co-operates with a MyProxy server in order to assist the user in creating, storing and retrieving proxy certificates for the various Globus resources. The workflow editor portlet (see Fig. 3.) provides a graphical workflow editor client - on the basis of the WebStart technology - for the user to create new workflow application and to modify existing ones. The workflow editor client can upload all the executable and input files as well as the description of the workflow to the server from the client machine and can also submit the whole workflow for execution. The visualisation portlet (see Fig. 3.) provides similar facilities to PROVE tool as it was described in Section 3, but this part of the system is mainly running on the server side due to the large amount monitored information to be collected and processed; the collection of trace files might require high network bandwidth and their visualisation might be computationally intensive calculation. In the implemented visualisation portlet, only the raw image must be downloaded to the client side, which is more reasonable from the thin client s view.

8 Fig. 3. Portal version of workflow system 5 Related and Future Works Some other workflow solutions, such as Unicore [12], Triana [6] and Pegasus [17] provide sophisticated control facilities at workflow level, such as loops and conditional branches, or hierarchical design layers. Another advantage of Unicore is the pluggable graphical user interface, where the application developer can implement an application oriented front-end, making the Unicore environment configurable and user-friendly. In our integrated solution, the user can easily access and also modify the parallel program code of a workflow node using the hierarchical layers of GRED graphical editor [23] in case of GRAPNEL jobs (see Fig. 1). Triana is a problem solving environment (PSE) based on Java technology including workflow editor and resource manager. Recently it has been extended to enable the invocation of legacy code [11]. The workflow support in MyGrid [16] has been demonstrated in bioinformatics based on web service technology but there is a lack of integration of local applications and toolkits in their native form. Our

9 workflow system has been already demonstrated with a wide range of legacy applications including PVM and MPI applications written in Fortran, C or C++. Pegasus workflow manager (developed within GriPhyN project [18]) addresses data intensive applications based on Condor-G/DAGman and Globus technology. On the other hand, our workflow solution gives efficient support for calculation intensive parallel applications (utilizing the existing tools of P-GRADE programming environment in case of GRAPNEL jobs) as well as for monitoring and performance visualisation in the grid relying on the results of GridLab project [15]. The monitoring facilities allow the user to focus on either the global view of workflow execution, or the individual jobs running on a grid site, or even the behaviour of component processes including their interactions. Moreover, the presented workflow tool can be executed either as the part of P-GRADE parallel programming environment taking the advantages of all the integrated tools in P-GRADE at each stage of program development life-cycle or via a web browser providing easy access for the workflow editor, and the underlying execution manager, and monitoring/visualisation facilities. Another advantage of the presented system is the existing migration support for parallel jobs between grid sites [21] that will be exploited and integrated in the workflow manager during the further development. It will offer a more dynamic and more efficient runtime support for workflow execution of certain types of application (e.g. long-running parallel simulations) than the current workflow solutions can provide. 6 Conclusions The developed workflow layer, workflow manager and Grid portal can be used to create and to execute workflow like complex grid applications by connecting existing sequential and parallel programs. Furthermore, it is capable of executing such workflows on a Globus or Condor based grid and observing the execution both at the level of workflow and at the level of each individual (parallel) component job if Mercury/GRM service is installed on the grid resources. Our workflow solutions have been developed and evaluated on a grid testbed consisting of three different Linux clusters located at MTA SZTAKI (Budapest), at BUTE (Budapest) and at University of Westminster, CPC (London) which are equipped by Globus Toolkit 2 as grid middleware, by Mercury as monitoring infrastructure, and by MPICH and PVM as message passing libraries. The developed workflow portal has been demonstrated successfully at different forums (ACM/IEEE Supercompting 2003, IEEE Cluster 2003) by a complex meteorological program, which performs ultra-short range weather forecasting. This workflow solution is to be used in several national grid projects, e.g. the Hungarian SuperGrid [8] project (Globus based grid), the Hungarian Chemistry Grid project [22], and Hungarian ClusterGrid project [7], which is a Condor based nation-wide computational grid infrastructure.

10 7 References [1] D. Thain, T. Tannenbaum, and M. Livny, "Condor and the Grid", in Fran Berman, Anthony J.G. Hey, Geoffrey Fox, editors, Grid Computing: Making The Global Infrastructure a Reality, John Wiley, 2003 [2] James Frey, Todd Tannenbaum, Ian Foster, Miron Livny, and Steven Tuecke, Condor-G: A Computation Management Agent for Multi-Institutional Grids, Journal of Cluster Computing volume 5, pages , 2002 [3] Z. Balaton and G. Gombás, Resource and Job Monitoring in the Grid, Proc. of EuroPar'2003, Klagenfurt, pp , 2003 [4] Z. Balaton, P. Kacsuk, and N. Podhorszki, Application Monitoring in the Grid with GRM and PROVE, Proc. of the Int. Conf. on Computational Science ICCS 2001, San Francisco, pp , 2001 [5] R. Lovas, et al., Application of P-GRADE Development Environment in Meteorology, Proc. of DAPSYS'2002, Linz, pp , 2002 [6] I. Taylor, et al., Grid Enabling Applications Using Triana, Workshop on Grid Applications and Programming Tools, June 25, 2003, Seattle. [7] P. Stefán, The Hungarian ClusterGrid Project, Proc. of MIPRO'2003, Opatija, 2003 [8] P. Kacsuk, Hungarian Supercomputing Grid, Proc. of ICCS'2002, Amsterdam. Springer Verlag, Part II, pp , 2002 [9] P. Kacsuk, R. Lovas, et al: Demonstration of P-GRADE job-mode for the Grid, In: Euro- Par 2003 Parallel Processing, Lecture Notes in Computer Science, Vol. 2790, Springer- Verlag, 2003 [10] P-GRADE Graphical Parallel Program Development Environment: [11] Yan Huang, Ian Taylor, David W. Walker and Robert Davies: Wrapping Legacy Codes for Grid-Based Applications", to be published in proceedings on the HIPS 2003 workshop. [12] [13] P. Kacsuk, G. Dózsa, R. Lovas: The GRADE Graphical Parallel Programming Environment, In the book: Parallel Program Development for Cluster Computing: Methodology, Tools and Integrated Environments (Chapter 10), Editors: P. Kacsuk, J.C. Cunha and S.C. Winter, pp , Nova Science Publishers New York, 2001 [14] Globus Toolkit, [15] GridLab project, [16] Matthew Addis, et al: Experiences with escience workflow specification and enactment in bioinformatics, Proceedings of UK e-science All Hands Meeting 2003 (Editors: Simon J. Cox) [17] Ewa Deelman, et al: Mapping Abstract Complex Workflows onto Grid Environments, Journal of Grid Computing, Vol.1, no. 1, 2003, pp [18] GriPhyN project, [19] W. Allcock, J. Bester, J. Bresnahan, A. Chervenak, L. Liming, S. Meder, and S. Tuecke. Gridftp protocol specification, Technical report, Global Grid Forum, September 2002 [20] Condor DAGman, [21] J. Kovács, P. Kacsuk: A migration framework for executing parallel programs in the Grid, Proc. of the 2nd AxGrids Conf., Nicosia, 2004 [22] Hungarian ChemistryGrid project, [23] P. Kacsuk, G. Dózsa, T. Fadgyas and R. Lovas: The GRED Graphical Editor for the GRADE Parallel Program Development Environment, Journal of Future Generation Computer Systems, Vol. 15(1999), No. 3, pp

P-GRADE: a Grid Programming Environment

P-GRADE: a Grid Programming Environment Article submission for Journal of Grid Computing P-GRADE: a Grid Programming Environment P. Kacsuk, G. Dózsa, J. Kovács, R. Lovas, N. Podhorszki, Z. Balaton and G. Gombás MTA SZTAKI Lab. of Parallel and

More information

Hungarian Supercomputing Grid 1

Hungarian Supercomputing Grid 1 Hungarian Supercomputing Grid 1 Péter Kacsuk MTA SZTAKI Victor Hugo u. 18-22, Budapest, HUNGARY www.lpds.sztaki.hu E-mail: kacsuk@sztaki.hu Abstract. The main objective of the paper is to describe the

More information

From Cluster Monitoring to Grid Monitoring Based on GRM *

From Cluster Monitoring to Grid Monitoring Based on GRM * From Cluster Monitoring to Grid Monitoring Based on GRM * Zoltán Balaton, Péter Kacsuk, Norbert Podhorszki and Ferenc Vajda MTA SZTAKI H-1518 Budapest, P.O.Box 63. Hungary {balaton, kacsuk, pnorbert, vajda}@sztaki.hu

More information

Multiple Broker Support by Grid Portals* Extended Abstract

Multiple Broker Support by Grid Portals* Extended Abstract 1. Introduction Multiple Broker Support by Grid Portals* Extended Abstract Attila Kertesz 1,3, Zoltan Farkas 1,4, Peter Kacsuk 1,4, Tamas Kiss 2,4 1 MTA SZTAKI Computer and Automation Research Institute

More information

PARALLEL PROGRAM EXECUTION SUPPORT IN THE JGRID SYSTEM

PARALLEL PROGRAM EXECUTION SUPPORT IN THE JGRID SYSTEM PARALLEL PROGRAM EXECUTION SUPPORT IN THE JGRID SYSTEM Szabolcs Pota 1, Gergely Sipos 2, Zoltan Juhasz 1,3 and Peter Kacsuk 2 1 Department of Information Systems, University of Veszprem, Hungary 2 Laboratory

More information

Application Monitoring in the Grid with GRM and PROVE *

Application Monitoring in the Grid with GRM and PROVE * Application Monitoring in the Grid with GRM and PROVE * Zoltán Balaton, Péter Kacsuk, and Norbert Podhorszki MTA SZTAKI H-1111 Kende u. 13-17. Budapest, Hungary {balaton, kacsuk, pnorbert}@sztaki.hu Abstract.

More information

Gergely Sipos MTA SZTAKI

Gergely Sipos MTA SZTAKI Application development on EGEE with P-GRADE Portal Gergely Sipos MTA SZTAKI sipos@sztaki.hu EGEE Training and Induction EGEE Application Porting Support www.lpds.sztaki.hu/gasuc www.portal.p-grade.hu

More information

An Experience in Accessing Grid Computing from Mobile Device with GridLab Mobile Services

An Experience in Accessing Grid Computing from Mobile Device with GridLab Mobile Services An Experience in Accessing Grid Computing from Mobile Device with GridLab Mobile Services Riri Fitri Sari, Rene Paulus Department of Electrical Engineering, Faculty of Engineering University of Indonesia

More information

UNICORE Globus: Interoperability of Grid Infrastructures

UNICORE Globus: Interoperability of Grid Infrastructures UNICORE : Interoperability of Grid Infrastructures Michael Rambadt Philipp Wieder Central Institute for Applied Mathematics (ZAM) Research Centre Juelich D 52425 Juelich, Germany Phone: +49 2461 612057

More information

Delivering Data Management for Engineers on the Grid 1

Delivering Data Management for Engineers on the Grid 1 Delivering Data Management for Engineers on the Grid 1 Jasmin Wason, Marc Molinari, Zhuoan Jiao, and Simon J. Cox School of Engineering Sciences, University of Southampton, UK {j.l.wason, m.molinari, z.jiao,

More information

MSF: A Workflow Service Infrastructure for Computational Grid Environments

MSF: A Workflow Service Infrastructure for Computational Grid Environments MSF: A Workflow Service Infrastructure for Computational Grid Environments Seogchan Hwang 1 and Jaeyoung Choi 2 1 Supercomputing Center, Korea Institute of Science and Technology Information, 52 Eoeun-dong,

More information

Chapter 2 Introduction to the WS-PGRADE/gUSE Science Gateway Framework

Chapter 2 Introduction to the WS-PGRADE/gUSE Science Gateway Framework Chapter 2 Introduction to the WS-PGRADE/gUSE Science Gateway Framework Tibor Gottdank Abstract WS-PGRADE/gUSE is a gateway framework that offers a set of highlevel grid and cloud services by which interoperation

More information

GRAIL Grid Access and Instrumentation Tool

GRAIL Grid Access and Instrumentation Tool 2007 German e-science Available online at http://www.ges2007.de This document is under the terms of the CC-BY-NC-ND Creative Commons Attribution GRAIL Grid Access and Instrumentation Tool T. Jejkal 1,

More information

SwinDeW-G (Swinburne Decentralised Workflow for Grid) System Architecture. Authors: SwinDeW-G Team Contact: {yyang,

SwinDeW-G (Swinburne Decentralised Workflow for Grid) System Architecture. Authors: SwinDeW-G Team Contact: {yyang, SwinDeW-G (Swinburne Decentralised Workflow for Grid) System Architecture Authors: SwinDeW-G Team Contact: {yyang, jchen}@swin.edu.au Date: 05/08/08 1. Introduction SwinDeW-G is a scientific workflow management

More information

Grid Computing Fall 2005 Lecture 5: Grid Architecture and Globus. Gabrielle Allen

Grid Computing Fall 2005 Lecture 5: Grid Architecture and Globus. Gabrielle Allen Grid Computing 7700 Fall 2005 Lecture 5: Grid Architecture and Globus Gabrielle Allen allen@bit.csc.lsu.edu http://www.cct.lsu.edu/~gallen Concrete Example I have a source file Main.F on machine A, an

More information

A Compact Computing Environment For A Windows PC Cluster Towards Seamless Molecular Dynamics Simulations

A Compact Computing Environment For A Windows PC Cluster Towards Seamless Molecular Dynamics Simulations A Compact Computing Environment For A Windows PC Cluster Towards Seamless Molecular Dynamics Simulations Yuichi Tsujita Abstract A Windows PC cluster is focused for its high availabilities and fruitful

More information

An Introduction to the Grid

An Introduction to the Grid 1 An Introduction to the Grid 1.1 INTRODUCTION The Grid concepts and technologies are all very new, first expressed by Foster and Kesselman in 1998 [1]. Before this, efforts to orchestrate wide-area distributed

More information

A Component Framework for HPC Applications

A Component Framework for HPC Applications A Component Framework for HPC Applications Nathalie Furmento, Anthony Mayer, Stephen McGough, Steven Newhouse, and John Darlington Parallel Software Group, Department of Computing, Imperial College of

More information

Introduction to GT3. Introduction to GT3. What is a Grid? A Story of Evolution. The Globus Project

Introduction to GT3. Introduction to GT3. What is a Grid? A Story of Evolution. The Globus Project Introduction to GT3 The Globus Project Argonne National Laboratory USC Information Sciences Institute Copyright (C) 2003 University of Chicago and The University of Southern California. All Rights Reserved.

More information

Gatlet - a Grid Portal Framework

Gatlet - a Grid Portal Framework Gatlet - a Grid Portal Framework Stefan Bozic stefan.bozic@kit.edu STEINBUCH CENTRE FOR COMPUTING - SCC KIT University of the State of Baden-Württemberg and National Laboratory of the Helmholtz Association

More information

The Grid Authentication System for Mobile Grid Environment

The Grid Authentication System for Mobile Grid Environment IJSRD - International Journal for Scientific Research & Development Vol. 2, Issue 02, 2014 ISSN (online): 2321-0613 The Grid Authentication System for Mobile Grid Environment A.Sudha 1 S.M.Karpagavalli

More information

Design of Distributed Data Mining Applications on the KNOWLEDGE GRID

Design of Distributed Data Mining Applications on the KNOWLEDGE GRID Design of Distributed Data Mining Applications on the KNOWLEDGE GRID Mario Cannataro ICAR-CNR cannataro@acm.org Domenico Talia DEIS University of Calabria talia@deis.unical.it Paolo Trunfio DEIS University

More information

A Distributed Media Service System Based on Globus Data-Management Technologies1

A Distributed Media Service System Based on Globus Data-Management Technologies1 A Distributed Media Service System Based on Globus Data-Management Technologies1 Xiang Yu, Shoubao Yang, and Yu Hong Dept. of Computer Science, University of Science and Technology of China, Hefei 230026,

More information

WSRF Services for Composing Distributed Data Mining Applications on Grids: Functionality and Performance

WSRF Services for Composing Distributed Data Mining Applications on Grids: Functionality and Performance WSRF Services for Composing Distributed Data Mining Applications on Grids: Functionality and Performance Domenico Talia, Paolo Trunfio, and Oreste Verta DEIS, University of Calabria Via P. Bucci 41c, 87036

More information

SZDG, ecom4com technology, EDGeS-EDGI in large P. Kacsuk MTA SZTAKI

SZDG, ecom4com technology, EDGeS-EDGI in large P. Kacsuk MTA SZTAKI SZDG, ecom4com technology, EDGeS-EDGI in large P. Kacsuk MTA SZTAKI The EDGI/EDGeS projects receive(d) Community research funding 1 Outline of the talk SZTAKI Desktop Grid (SZDG) SZDG technology: ecom4com

More information

A RESOURCE MANAGEMENT FRAMEWORK FOR INTERACTIVE GRIDS

A RESOURCE MANAGEMENT FRAMEWORK FOR INTERACTIVE GRIDS A RESOURCE MANAGEMENT FRAMEWORK FOR INTERACTIVE GRIDS Raj Kumar, Vanish Talwar, Sujoy Basu Hewlett-Packard Labs 1501 Page Mill Road, MS 1181 Palo Alto, CA 94304 USA { raj.kumar,vanish.talwar,sujoy.basu}@hp.com

More information

GridSphere s Grid Portlets

GridSphere s Grid Portlets COMPUTATIONAL METHODS IN SCIENCE AND TECHNOLOGY 12(1), 89-97 (2006) GridSphere s Grid Portlets Michael Russell 1, Jason Novotny 2, Oliver Wehrens 3 1 Max-Planck-Institut für Gravitationsphysik, Albert-Einstein-Institut,

More information

NUSGRID a computational grid at NUS

NUSGRID a computational grid at NUS NUSGRID a computational grid at NUS Grace Foo (SVU/Academic Computing, Computer Centre) SVU is leading an initiative to set up a campus wide computational grid prototype at NUS. The initiative arose out

More information

Condor and BOINC. Distributed and Volunteer Computing. Presented by Adam Bazinet

Condor and BOINC. Distributed and Volunteer Computing. Presented by Adam Bazinet Condor and BOINC Distributed and Volunteer Computing Presented by Adam Bazinet Condor Developed at the University of Wisconsin-Madison Condor is aimed at High Throughput Computing (HTC) on collections

More information

To the Cloud and Back: A Distributed Photo Processing Pipeline

To the Cloud and Back: A Distributed Photo Processing Pipeline To the Cloud and Back: A Distributed Photo Processing Pipeline Nicholas Jaeger and Peter Bui Department of Computer Science University of Wisconsin - Eau Claire Eau Claire, WI 54702 {jaegernh, buipj}@uwec.edu

More information

Managing Large-Scale Scientific Workflows in Distributed Environments: Experiences and Challenges

Managing Large-Scale Scientific Workflows in Distributed Environments: Experiences and Challenges Managing Large-Scale Scientific s in Distributed Environments: Experiences and Challenges Ewa Deelman, Yolanda Gil USC Information Sciences Institute, Marina Del Rey, CA 90292, deelman@isi.edu, gil@isi.edu

More information

Characterising Resource Management Performance in Kubernetes. Appendices.

Characterising Resource Management Performance in Kubernetes. Appendices. Characterising Resource Management Performance in Kubernetes. Appendices. Víctor Medel a, Rafael Tolosana-Calasanz a, José Ángel Bañaresa, Unai Arronategui a, Omer Rana b a Aragon Institute of Engineering

More information

OGCE User Guide for OGCE Release 1

OGCE User Guide for OGCE Release 1 OGCE User Guide for OGCE Release 1 1 Publisher s Note Release 2 begins the migration to open standards portlets. The following has been published by the Open Grids Computing Environment: OGCE Release 2

More information

PoS(ISGC 2011 & OGF 31)119

PoS(ISGC 2011 & OGF 31)119 Enabling JChem application on grid Miklos Kozlovszky MTA SZTAKI H-1111 Kende str. 13-17, Budapest, Hungary E-mail: m.kozlovszky@sztaki.hu Akos Balasko MTA SZTAKI H-1111 Kende str. 13-17, Budapest, Hungary

More information

Weka4WS: a WSRF-enabled Weka Toolkit for Distributed Data Mining on Grids

Weka4WS: a WSRF-enabled Weka Toolkit for Distributed Data Mining on Grids Weka4WS: a WSRF-enabled Weka Toolkit for Distributed Data Mining on Grids Domenico Talia, Paolo Trunfio, Oreste Verta DEIS, University of Calabria Via P. Bucci 41c, 87036 Rende, Italy {talia,trunfio}@deis.unical.it

More information

A Model for Scientific Computing Platform

A Model for Scientific Computing Platform A Model for Scientific Computing Platform Petre Băzăvan CS Romania S.A. Păcii 29, 200692 Romania petre.bazavan@c-s.ro Mircea Grosu CS Romania S.A. Păcii 29, 200692 Romania mircea.grosu@c-s.ro Abstract:

More information

g-eclipse A Framework for Accessing Grid Infrastructures Nicholas Loulloudes Trainer, University of Cyprus (loulloudes.n_at_cs.ucy.ac.

g-eclipse A Framework for Accessing Grid Infrastructures Nicholas Loulloudes Trainer, University of Cyprus (loulloudes.n_at_cs.ucy.ac. g-eclipse A Framework for Accessing Grid Infrastructures Trainer, University of Cyprus (loulloudes.n_at_cs.ucy.ac.cy) EGEE Training the Trainers May 6 th, 2009 Outline Grid Reality The Problem g-eclipse

More information

The University of Oxford campus grid, expansion and integrating new partners. Dr. David Wallom Technical Manager

The University of Oxford campus grid, expansion and integrating new partners. Dr. David Wallom Technical Manager The University of Oxford campus grid, expansion and integrating new partners Dr. David Wallom Technical Manager Outline Overview of OxGrid Self designed components Users Resources, adding new local or

More information

Sphinx: A Scheduling Middleware for Data Intensive Applications on a Grid

Sphinx: A Scheduling Middleware for Data Intensive Applications on a Grid Sphinx: A Scheduling Middleware for Data Intensive Applications on a Grid Richard Cavanaugh University of Florida Collaborators: Janguk In, Sanjay Ranka, Paul Avery, Laukik Chitnis, Gregory Graham (FNAL),

More information

Juliusz Pukacki OGF25 - Grid technologies in e-health Catania, 2-6 March 2009

Juliusz Pukacki OGF25 - Grid technologies in e-health Catania, 2-6 March 2009 Grid Technologies for Cancer Research in the ACGT Project Juliusz Pukacki (pukacki@man.poznan.pl) OGF25 - Grid technologies in e-health Catania, 2-6 March 2009 Outline ACGT project ACGT architecture Layers

More information

Part IV. Workflow Mapping and Execution in Pegasus. (Thanks to Ewa Deelman)

Part IV. Workflow Mapping and Execution in Pegasus. (Thanks to Ewa Deelman) AAAI-08 Tutorial on Computational Workflows for Large-Scale Artificial Intelligence Research Part IV Workflow Mapping and Execution in Pegasus (Thanks to Ewa Deelman) 1 Pegasus-Workflow Management System

More information

HETEROGENEOUS COMPUTING

HETEROGENEOUS COMPUTING HETEROGENEOUS COMPUTING Shoukat Ali, Tracy D. Braun, Howard Jay Siegel, and Anthony A. Maciejewski School of Electrical and Computer Engineering, Purdue University Heterogeneous computing is a set of techniques

More information

OmniRPC: a Grid RPC facility for Cluster and Global Computing in OpenMP

OmniRPC: a Grid RPC facility for Cluster and Global Computing in OpenMP OmniRPC: a Grid RPC facility for Cluster and Global Computing in OpenMP (extended abstract) Mitsuhisa Sato 1, Motonari Hirano 2, Yoshio Tanaka 2 and Satoshi Sekiguchi 2 1 Real World Computing Partnership,

More information

Inner Secrets of GRAPNEL Code Generation. Daniel Drotos. Peter Kacsuk. University of Miskolc, Department of Automation

Inner Secrets of GRAPNEL Code Generation. Daniel Drotos. Peter Kacsuk. University of Miskolc, Department of Automation Inner Secrets of GRAPNEL Code Generation Daniel Drotos Peter Kacsuk University of Miskolc, Department of Automation H-3515 Egyetemvaros, Miskolc, Hungary E-mail: drdani@mazsolaiituni-miskolchu kacsuk@sunservkfkihu

More information

Grid Technologies & Applications: Architecture & Achievements

Grid Technologies & Applications: Architecture & Achievements Grid Technologies & Applications: Architecture & Achievements Ian Foster Mathematics & Computer Science Division, Argonne National Laboratory, Argonne, IL 60439, USA Department of Computer Science, The

More information

Advanced School in High Performance and GRID Computing November Introduction to Grid computing.

Advanced School in High Performance and GRID Computing November Introduction to Grid computing. 1967-14 Advanced School in High Performance and GRID Computing 3-14 November 2008 Introduction to Grid computing. TAFFONI Giuliano Osservatorio Astronomico di Trieste/INAF Via G.B. Tiepolo 11 34131 Trieste

More information

Grid portal solutions: a comparison of GridPortlets and OGCE

Grid portal solutions: a comparison of GridPortlets and OGCE CONCURRENCY AND COMPUTATION: PRACTICE AND EXPERIENCE Published online 7 June 2007 in Wiley InterScience (www.interscience.wiley.com)..1112 Grid portal solutions: a comparison of GridPortlets and OGCE Chongjie

More information

Harnessing Grid Resources to Enable the Dynamic Analysis of Large Astronomy Datasets

Harnessing Grid Resources to Enable the Dynamic Analysis of Large Astronomy Datasets Page 1 of 5 1 Year 1 Proposal Harnessing Grid Resources to Enable the Dynamic Analysis of Large Astronomy Datasets Year 1 Progress Report & Year 2 Proposal In order to setup the context for this progress

More information

Discovery Net : A UK e-science Pilot Project for Grid-based Knowledge Discovery Services. Patrick Wendel Imperial College, London

Discovery Net : A UK e-science Pilot Project for Grid-based Knowledge Discovery Services. Patrick Wendel Imperial College, London Discovery Net : A UK e-science Pilot Project for Grid-based Knowledge Discovery Services Patrick Wendel Imperial College, London Data Mining and Exploration Middleware for Distributed and Grid Computing,

More information

Computational Mini-Grid Research at Clemson University

Computational Mini-Grid Research at Clemson University Computational Mini-Grid Research at Clemson University Parallel Architecture Research Lab November 19, 2002 Project Description The concept of grid computing is becoming a more and more important one in

More information

Performance Cockpit: An Extensible GUI Platform for Performance Tools

Performance Cockpit: An Extensible GUI Platform for Performance Tools Performance Cockpit: An Extensible GUI Platform for Performance Tools Tianchao Li and Michael Gerndt Institut für Informatik, Technische Universität München, Boltzmannstr. 3, D-85748 Garching bei Mu nchen,

More information

ACET s e-research Activities

ACET s e-research Activities 18 June 2008 1 Computing Resources 2 Computing Resources Scientific discovery and advancement of science through advanced computing Main Research Areas Computational Science Middleware Technologies for

More information

Kenneth A. Hawick P. D. Coddington H. A. James

Kenneth A. Hawick P. D. Coddington H. A. James Student: Vidar Tulinius Email: vidarot@brandeis.edu Distributed frameworks and parallel algorithms for processing large-scale geographic data Kenneth A. Hawick P. D. Coddington H. A. James Overview Increasing

More information

WestminsterResearch

WestminsterResearch WestminsterResearch http://www.wmin.ac.uk/westminsterresearch GEMLCA: running legacy code applications as grid services. Thierry Delaitre 1 Tamas Kiss 1 Ariel Goyeneche 1 Gabor Terstyanszky 1 Stephen Winter

More information

Integration of the guse/ws-pgrade and InSilicoLab portals with DIRAC

Integration of the guse/ws-pgrade and InSilicoLab portals with DIRAC Journal of Physics: Conference Series Integration of the guse/ws-pgrade and InSilicoLab portals with DIRAC To cite this article: A Puig Navarro et al 2012 J. Phys.: Conf. Ser. 396 032088 Related content

More information

Web Interface to Materials Simulations

Web Interface to Materials Simulations Web Interface to Materials Simulations Web Interface Generator and Legacy Application Façade Portal Development Team Funding Akos J. Czikmantory (JPL - Wiglaf) DARPA-PROM Hook Hua (JPL - Wiglaf ) JPL SRRF

More information

Monitoring System for Distributed Java Applications

Monitoring System for Distributed Java Applications Monitoring System for Distributed Java Applications W lodzimierz Funika 1, Marian Bubak 1,2, and Marcin Smȩtek 1 1 Institute of Computer Science, AGH, al. Mickiewicza 30, 30-059 Kraków, Poland 2 Academic

More information

Department of Computing, Macquarie University, NSW 2109, Australia

Department of Computing, Macquarie University, NSW 2109, Australia Gaurav Marwaha Kang Zhang Department of Computing, Macquarie University, NSW 2109, Australia ABSTRACT Designing parallel programs for message-passing systems is not an easy task. Difficulties arise largely

More information

Day 2 August 06, 2004 (Friday)

Day 2 August 06, 2004 (Friday) An Overview of Grid Computing Day 2 August 06, 2004 (Friday) By CDAC Experts Contact :vcvrao@cdacindia.com; betatest@cdacindia.com URL : http://www.cs.umn.edu/~vcvrao 1 Betatesting Group,NPSF, C-DAC,Pune

More information

A Grid-Enabled Component Container for CORBA Lightweight Components

A Grid-Enabled Component Container for CORBA Lightweight Components A Grid-Enabled Component Container for CORBA Lightweight Components Diego Sevilla 1, José M. García 1, Antonio F. Gómez 2 1 Department of Computer Engineering 2 Department of Information and Communications

More information

Towards Distributed Monitoring and Performance Analysis Services in the K-WfGrid Project

Towards Distributed Monitoring and Performance Analysis Services in the K-WfGrid Project Towards Distributed Monitoring and Analysis Services in the K-WfGrid Project Hong-Linh Truong 1, Bartosz Baliś 2, Marian Bubak 2,3, Jakub Dziwisz 2, Thomas Fahringer 1, Andreas Hoheisel 4 1 Institute for

More information

Knowledge Discovery Services and Tools on Grids

Knowledge Discovery Services and Tools on Grids Knowledge Discovery Services and Tools on Grids DOMENICO TALIA DEIS University of Calabria ITALY talia@deis.unical.it Symposium ISMIS 2003, Maebashi City, Japan, Oct. 29, 2003 OUTLINE Introduction Grid

More information

An Eclipse-based Environment for Programming and Using Service-Oriented Grid

An Eclipse-based Environment for Programming and Using Service-Oriented Grid An Eclipse-based Environment for Programming and Using Service-Oriented Grid Tianchao Li and Michael Gerndt Institut fuer Informatik, Technische Universitaet Muenchen, Germany Abstract The convergence

More information

Interoperable and Transparent Dynamic Deployment of Web Services for Service Oriented Grids

Interoperable and Transparent Dynamic Deployment of Web Services for Service Oriented Grids Interoperable and Transparent Dynamic Deployment of Web s for Oriented Grids Michael Messig and Andrzej Goscinski School of Engineering and Information Technology Deakin University Pigdons Road, Geelong

More information

UNIT IV PROGRAMMING MODEL. Open source grid middleware packages - Globus Toolkit (GT4) Architecture, Configuration - Usage of Globus

UNIT IV PROGRAMMING MODEL. Open source grid middleware packages - Globus Toolkit (GT4) Architecture, Configuration - Usage of Globus UNIT IV PROGRAMMING MODEL Open source grid middleware packages - Globus Toolkit (GT4) Architecture, Configuration - Usage of Globus Globus: One of the most influential Grid middleware projects is the Globus

More information

Scientific Computing with UNICORE

Scientific Computing with UNICORE Scientific Computing with UNICORE Dirk Breuer, Dietmar Erwin Presented by Cristina Tugurlan Outline Introduction Grid Computing Concepts Unicore Arhitecture Unicore Capabilities Unicore Globus Interoperability

More information

DISTRIBUTED HIGH-SPEED COMPUTING OF MULTIMEDIA DATA

DISTRIBUTED HIGH-SPEED COMPUTING OF MULTIMEDIA DATA DISTRIBUTED HIGH-SPEED COMPUTING OF MULTIMEDIA DATA M. GAUS, G. R. JOUBERT, O. KAO, S. RIEDEL AND S. STAPEL Technical University of Clausthal, Department of Computer Science Julius-Albert-Str. 4, 38678

More information

Pegasus Workflow Management System. Gideon Juve. USC Informa3on Sciences Ins3tute

Pegasus Workflow Management System. Gideon Juve. USC Informa3on Sciences Ins3tute Pegasus Workflow Management System Gideon Juve USC Informa3on Sciences Ins3tute Scientific Workflows Orchestrate complex, multi-stage scientific computations Often expressed as directed acyclic graphs

More information

Grid Computing Middleware. Definitions & functions Middleware components Globus glite

Grid Computing Middleware. Definitions & functions Middleware components Globus glite Seminar Review 1 Topics Grid Computing Middleware Grid Resource Management Grid Computing Security Applications of SOA and Web Services Semantic Grid Grid & E-Science Grid Economics Cloud Computing 2 Grid

More information

3.4 Data-Centric workflow

3.4 Data-Centric workflow 3.4 Data-Centric workflow One of the most important activities in a S-DWH environment is represented by data integration of different and heterogeneous sources. The process of extract, transform, and load

More information

Heterogeneous Workflows in Scientific Workflow Systems

Heterogeneous Workflows in Scientific Workflow Systems Heterogeneous Workflows in Scientific Workflow Systems Vasa Curcin, Moustafa Ghanem, Patrick Wendel, and Yike Guo Department of Computing, Imperial College London Abstract. Workflow systems are used to

More information

A Resource Discovery Algorithm in Mobile Grid Computing Based on IP-Paging Scheme

A Resource Discovery Algorithm in Mobile Grid Computing Based on IP-Paging Scheme A Resource Discovery Algorithm in Mobile Grid Computing Based on IP-Paging Scheme Yue Zhang 1 and Yunxia Pei 2 1 Department of Math and Computer Science Center of Network, Henan Police College, Zhengzhou,

More information

Grid technologies, solutions and concepts in the synchrotron Elettra

Grid technologies, solutions and concepts in the synchrotron Elettra Grid technologies, solutions and concepts in the synchrotron Elettra Roberto Pugliese, George Kourousias, Alessio Curri, Milan Prica, Andrea Del Linz Scientific Computing Group, Elettra Sincrotrone, Trieste,

More information

Grid Scheduling Architectures with Globus

Grid Scheduling Architectures with Globus Grid Scheduling Architectures with Workshop on Scheduling WS 07 Cetraro, Italy July 28, 2007 Ignacio Martin Llorente Distributed Systems Architecture Group Universidad Complutense de Madrid 1/38 Contents

More information

The glite File Transfer Service

The glite File Transfer Service The glite File Transfer Service Peter Kunszt Paolo Badino Ricardo Brito da Rocha James Casey Ákos Frohner Gavin McCance CERN, IT Department 1211 Geneva 23, Switzerland Abstract Transferring data reliably

More information

Grid-enabled electromagnetic optimisation (GEM) for industrial use

Grid-enabled electromagnetic optimisation (GEM) for industrial use Grid-enabled electromagnetic optimisation (GEM) for industrial use Marc Molinari, Simon J Cox, Andy J Keane Southampton e-science Centre School of Engineering Sciences University of Southampton, SO17 1BJ

More information

Semi-automatic Creation of Adapters for Legacy Application Migration to Integration Platform Using Knowledge

Semi-automatic Creation of Adapters for Legacy Application Migration to Integration Platform Using Knowledge Semi-automatic Creation of Adapters for Legacy Application Migration to Integration Platform Using Knowledge Jan Pieczykolan 1,2,BartoszKryza 1, and Jacek Kitowski 1,2 1 Academic Computer Center CYFRONET-AGH,

More information

Interconnect EGEE and CNGRID e-infrastructures

Interconnect EGEE and CNGRID e-infrastructures Interconnect EGEE and CNGRID e-infrastructures Giuseppe Andronico Interoperability and Interoperation between Europe, India and Asia Workshop Barcelona - Spain, June 2 2007 FP6 2004 Infrastructures 6-SSA-026634

More information

The LHC Computing Grid

The LHC Computing Grid The LHC Computing Grid Gergely Debreczeni (CERN IT/Grid Deployment Group) The data factory of LHC 40 million collisions in each second After on-line triggers and selections, only 100 3-4 MB/event requires

More information

GRED: Graphical Design. GRP file. GRP2C precompiler. C Source Code. Makefile. Building executables. Executables. Execution. Trace file.

GRED: Graphical Design. GRP file. GRP2C precompiler. C Source Code. Makefile. Building executables. Executables. Execution. Trace file. A Graphical Development and Debugging Environment for Parallel Programs Peter Kacsuk, Jose C. Cunha Gabor Dozsa, Jo~ao Lourenco Tibor Fadgyas, Tiago Ant~ao KFKI-MSZKI Research Institute for Measurement

More information

g-eclipse A Contextualised Framework for Grid Users, Grid Resource Providers and Grid Application Developers

g-eclipse A Contextualised Framework for Grid Users, Grid Resource Providers and Grid Application Developers g-eclipse A Contextualised Framework for Grid Users, Grid Resource Providers and Grid Application Developers Harald Kornmayer 1, Mathias Stümpert 2, Harald Gjermundrød 3, and Pawe l Wolniewicz 4 1 NEC

More information

CSF4:A WSRF Compliant Meta-Scheduler

CSF4:A WSRF Compliant Meta-Scheduler CSF4:A WSRF Compliant Meta-Scheduler Wei Xiaohui 1, Ding Zhaohui 1, Yuan Shutao 2, Hou Chang 1, LI Huizhen 1 (1: The College of Computer Science & Technology, Jilin University, China 2:Platform Computing,

More information

Implementation of Grid-enabled Medical Simulation Applications Using Workflow Techniques

Implementation of Grid-enabled Medical Simulation Applications Using Workflow Techniques In Proceedings of 2 nd International Workshop on Grid and Cooperative Computing (GCC 2004), Shanghai, China, Lecture Notes in Computer Science 3032, Springer Verlag, December 2003, pp. 34-41. Implementation

More information

Nancy Wilkins-Diehr San Diego Supercomputer Center (SDSC) University of California at San Diego

Nancy Wilkins-Diehr San Diego Supercomputer Center (SDSC) University of California at San Diego SimpleGrid Toolkit: Enabling Efficient Learning and Development of TeraGrid Science Gateway Shaowen Wang Yan Liu CyberInfrastructure and Geospatial Information Laboratory (CIGI) National Center for Supercomputing

More information

Abstract. Introduction. Application of Grid Techniques in the CFD Field

Abstract. Introduction. Application of Grid Techniques in the CFD Field P V Application of Grid Techniques in the CFD Field 1! 2 " # $%& ' '( " )*+,-.$ / 0 )12 3 " #2 4 $ 56 879 :3; WX '$WZY {P }V '(

More information

A Resource Discovery Algorithm in Mobile Grid Computing based on IP-paging Scheme

A Resource Discovery Algorithm in Mobile Grid Computing based on IP-paging Scheme A Resource Discovery Algorithm in Mobile Grid Computing based on IP-paging Scheme Yue Zhang, Yunxia Pei To cite this version: Yue Zhang, Yunxia Pei. A Resource Discovery Algorithm in Mobile Grid Computing

More information

Managing MPICH-G2 Jobs with WebCom-G

Managing MPICH-G2 Jobs with WebCom-G Managing MPICH-G2 Jobs with WebCom-G Padraig J. O Dowd, Adarsh Patil and John P. Morrison Computer Science Dept., University College Cork, Ireland {p.odowd, adarsh, j.morrison}@cs.ucc.ie Abstract This

More information

Web-based access to the grid using. the Grid Resource Broker Portal

Web-based access to the grid using. the Grid Resource Broker Portal Web-based access to the grid using the Grid Resource Broker Portal Giovanni Aloisio, Massimo Cafaro ISUFI High Performance Computing Center Department of Innovation Engineering University of Lecce, Italy

More information

Grid Service Provider: How to Improve Flexibility of Grid User Interfaces?

Grid Service Provider: How to Improve Flexibility of Grid User Interfaces? Grid Service Provider: How to Improve Flexibility of Grid User Interfaces? Maciej Bogdanski, Michal Kosiedowski, Cezary Mazurek, and Malgorzata Wolniewicz Poznan Supercomputing and Networking Center, ul.

More information

The Problem of Grid Scheduling

The Problem of Grid Scheduling Grid Scheduling The Problem of Grid Scheduling Decentralised ownership No one controls the grid Heterogeneous composition Difficult to guarantee execution environments Dynamic availability of resources

More information

Two-Level Dynamic Load Balancing Algorithm Using Load Thresholds and Pairwise Immigration

Two-Level Dynamic Load Balancing Algorithm Using Load Thresholds and Pairwise Immigration Two-Level Dynamic Load Balancing Algorithm Using Load Thresholds and Pairwise Immigration Hojiev Sardor Qurbonboyevich Department of IT Convergence Engineering Kumoh National Institute of Technology, Daehak-ro

More information

Performance Analysis of Applying Replica Selection Technology for Data Grid Environments*

Performance Analysis of Applying Replica Selection Technology for Data Grid Environments* Performance Analysis of Applying Replica Selection Technology for Data Grid Environments* Chao-Tung Yang 1,, Chun-Hsiang Chen 1, Kuan-Ching Li 2, and Ching-Hsien Hsu 3 1 High-Performance Computing Laboratory,

More information

Web Data Extraction and Generating Mashup

Web Data Extraction and Generating Mashup IOSR Journal of Computer Engineering (IOSR-JCE) e-issn: 2278-0661, p- ISSN: 2278-8727Volume 9, Issue 6 (Mar. - Apr. 2013), PP 74-79 Web Data Extraction and Generating Mashup Achala Sharma 1, Aishwarya

More information

Application of Grid techniques in the CFD field

Application of Grid techniques in the CFD field Application of Grid techniques in the CFD field Xiaobo Yang and Mark Hayes Cambridge escience Centre, University of Cambridge Wilberforce Road, Cambridge CB3 0WA, UK Email: {xy216,mah1002}@cam.ac.uk Abstract

More information

Inteligencia Artificial. Revista Iberoamericana de Inteligencia Artificial ISSN:

Inteligencia Artificial. Revista Iberoamericana de Inteligencia Artificial ISSN: Inteligencia Artificial. Revista Iberoamericana de Inteligencia Artificial ISSN: 1137-3601 revista@aepia.org Asociación Española para la Inteligencia Artificial España Kus, Waclaw; Burczynski, Tadeusz

More information

Grid Computing Initiative at UI: A Preliminary Result

Grid Computing Initiative at UI: A Preliminary Result Grid Computing Initiative at UI: A Preliminary Result Riri Fitri Sari, Kalamullah Ramli, Bagio Budiardjo e-mail: {riri, k.ramli, bbudi@ee.ui.ac.id} Center for Information and Communication Engineering

More information

GRB. Grid-JQA : Grid Java based Quality of service management by Active database. L. Mohammad Khanli M. Analoui. Abstract.

GRB. Grid-JQA : Grid Java based Quality of service management by Active database. L. Mohammad Khanli M. Analoui. Abstract. Grid-JQA : Grid Java based Quality of service management by Active database L. Mohammad Khanli M. Analoui Ph.D. student C.E. Dept. IUST Tehran, Iran Khanli@iust.ac.ir Assistant professor C.E. Dept. IUST

More information

On the Use of Cloud Computing for Scientific Workflows

On the Use of Cloud Computing for Scientific Workflows On the Use of Cloud Computing for Scientific Workflows Christina Hoffa 1, Gaurang Mehta 2, Timothy Freeman 3, Ewa Deelman 2, Kate Keahey 3, Bruce Berriman 4, John Good 4 1 Indiana University, 2 University

More information

Scalable Hybrid Search on Distributed Databases

Scalable Hybrid Search on Distributed Databases Scalable Hybrid Search on Distributed Databases Jungkee Kim 1,2 and Geoffrey Fox 2 1 Department of Computer Science, Florida State University, Tallahassee FL 32306, U.S.A., jungkkim@cs.fsu.edu, 2 Community

More information

Outline. Definition of a Distributed System Goals of a Distributed System Types of Distributed Systems

Outline. Definition of a Distributed System Goals of a Distributed System Types of Distributed Systems Distributed Systems Outline Definition of a Distributed System Goals of a Distributed System Types of Distributed Systems What Is A Distributed System? A collection of independent computers that appears

More information