CSE 101. Algorithm Design and Analysis Miles Jones Office 4208 CSE Building Lecture 8: Negative Edges

Size: px
Start display at page:

Download "CSE 101. Algorithm Design and Analysis Miles Jones Office 4208 CSE Building Lecture 8: Negative Edges"

Transcription

1 CSE 101 Algorithm Design and Analysis Miles Jones Office 4208 CSE Building Lecture 8: Negative Edges

2 DIJKSTRA S ALGORITHM WITH DIFFERENT PRIORITY QUEUES. Runtime of Array: O V 2 Runtime of Binary heap: O V + E log V Fibonacci Heap!!!: O V log V + E

3 SHORTEST PATHS WITH NEGATIVE EDGES Dijkstra s algorithm works on graphs with positive edge lengths. It finds all the shortest paths from a given vertex when all the edges have positive edge lengths. (Actually, it works if the edges are non - negative.) In the presence of negative edge lengths, Dijkstra s will not always return the shortest paths.

4 EXAMPLE S 3 5 A 1 B C -2 The shortest path from S to A passes through B And B is farther away from S than A!!!!! With Dijkstra s algorithm, each time you set dist(), it is an overestimate or equal to the actual distance.

5

6 CHANGING DIJKSTRA S I suppose you could change Dijkstra s to reinsert a vertex when it is assigned a new negative weight but then the algorithm may take longer. With positive edge weights, each vertex will be inserted and ejected once. With negative edge weights, each vertex will be inserted and ejected multiple times.

7 CHANGING DIJKSTRA S procedure dijkstra(g,l,s) for all u in V dist(u) := infinity prev(u) := nil dist(s) := 0 H := makequeue(v) while H is not empty u := deletemin(h) for all edges (u,v) in E if dist(v) > dist(u) + l(u,v) then if v is not in H then insert v back into H dist(v):= dist(u) + l(u,v) prev(v):=u decreasekey(h,v)

8 DIJKSTRA S WITH NEGATIVE CYCLES A B C

9 CHANGING DIJKSTRA S What s the worst case scenario? It could be the case that each vertex is inserted and ejected so many times that the algorithm would run in exponential time.

10 PROCEDURE UPDATE procedure update((u, v) E) dist v min dist v, dist u + l u, v The true shortest distance from S to v can not be more than dist u + l u, v u S v

11 PROCEDURE UPDATE procedure update((u, v) E) dist v min dist v, dist u + l u, v 1. It gives the correct distance to v in the case where u is the second to last vertex in the shortest path to v and dist(u) is correctly set. 2. It will never make dist(v) too small so it is safe. In other words, updating over and over won t ever hurt.

12 procedure dijkstra(g,l,s) for all u in V dist(u) := infinity prev(u) := nil dist(s) := 0 H := makequeue(v) while H is not empty u := deletemin(h) for all edges (u,v) in E update(u,v) decreasekey(h,v) DIJKSTRA S USING UPDATE

13 DIJKSTRA S USING UPDATE Dijkstra s algorithm finds the shortest distance by updating over and over The sequence it performs update goes along the current shortest path up to that point. (it is guaranteed to be the current shortest path up to that point by the fact that the edges are all positive.) This will not work well with negative edges as we have seen. It will work well, however, if the updates are performed along the correct shortest path.

14 DIJKSTRA S USING UPDATE Dijkstra s algorithm finds the shortest distance by updating over and over The sequence it performs update goes along the current shortest path up to that point. This will not work well with negative edges as we have seen. It will work well in the absence of negative cycles, however, if the updates are performed along the correct shortest path. (How will we know what the shortest path is?)

15 UPDATING ALONG THE SHORTEST PATH Suppose we update along the shortest path from s to t s u1 u3 uk t This path has at most how many edges?

16 UPDATING ALONG THE SHORTEST PATH Suppose we update along the shortest path from s to t s u1 u3 uk t This path has at most V 1 edges. because the shortest path could possibly pass through all V edges.

17 UPDATING ALONG THE SHORTEST PATH Suppose we update along the shortest path from s to t s u1 u3 uk t if the sequence of updates includes (s,u1),(u1,u2),,(uk,t) in that order then by the first property of update, the distance from s to t will be computed correctly. (even if there were other calls of update in between or if you update the same edge twice.)

18 UPDATING ALONG THE SHORTEST PATH Suppose we update along the shortest path from s to t s u1 u3 uk t How do you get to update in this order if you don t know the order to begin with?

19 EXERCISE Suppose I want to create a sequence of the numbers 1,2,3,4 that contains every sequence of length 3 as a subsequence. What is the shortest sequence you could create?

20 EXAMPLE Suppose I want to create a list of the numbers 1,2,3,4 such that every sequence of length 3 shows up

21 UPDATING ALL EDGES V -1 TIMES To ensure that we update all edges in all possible orderings, we can update all edges in a certain order V -1 times.

22 BELLMAN FORD ALGORITHM procedure BFshortestpath(G,l,S) for all u V dist(u)=infinity dist(s)=0 repeat V -1 times for all e E update(e)

23 EXAMPLE A B C D E F

24 BELLMAN FORD RUNTIME procedure BFshortestpath(G,l,S) for all u V dist(u)=infinity dist(s)=0 repeat V -1 times for all e E update(e)

25 BELLMAN FORD RUNTIME procedure Bfshortestpath(G,l,S) for all u V dist(u)=infinity dist(s)=0 repeat V -1 times for all e E update(e) We are updating each edge V -1 times so the runtime is O V E

26 BELLMAN FORD RUNTIME procedure Bfshortestpath(G,l,S) for all u V dist(u)=infinity dist(s)=0 while dist() values don t change for all e E update(e) We can watch the values of dist() and if they don t change after an iteration then they will not change anymore and we can terminate the algorithm there.

27 EXAMPLE

28 NEGATIVE CYCLES

29 BELLMAN FORD We restrict our input graphs to be graphs with no negative cycles. What kinds of graphs are guaranteed to not have negative cycles? How can we detect if a graph has a negative cycle?

30 BELLMAN FORD TO DETECT NEGATIVE CYCLES. Run Bellman Ford and update V -1 times. Then update one more time and see if the values change. procedure Bfshortestpath(G,l,S) for all u V dist(u)=infinity dist(s)=0 while dist() values don t change or you have repeated V -1 times for all e E update(e) for all e E update(e) if dist value has changed: return negative cycle!!!!

31 DAGS WITH EDGE WEIGHTS How can we adjust Bellman Ford to work on DAGs and get a better runtime?

32 DAGS WITH EDGE WEIGHTS How can we adjust Bellman Ford to work on DAGs and get a better runtime? Linearize the DAG with DFS then update the edges in that order only 1 time!!!! DFS takes O V + E and updating the edges one time takes O E So for a DAG, we can find the shortest path in linear time!!

33 DAGS WITH (NEGATIVE) EDGE WEIGHTS

34 DAGS WITH (NEGATIVE) EDGE WEIGHTS

35 APPLICATION: CURRENCY EXCHANGE EUR GBP CHF USD AUD CAD HKD INR JPY SAR SGD ZAR SEK AED EUR GBP CHF USD AUD CAD HKD INR JPY SAR SGD ZAR SEK AED

36 APPLICATION: CURRENCY EXCHANGE

37 APPLICATION: CURRENCY EXCHANGE

38 APPLICATION: CURRENCY EXCHANGE Running Bellman-Ford starting at USD -log(rate) {'AED': , 'AUD': , 'CAD': , 'CHF': , 'EUR': , 'GBP': , 'HKD': , 'INR': , 'JPY': , 'SAR': , 'SEK': , 'SGD': , 'USD': , 'ZAR': }, rate {'AED': , 'AUD': , 'CAD': , 'CHF': , 'EUR': , 'GBP': , 'HKD': , 'INR': , 'JPY': , 'SAR': , 'SEK': , 'SGD': , 'USD': , 'ZAR': } {'AED': 'SGD', 'AUD': 'INR', 'CAD': 'SEK', 'CHF': 'INR', 'EUR': 'JPY', 'GBP': 'ZAR', 'HKD': 'SEK', 'INR': 'SEK', 'JPY': 'SEK', 'SAR': 'ZAR', 'SEK': 'ZAR', 'SGD': 'JPY', 'USD': 'JPY', 'ZAR': 'AED'}, 'negative cycle!!!!')

39 NEGATIVE CYCLE (SHORTEST PATH TREE) {'AED': 'SGD', 'AUD': 'INR', 'CAD': 'SEK', 'CHF': 'INR', 'EUR': 'JPY', 'GBP': 'ZAR', 'HKD': 'SEK', 'INR': 'SEK', 'JPY': 'SEK', 'SAR': 'ZAR', 'SEK': 'ZAR', 'SGD': 'JPY', 'USD': 'JPY', 'ZAR': 'AED'}, 'negative cycle!!!!')

40 CURRENCY BUY AND SELL RATES ({'AED': , 'AUD': , 'CAD': , 'CHF': , 'EUR': , 'GBP': , 'HKD': 0, 'INR': , 'JPY': , 'SAR': , 'SEK': , 'SGD': , 'USD': , 'ZAR': }, {'AED': 'HKD', 'AUD': 'HKD', 'CAD': 'AED', 'CHF': 'AED', 'EUR': 'AUD', 'GBP': 'AED', 'HKD': '', 'INR': 'AUD', 'JPY': 'AUD', 'SAR': 'JPY', 'SEK': 'JPY', 'SGD': 'AED', 'USD': 'AED', 'ZAR': 'JPY'})

41 {'AED': 'HKD', 'AUD': 'HKD', 'CAD': 'AED', 'CHF': 'AED', 'EUR': 'AUD', 'GBP': 'AED', 'HKD': '', 'INR': 'AUD', 'JPY': 'AUD', 'SAR': 'JPY', 'SEK': 'JPY', 'SGD': 'AED', 'USD': 'AED', 'ZAR': 'JPY'}) SHORTEST PATH TREE

CSE 101. Algorithm Design and Analysis Miles Jones Office 4208 CSE Building Lecture 6: BFS and Dijkstra s

CSE 101. Algorithm Design and Analysis Miles Jones Office 4208 CSE Building Lecture 6: BFS and Dijkstra s CSE 101 Algorithm Design and Analysis Miles Jones mej016@eng.ucsd.edu Office 4208 CSE Building Lecture 6: BFS and Dijkstra s BREADTH FIRST SEARCH (BFS) Given a graph G and a starting vertex s, BFS computes

More information

UC Berkeley CS 170: Efficient Algorithms and Intractable Problems Handout 7 Lecturer: David Wagner February 13, Notes 7 for CS 170

UC Berkeley CS 170: Efficient Algorithms and Intractable Problems Handout 7 Lecturer: David Wagner February 13, Notes 7 for CS 170 UC Berkeley CS 170: Efficient Algorithms and Intractable Problems Handout 7 Lecturer: David Wagner February 13, 003 Notes 7 for CS 170 1 Dijkstra s Algorithm Suppose each edge (v, w) of our graph has a

More information

CSC 373 Lecture # 3 Instructor: Milad Eftekhar

CSC 373 Lecture # 3 Instructor: Milad Eftekhar Huffman encoding: Assume a context is available (a document, a signal, etc.). These contexts are formed by some symbols (words in a document, discrete samples from a signal, etc). Each symbols s i is occurred

More information

Algorithms for Data Science

Algorithms for Data Science Algorithms for Data Science CSOR W4246 Eleni Drinea Computer Science Department Columbia University Shortest paths in weighted graphs (Bellman-Ford, Floyd-Warshall) Outline 1 Shortest paths in graphs with

More information

CSE 101. Algorithm Design and Analysis Miles Jones Office 4208 CSE Building Lecture 5: SCC/BFS

CSE 101. Algorithm Design and Analysis Miles Jones Office 4208 CSE Building Lecture 5: SCC/BFS CSE 101 Algorithm Design and Analysis Miles Jones mej016@eng.ucsd.edu Office 4208 CSE Building Lecture 5: SCC/BFS DECOMPOSITION There is a linear time algorithm that decomposes a directed graph into its

More information

Algorithms (V) Path in Graphs. Guoqiang Li. School of Software, Shanghai Jiao Tong University

Algorithms (V) Path in Graphs. Guoqiang Li. School of Software, Shanghai Jiao Tong University Algorithms (V) Path in Graphs Guoqiang Li School of Software, Shanghai Jiao Tong University Review of the Previous Lecture Exploring Graphs EXPLORE(G, v) input : G = (V, E) is a graph; v V output: visited(u)

More information

Analysis of Algorithms, I

Analysis of Algorithms, I Analysis of Algorithms, I CSOR W4231.002 Eleni Drinea Computer Science Department Columbia University Thursday, March 8, 2016 Outline 1 Recap Single-source shortest paths in graphs with real edge weights:

More information

Description of The Algorithm

Description of The Algorithm Description of The Algorithm Dijkstra s algorithm works by solving the sub-problem k, which computes the shortest path from the source to vertices among the k closest vertices to the source. For the dijkstra

More information

Algorithms (IX) Yijia Chen Shanghai Jiaotong University

Algorithms (IX) Yijia Chen Shanghai Jiaotong University Algorithms (IX) Yijia Chen Shanghai Jiaotong University Review of the Previous Lecture Shortest paths in the presence of negative edges Negative edges Dijkstra s algorithm works in part because the shortest

More information

CS 561, Lecture 10. Jared Saia University of New Mexico

CS 561, Lecture 10. Jared Saia University of New Mexico CS 561, Lecture 10 Jared Saia University of New Mexico Today s Outline The path that can be trodden is not the enduring and unchanging Path. The name that can be named is not the enduring and unchanging

More information

1 Shortest Paths. 1.1 Breadth First Search (BFS) CS 124 Section #3 Shortest Paths and MSTs 2/13/2018

1 Shortest Paths. 1.1 Breadth First Search (BFS) CS 124 Section #3 Shortest Paths and MSTs 2/13/2018 CS Section # Shortest Paths and MSTs //08 Shortest Paths There are types of shortest paths problems: Single source single destination Single source to all destinations All pairs shortest path In today

More information

CS 561, Lecture 10. Jared Saia University of New Mexico

CS 561, Lecture 10. Jared Saia University of New Mexico CS 561, Lecture 10 Jared Saia University of New Mexico Today s Outline The path that can be trodden is not the enduring and unchanging Path. The name that can be named is not the enduring and unchanging

More information

Algorithms (VII) Yijia Chen Shanghai Jiaotong University

Algorithms (VII) Yijia Chen Shanghai Jiaotong University Algorithms (VII) Yijia Chen Shanghai Jiaotong University Review of the Previous Lecture Depth-first search in undirected graphs Exploring graphs explore(g, v) Input: G = (V, E) is a graph; v V Output:

More information

Algorithms (VII) Yijia Chen Shanghai Jiaotong University

Algorithms (VII) Yijia Chen Shanghai Jiaotong University Algorithms (VII) Yijia Chen Shanghai Jiaotong University Review of the Previous Lecture Depth-first search in undirected graphs Exploring graphs explore(g, v) Input: G = (V, E) is a graph; v V Output:

More information

1 Shortest Paths. 1.1 Breadth First Search (BFS) CS 124 Section #3 Shortest Paths and MSTs 2/13/2018

1 Shortest Paths. 1.1 Breadth First Search (BFS) CS 124 Section #3 Shortest Paths and MSTs 2/13/2018 CS 4 Section # Shortest Paths and MSTs //08 Shortest Paths There are types of shortest paths problems: Single source single destination Single source to all destinations All pairs shortest path In today

More information

Dr. Alexander Souza. Winter term 11/12

Dr. Alexander Souza. Winter term 11/12 Algorithms Theory 11 Shortest t Paths Dr. Alexander Souza 1. Shortest-paths problem Directed graph G = (V, E) Cost function c : E R 1 2 1 3 3 2 4 4 2 6 6 5 3 2 Distance between two vertices Cost of a path

More information

Solution. violating the triangle inequality. - Initialize U = {s} - Add vertex v to U whenever DIST[v] decreases.

Solution. violating the triangle inequality. - Initialize U = {s} - Add vertex v to U whenever DIST[v] decreases. Solution Maintain a set U of all those vertices that might have an outgoing edge violating the triangle inequality. - Initialize U = {s} - Add vertex v to U whenever DIST[v] decreases. 1. Check if the

More information

Question Points Score TOTAL 50

Question Points Score TOTAL 50 UCSD CSE 101 Section B00, Winter 2015 MIDTERM February 5, 2015 NAME: Student ID: Question Points Score 1 10 2 10 3 10 4 10 5 10 TOTAL 50 INSTRUCTIONS. Be clear and concise. Write your answers in the space

More information

Algorithms for Data Science

Algorithms for Data Science Algorithms for Data Science CSOR W4246 Eleni Drinea Computer Science Department Columbia University Thursday, October 1, 2015 Outline 1 Recap 2 Shortest paths in graphs with non-negative edge weights (Dijkstra

More information

Dijkstra s Algorithm and Priority Queue Implementations. CSE 101: Design and Analysis of Algorithms Lecture 5

Dijkstra s Algorithm and Priority Queue Implementations. CSE 101: Design and Analysis of Algorithms Lecture 5 Dijkstra s Algorithm and Priority Queue Implementations CSE 101: Design and Analysis of Algorithms Lecture 5 CSE 101: Design and analysis of algorithms Dijkstra s algorithm and priority queue implementations

More information

CS161 - Minimum Spanning Trees and Single Source Shortest Paths

CS161 - Minimum Spanning Trees and Single Source Shortest Paths CS161 - Minimum Spanning Trees and Single Source Shortest Paths David Kauchak Single Source Shortest Paths Given a graph G and two vertices s, t what is the shortest path from s to t? For an unweighted

More information

Breadth-First Search, 1. Slides for CIS 675 DPV Chapter 4. Breadth-First Search, 3. Breadth-First Search, 2

Breadth-First Search, 1. Slides for CIS 675 DPV Chapter 4. Breadth-First Search, 3. Breadth-First Search, 2 Breadth-First Search, Slides for CIS DPV Chapter Jim Royer EECS October, 00 Definition In an undirected graph, the distance between two vertices is the length of the shortest path between them. (If there

More information

CSC Intro to Intelligent Robotics, Spring Graphs

CSC Intro to Intelligent Robotics, Spring Graphs CSC 445 - Intro to Intelligent Robotics, Spring 2018 Graphs Graphs Definition: A graph G = (V, E) consists of a nonempty set V of vertices (or nodes) and a set E of edges. Each edge has either one or two

More information

CS350: Data Structures Dijkstra s Shortest Path Alg.

CS350: Data Structures Dijkstra s Shortest Path Alg. Dijkstra s Shortest Path Alg. James Moscola Department of Engineering & Computer Science York College of Pennsylvania James Moscola Shortest Path Algorithms Several different shortest path algorithms exist

More information

CS 4349 Lecture October 23rd, 2017

CS 4349 Lecture October 23rd, 2017 CS 4349 Lecture October 23rd, 2017 Main topics for #lecture include #minimum_spanning_trees and #SSSP. Prelude Homework 7 due Wednesday, October 25th. Don t forget about the extra credit. Minimum Spanning

More information

Shortest path problems

Shortest path problems Next... Shortest path problems Single-source shortest paths in weighted graphs Shortest-Path Problems Properties of Shortest Paths, Relaxation Dijkstra s Algorithm Bellman-Ford Algorithm Shortest-Paths

More information

Shortest Path Algorithms

Shortest Path Algorithms Shortest Path Algorithms Andreas Klappenecker [based on slides by Prof. Welch] 1 Single Source Shortest Path Given: a directed or undirected graph G = (V,E) a source node s in V a weight function w: E

More information

Algorithms (VI) Greedy Algorithms. Guoqiang Li. School of Software, Shanghai Jiao Tong University

Algorithms (VI) Greedy Algorithms. Guoqiang Li. School of Software, Shanghai Jiao Tong University Algorithms (VI) Greedy Algorithms Guoqiang Li School of Software, Shanghai Jiao Tong University Review of the Previous Lecture Lengths on Edges BFS treats all edges as having the same length. It is rarely

More information

CS Final - Review material

CS Final - Review material CS4800 Algorithms and Data Professor Fell Fall 2009 October 28, 2009 Old stuff CS 4800 - Final - Review material Big-O notation Though you won t be quizzed directly on Big-O notation, you should be able

More information

Single Source Shortest Path (SSSP) Problem

Single Source Shortest Path (SSSP) Problem Single Source Shortest Path (SSSP) Problem Single Source Shortest Path Problem Input: A directed graph G = (V, E); an edge weight function w : E R, and a start vertex s V. Find: for each vertex u V, δ(s,

More information

CMSC351 - Fall 2014, Homework #6

CMSC351 - Fall 2014, Homework #6 CMSC351 - Fall 2014, Homework #6 Due: December 12th at the start of class PRINT Name: Grades depend on neatness and clarity. Write your answers with enough detail about your approach and concepts used,

More information

Chapter 24. Shortest path problems. Chapter 24. Shortest path problems. 24. Various shortest path problems. Chapter 24. Shortest path problems

Chapter 24. Shortest path problems. Chapter 24. Shortest path problems. 24. Various shortest path problems. Chapter 24. Shortest path problems Chapter 24. Shortest path problems We are given a directed graph G = (V,E) with each directed edge (u,v) E having a weight, also called a length, w(u,v) that may or may not be negative. A shortest path

More information

Dynamic Programming. CSE 101: Design and Analysis of Algorithms Lecture 19

Dynamic Programming. CSE 101: Design and Analysis of Algorithms Lecture 19 Dynamic Programming CSE 101: Design and Analysis of Algorithms Lecture 19 CSE 101: Design and analysis of algorithms Dynamic programming Reading: Chapter 6 Homework 7 is due Dec 6, 11:59 PM This Friday

More information

Routing Protocols and the IP Layer

Routing Protocols and the IP Layer Routing Protocols and the IP Layer CS244A Review Session 2/0/08 Ben Nham Derived from slides by: Paul Tarjan Martin Casado Ari Greenberg Functions of a router Forwarding Determine the correct egress port

More information

2. True or false: even though BFS and DFS have the same space complexity, they do not always have the same worst case asymptotic time complexity.

2. True or false: even though BFS and DFS have the same space complexity, they do not always have the same worst case asymptotic time complexity. 1. T F: Consider a directed graph G = (V, E) and a vertex s V. Suppose that for all v V, there exists a directed path in G from s to v. Suppose that a DFS is run on G, starting from s. Then, true or false:

More information

8.1 Introduction. Background: Breadth First Search. CS125 Lecture 8 Fall 2014

8.1 Introduction. Background: Breadth First Search. CS125 Lecture 8 Fall 2014 CS15 Lecture 8 Fall 014 8.1 Introduction Today we ll talk about shortest path algorithms. There are 3 main variations of the shortest path problem on graphs: the point-to-point shortest path problem (find

More information

Design and Analysis of Algorithms

Design and Analysis of Algorithms CSE 1, Winter 201 Design and Analysis of Algorithms Lecture 7: Bellman-Ford, SPs in DAGs, PQs Class URL: http://vlsicad.ucsd.edu/courses/cse1-w1/ Lec. Added after class Figure.: Single-Edge Extensions

More information

Content. 1 Algorithms. 2 Assignment and Knapsack problem 3 Bin Packing. 4 Scheduling

Content. 1 Algorithms. 2 Assignment and Knapsack problem 3 Bin Packing. 4 Scheduling Content 1 Algorithms 2 Assignment and Knapsack problem 3 Bin Packing 4 Scheduling 5 Graph algorithms 5.1 Definitions 5.2 Depth First Search (DFS) and Breadth First Search (BFS) 5.3 Topological Sorting

More information

Quiz 2 CS 3510 October 22, 2004

Quiz 2 CS 3510 October 22, 2004 Quiz 2 CS 3510 October 22, 2004 NAME : (Remember to fill in your name!) For grading purposes, please leave blank: (1) Short Answer (40 points) (2) Cycle Length (20 points) (3) Bottleneck (20 points) (4)

More information

4/8/11. Single-Source Shortest Path. Shortest Paths. Shortest Paths. Chapter 24

4/8/11. Single-Source Shortest Path. Shortest Paths. Shortest Paths. Chapter 24 /8/11 Single-Source Shortest Path Chapter 1 Shortest Paths Finding the shortest path between two nodes comes up in many applications o Transportation problems o Motion planning o Communication problems

More information

Design and Analysis of Algorithms

Design and Analysis of Algorithms CSE 101, Winter 2018 Design and Analysis of Algorithms Lecture 6: BFS, SPs, Dijkstra Class URL: http://vlsicad.ucsd.edu/courses/cse101-w18/ Distance in a Graph The distance between two nodes is the length

More information

Design and Analysis of Algorithms

Design and Analysis of Algorithms CSE 101, Winter 2018 Design and Analysis of Algorithms Lecture 6: BFS, SPs, Dijkstra Class URL: http://vlsicad.ucsd.edu/courses/cse101-w18/ Distance in a Graph The distance between two nodes is the length

More information

Single Source Shortest Path: The Bellman-Ford Algorithm. Slides based on Kevin Wayne / Pearson-Addison Wesley

Single Source Shortest Path: The Bellman-Ford Algorithm. Slides based on Kevin Wayne / Pearson-Addison Wesley Single Source Shortest Path: The Bellman-Ford Algorithm Slides based on Kevin Wayne / Pearson-Addison Wesley Single Source Shortest Path Problem Shortest path network. Directed graph G = (V, E, w). Weight

More information

Graphs. Part II: SP and MST. Laura Toma Algorithms (csci2200), Bowdoin College

Graphs. Part II: SP and MST. Laura Toma Algorithms (csci2200), Bowdoin College Laura Toma Algorithms (csci2200), Bowdoin College Topics Weighted graphs each edge (u, v) has a weight denoted w(u, v) or w uv stored in the adjacency list or adjacency matrix The weight of a path p =

More information

(Refer Slide Time: 00:18)

(Refer Slide Time: 00:18) Programming, Data Structures and Algorithms Prof. N. S. Narayanaswamy Department of Computer Science and Engineering Indian Institute of Technology, Madras Module 11 Lecture 58 Problem: single source shortest

More information

Minimum Spanning Trees

Minimum Spanning Trees Minimum Spanning Trees Problem A town has a set of houses and a set of roads. A road connects 2 and only 2 houses. A road connecting houses u and v has a repair cost w(u, v). Goal: Repair enough (and no

More information

Title. Ferienakademie im Sarntal Course 2 Distance Problems: Theory and Praxis. Nesrine Damak. Fakultät für Informatik TU München. 20.

Title. Ferienakademie im Sarntal Course 2 Distance Problems: Theory and Praxis. Nesrine Damak. Fakultät für Informatik TU München. 20. Title Ferienakademie im Sarntal Course 2 Distance Problems: Theory and Praxis Nesrine Damak Fakultät für Informatik TU München 20. September 2010 Nesrine Damak: Classical Shortest-Path Algorithms 1/ 35

More information

Lecture #7. 1 Introduction. 2 Dijkstra s Correctness. COMPSCI 330: Design and Analysis of Algorithms 9/16/2014

Lecture #7. 1 Introduction. 2 Dijkstra s Correctness. COMPSCI 330: Design and Analysis of Algorithms 9/16/2014 COMPSCI 330: Design and Analysis of Algorithms 9/16/2014 Lecturer: Debmalya Panigrahi Lecture #7 Scribe: Nat Kell 1 Introduction In this lecture, we will further examine shortest path algorithms. We will

More information

Lecture 11: Analysis of Algorithms (CS ) 1

Lecture 11: Analysis of Algorithms (CS ) 1 Lecture 11: Analysis of Algorithms (CS583-002) 1 Amarda Shehu November 12, 2014 1 Some material adapted from Kevin Wayne s Algorithm Class @ Princeton 1 2 Dynamic Programming Approach Floyd-Warshall Shortest

More information

CSE 100 Minimum Spanning Trees Prim s and Kruskal

CSE 100 Minimum Spanning Trees Prim s and Kruskal CSE 100 Minimum Spanning Trees Prim s and Kruskal Your Turn The array of vertices, which include dist, prev, and done fields (initialize dist to INFINITY and done to false ): V0: dist= prev= done= adj:

More information

Shortest Paths. Nishant Mehta Lectures 10 and 11

Shortest Paths. Nishant Mehta Lectures 10 and 11 Shortest Paths Nishant Mehta Lectures 0 and Communication Speeds in a Computer Network Find fastest way to route a data packet between two computers 6 Kbps 4 0 Mbps 6 6 Kbps 6 Kbps Gbps 00 Mbps 8 6 Kbps

More information

Taking Stock. IE170: Algorithms in Systems Engineering: Lecture 20. Example. Shortest Paths Definitions

Taking Stock. IE170: Algorithms in Systems Engineering: Lecture 20. Example. Shortest Paths Definitions Taking Stock IE170: Algorithms in Systems Engineering: Lecture 20 Jeff Linderoth Department of Industrial and Systems Engineering Lehigh University March 19, 2007 Last Time Minimum Spanning Trees Strongly

More information

Data Structure and Algorithm Homework #5 Due: 2:00pm, Thursday, May 31, 2012 TA === Homework submission instructions ===

Data Structure and Algorithm Homework #5 Due: 2:00pm, Thursday, May 31, 2012 TA   === Homework submission instructions === Data Structure and Algorithm Homework #5 Due: 2:00pm, Thursday, May 1, 2012 TA email: dsa1@csie.ntu.edu.tw === Homework submission instructions === For Problem 1, submit your source code, a shell script

More information

1 Dijkstra s Algorithm

1 Dijkstra s Algorithm Lecture 11 Dijkstra s Algorithm Scribes: Himanshu Bhandoh (2015), Virginia Williams, and Date: November 1, 2017 Anthony Kim (2016), G. Valiant (2017), M. Wootters (2017) (Adapted from Virginia Williams

More information

Algorithms on Graphs: Part III. Shortest Path Problems. .. Cal Poly CSC 349: Design and Analyis of Algorithms Alexander Dekhtyar..

Algorithms on Graphs: Part III. Shortest Path Problems. .. Cal Poly CSC 349: Design and Analyis of Algorithms Alexander Dekhtyar.. .. Cal Poly CSC 349: Design and Analyis of Algorithms Alexander Dekhtyar.. Shortest Path Problems Algorithms on Graphs: Part III Path in a graph. Let G = V,E be a graph. A path p = e 1,...,e k, e i E,

More information

CS420/520 Algorithm Analysis Spring 2009 Lecture 14

CS420/520 Algorithm Analysis Spring 2009 Lecture 14 CS420/520 Algorithm Analysis Spring 2009 Lecture 14 "A Computational Analysis of Alternative Algorithms for Labeling Techniques for Finding Shortest Path Trees", Dial, Glover, Karney, and Klingman, Networks

More information

Outline. Computer Science 331. Definitions: Paths and Their Costs. Computation of Minimum Cost Paths

Outline. Computer Science 331. Definitions: Paths and Their Costs. Computation of Minimum Cost Paths Outline Computer Science 33 Computation of Minimum-Cost Paths Dijkstra s Mike Jacobson Department of Computer Science University of Calgary Lecture #34 Dijkstra s to Find Min-Cost Paths 3 Example 4 5 References

More information

Algorithms (I) Introduction. Guoqiang Li. School of Software, Shanghai Jiao Tong University

Algorithms (I) Introduction. Guoqiang Li. School of Software, Shanghai Jiao Tong University Algorithms (I) Introduction Guoqiang Li School of Software, Shanghai Jiao Tong University Instructor and Teaching Assistants Guoqiang LI Instructor and Teaching Assistants Guoqiang LI Homepage: http://basics.sjtu.edu.cn/

More information

CSE 502 Class 23. Jeremy Buhler Steve Cole. April BFS solves unweighted shortest path problem. Every edge traversed adds one to path length

CSE 502 Class 23. Jeremy Buhler Steve Cole. April BFS solves unweighted shortest path problem. Every edge traversed adds one to path length CSE 502 Class 23 Jeremy Buhler Steve Cole April 14 2015 1 Weighted Version of Shortest Paths BFS solves unweighted shortest path problem Every edge traversed adds one to path length What if edges have

More information

Directed Graphs. DSA - lecture 5 - T.U.Cluj-Napoca - M. Joldos 1

Directed Graphs. DSA - lecture 5 - T.U.Cluj-Napoca - M. Joldos 1 Directed Graphs Definitions. Representations. ADT s. Single Source Shortest Path Problem (Dijkstra, Bellman-Ford, Floyd-Warshall). Traversals for DGs. Parenthesis Lemma. DAGs. Strong Components. Topological

More information

CS 125 Section #6 Graph Traversal and Linear Programs 10/13/14

CS 125 Section #6 Graph Traversal and Linear Programs 10/13/14 CS 125 Section #6 Graph Traversal and Linear Programs 10/13/14 1 Depth first search 1.1 The Algorithm Besides breadth first search, which we saw in class in relation to Dijkstra s algorithm, there is one

More information

Shortest Path Problem

Shortest Path Problem Shortest Path Problem CLRS Chapters 24.1 3, 24.5, 25.2 Shortest path problem Shortest path problem (and variants) Properties of shortest paths Algorithmic framework Bellman-Ford algorithm Shortest paths

More information

CS 341: Algorithms. Douglas R. Stinson. David R. Cheriton School of Computer Science University of Waterloo. February 26, 2019

CS 341: Algorithms. Douglas R. Stinson. David R. Cheriton School of Computer Science University of Waterloo. February 26, 2019 CS 341: Algorithms Douglas R. Stinson David R. Cheriton School of Computer Science University of Waterloo February 26, 2019 D.R. Stinson (SCS) CS 341 February 26, 2019 1 / 296 1 Course Information 2 Introduction

More information

STPP Testing Published: 8 December 2017

STPP Testing Published: 8 December 2017 During integration with Secure Trading s systems, the Merchant can perform tests on the system using the details supplied within this document. Published: 8 December 2017 1.18 Table of Contents 1 Introduction...

More information

Design and Analysis of Algorithms (I)

Design and Analysis of Algorithms (I) Design and Analysis of Algorithms (I) Introduction Guoqiang Li School of Software, Shanghai Jiao Tong University Instructor and Teaching Assistants Guoqiang LI Instructor and Teaching Assistants Guoqiang

More information

More Graph Algorithms: Topological Sort and Shortest Distance

More Graph Algorithms: Topological Sort and Shortest Distance More Graph Algorithms: Topological Sort and Shortest Distance Topological Sort The goal of a topological sort is given a list of items with dependencies, (ie. item 5 must be completed before item 3, etc.)

More information

Shortest Paths. CSE 373 Data Structures Lecture 21

Shortest Paths. CSE 373 Data Structures Lecture 21 Shortest Paths CSE 7 Data Structures Lecture Readings and References Reading Section 9., Section 0.. Some slides based on: CSE 6 by S. Wolfman, 000 //0 Shortest Paths - Lecture Path A path is a list of

More information

Shortest Paths. Nishant Mehta Lectures 10 and 11

Shortest Paths. Nishant Mehta Lectures 10 and 11 Shortest Paths Nishant Mehta Lectures 0 and Finding the Fastest Way to Travel between Two Intersections in Vancouver Granville St and W Hastings St Homer St and W Hastings St 6 Granville St and W Pender

More information

Computer Science 385 Design and Analysis of Algorithms Siena College Spring Lab 8: Greedy Algorithms Due: Start of your next lab session

Computer Science 385 Design and Analysis of Algorithms Siena College Spring Lab 8: Greedy Algorithms Due: Start of your next lab session Computer Science 385 Design and Analysis of Algorithms Siena College Spring 2017 Lab 8: Greedy Algorithms Due: Start of your next lab session You will be assigned groups of size 2 or 3 for this lab. Only

More information

Computer Science & Engineering 423/823 Design and Analysis of Algorithms

Computer Science & Engineering 423/823 Design and Analysis of Algorithms Computer Science & Engineering 423/823 Design and Analysis of Algorithms Lecture 07 Single-Source Shortest Paths (Chapter 24) Stephen Scott and Vinodchandran N. Variyam sscott@cse.unl.edu 1/36 Introduction

More information

Java II Graph Algorithms II

Java II Graph Algorithms II Java II Graph Algorithms II Bernd Kiefer Bernd.Kiefer@dfki.de Deutsches Forschungszentrum für künstliche Intelligenz Heuristic Search Pictures from http://www-cs-students.stanford.edu/~amitp/gameprog.html

More information

TIE Graph algorithms

TIE Graph algorithms TIE-20106 1 1 Graph algorithms This chapter discusses the data structure that is a collection of points (called nodes or vertices) and connections between them (called edges or arcs) a graph. The common

More information

Single Source Shortest Path

Single Source Shortest Path Single Source Shortest Path A directed graph G = (V, E) and a pair of nodes s, d is given. The edges have a real-valued weight W i. This time we are looking for the weight and the shortest path from s

More information

Unit #9: Graphs. CPSC 221: Algorithms and Data Structures. Will Evans 2012W1

Unit #9: Graphs. CPSC 221: Algorithms and Data Structures. Will Evans 2012W1 Unit #9: Graphs CPSC 1: Algorithms and Data Structures Will Evans 01W1 Unit Outline Topological Sort: Getting to Know Graphs with a Sort Graph ADT and Graph Representations Graph Terminology More Graph

More information

Dijkstra s algorithm for shortest paths when no edges have negative weight.

Dijkstra s algorithm for shortest paths when no edges have negative weight. Lecture 14 Graph Algorithms II 14.1 Overview In this lecture we begin with one more algorithm for the shortest path problem, Dijkstra s algorithm. We then will see how the basic approach of this algorithm

More information

Dijkstra s Algorithm

Dijkstra s Algorithm Dijkstra s Algorithm 7 1 3 1 Weighted Graphs In a weighted graph, each edge has an associated numerical value, called the weight of the edge Edge weights may represent, distances, costs, etc. Example:

More information

Dynamic-Programming algorithms for shortest path problems: Bellman-Ford (for singlesource) and Floyd-Warshall (for all-pairs).

Dynamic-Programming algorithms for shortest path problems: Bellman-Ford (for singlesource) and Floyd-Warshall (for all-pairs). Lecture 13 Graph Algorithms I 13.1 Overview This is the first of several lectures on graph algorithms. We will see how simple algorithms like depth-first-search can be used in clever ways (for a problem

More information

Object-oriented programming. and data-structures CS/ENGRD 2110 SUMMER 2018

Object-oriented programming. and data-structures CS/ENGRD 2110 SUMMER 2018 Object-oriented programming and data-structures CS/ENGRD 20 SUMMER 208 Lecture 3: Shortest Path http://courses.cs.cornell.edu/cs20/208su Graph Algorithms Search Depth-first search Breadth-first search

More information

CS6301 Programming and Data Structures II Unit -5 REPRESENTATION OF GRAPHS Graph and its representations Graph is a data structure that consists of following two components: 1. A finite set of vertices

More information

Weighted Graph Algorithms Presented by Jason Yuan

Weighted Graph Algorithms Presented by Jason Yuan Weighted Graph Algorithms Presented by Jason Yuan Slides: Zachary Friggstad Programming Club Meeting Weighted Graphs struct Edge { int u, v ; int w e i g h t ; // can be a double } ; Edge ( int uu = 0,

More information

Review of course COMP-251B winter 2010

Review of course COMP-251B winter 2010 Review of course COMP-251B winter 2010 Lecture 1. Book Section 15.2 : Chained matrix product Matrix product is associative Computing all possible ways of parenthesizing Recursive solution Worst-case running-time

More information

Lecture 18 Solving Shortest Path Problem: Dijkstra s Algorithm. October 23, 2009

Lecture 18 Solving Shortest Path Problem: Dijkstra s Algorithm. October 23, 2009 Solving Shortest Path Problem: Dijkstra s Algorithm October 23, 2009 Outline Lecture 18 Focus on Dijkstra s Algorithm Importance: Where it has been used? Algorithm s general description Algorithm steps

More information

MA 252: Data Structures and Algorithms Lecture 36. Partha Sarathi Mandal. Dept. of Mathematics, IIT Guwahati

MA 252: Data Structures and Algorithms Lecture 36. Partha Sarathi Mandal. Dept. of Mathematics, IIT Guwahati MA 252: Data Structures and Algorithms Lecture 36 http://www.iitg.ernet.in/psm/indexing_ma252/y12/index.html Partha Sarathi Mandal Dept. of Mathematics, IIT Guwahati The All-Pairs Shortest Paths Problem

More information

CSE 548: Analysis of Algorithms. Lectures 14 & 15 ( Dijkstra s SSSP & Fibonacci Heaps )

CSE 548: Analysis of Algorithms. Lectures 14 & 15 ( Dijkstra s SSSP & Fibonacci Heaps ) CSE 548: Analysis of Algorithms Lectures 14 & 15 ( Dijkstra s SSSP & Fibonacci Heaps ) Rezaul A. Chowdhury Department of Computer Science SUNY Stony Brook Fall 2012 Fibonacci Heaps ( Fredman & Tarjan,

More information

Minimum Spanning Trees

Minimum Spanning Trees CS124 Lecture 5 Spring 2011 Minimum Spanning Trees A tree is an undirected graph which is connected and acyclic. It is easy to show that if graph G(V,E) that satisfies any two of the following properties

More information

6.1 Minimum Spanning Trees

6.1 Minimum Spanning Trees CS124 Lecture 6 Fall 2018 6.1 Minimum Spanning Trees A tree is an undirected graph which is connected and acyclic. It is easy to show that if graph G(V,E) that satisfies any two of the following properties

More information

Classical Shortest-Path Algorithms

Classical Shortest-Path Algorithms DISTANCE PROBLEMS IN NETWORKS - THEORY AND PRACTICE Classical Shortest-Path Algorithms Nesrine Damak October 10, 2010 Abstract In this work, we present four algorithms for the shortest path problem. The

More information

MERCHANT INTEGRATION GUIDE. Version 2.7

MERCHANT INTEGRATION GUIDE. Version 2.7 MERCHANT INTEGRATION GUIDE Version 2.7 CHANGE LOG 1. Showed accepted currencies per payment option. 2. Added validation for RUB payments. INTRODUCTION MegaTransfer provides a wide range of financial services

More information

Graphs. CSE 2320 Algorithms and Data Structures Alexandra Stefan and Vassilis Athitsos University of Texas at Arlington

Graphs. CSE 2320 Algorithms and Data Structures Alexandra Stefan and Vassilis Athitsos University of Texas at Arlington Graphs CSE 2320 Algorithms and Data Structures Alexandra Stefan and Vassilis Athitsos University of Texas at Arlington 1 Representation Adjacency matrix??adjacency lists?? Review Graphs (from CSE 2315)

More information

Efficient Algorithms and Intractable Problems Spring 2016 Alessandro Chiesa and Umesh Vazirani MT 1 Solution

Efficient Algorithms and Intractable Problems Spring 2016 Alessandro Chiesa and Umesh Vazirani MT 1 Solution CS 170 Efficient Algorithms and Intractable Problems Spring 2016 Alessandro Chiesa and Umesh Vazirani MT 1 Solution Name: Joe SID: 1234 GSI and section time: Write down the names of the students on your

More information

2.1 Greedy Algorithms. 2.2 Minimum Spanning Trees. CS125 Lecture 2 Fall 2016

2.1 Greedy Algorithms. 2.2 Minimum Spanning Trees. CS125 Lecture 2 Fall 2016 CS125 Lecture 2 Fall 2016 2.1 Greedy Algorithms We will start talking about methods high-level plans for constructing algorithms. One of the simplest is just to have your algorithm be greedy. Being greedy,

More information

CS521 \ Notes for the Final Exam

CS521 \ Notes for the Final Exam CS521 \ Notes for final exam 1 Ariel Stolerman Asymptotic Notations: CS521 \ Notes for the Final Exam Notation Definition Limit Big-O ( ) Small-o ( ) Big- ( ) Small- ( ) Big- ( ) Notes: ( ) ( ) ( ) ( )

More information

Graph Representations and Traversal

Graph Representations and Traversal COMPSCI 330: Design and Analysis of Algorithms 02/08/2017-02/20/2017 Graph Representations and Traversal Lecturer: Debmalya Panigrahi Scribe: Tianqi Song, Fred Zhang, Tianyu Wang 1 Overview This lecture

More information

Unit-5 Dynamic Programming 2016

Unit-5 Dynamic Programming 2016 5 Dynamic programming Overview, Applications - shortest path in graph, matrix multiplication, travelling salesman problem, Fibonacci Series. 20% 12 Origin: Richard Bellman, 1957 Programming referred to

More information

Dijkstra s Single Source Shortest Path Algorithm. Andreas Klappenecker

Dijkstra s Single Source Shortest Path Algorithm. Andreas Klappenecker Dijkstra s Single Source Shortest Path Algorithm Andreas Klappenecker Single Source Shortest Path Given: a directed or undirected graph G = (V,E) a source node s in V a weight function w: E -> R. Problem:!!

More information

Algorithms. All-Pairs Shortest Paths. Dong Kyue Kim Hanyang University

Algorithms. All-Pairs Shortest Paths. Dong Kyue Kim Hanyang University Algorithms All-Pairs Shortest Paths Dong Kyue Kim Hanyang University dqkim@hanyang.ac.kr Contents Using single source shortest path algorithms Presents O(V 4 )-time algorithm, O(V 3 log V)-time algorithm,

More information

6.006 Introduction to Algorithms Spring 2008

6.006 Introduction to Algorithms Spring 2008 MIT OpenCourseWare http://ocw.mit.edu 6.006 Introduction to Algorithms Spring 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. Introduction to Algorithms:

More information

Lecture Summary CSC 263H. August 5, 2016

Lecture Summary CSC 263H. August 5, 2016 Lecture Summary CSC 263H August 5, 2016 This document is a very brief overview of what we did in each lecture, it is by no means a replacement for attending lecture or doing the readings. 1. Week 1 2.

More information

Problem Set 8 Solutions

Problem Set 8 Solutions Introduction to Algorithms November 22, 25 Massachusetts Institute of Technology 6.46J/8.4J Professors Erik D. Demaine and Charles E. Leiserson Handout 27 Problem Set 8 Solutions Problem 8-. No left turns

More information

Data Structures and Algorithms. Werner Nutt

Data Structures and Algorithms. Werner Nutt Data Structures and Algorithms Werner Nutt nutt@inf.unibz.it http://www.inf.unibz/it/~nutt Chapter 10 Academic Year 2012-2013 1 Acknowledgements & Copyright Notice These slides are built on top of slides

More information