how to implement any concurrent data structure

Size: px
Start display at page:

Download "how to implement any concurrent data structure"

Transcription

1 how to implement any concurrent data structure marcos k. aguilera vmware jointly with irina calciu siddhartha sen mahesh balakrishnan

2 Where to find more information about this work How to Implement Any Concurrent Data Structure. By Irina Calciu, Siddhartha Sen, Mahesh Balakrishnan, Marcos K. Aguilera. Communications of the ACM, 2018 Black-box Concurrent Data Structures for NUMA Architectures. Irina Calciu, Siddhartha Sen, Mahesh Balakrishnan, Marcos K. Aguilera. ASPLOS, 2017

3 concurrent data structures are everywhere kernel application libraries applications

4 but efficient ones are hard to design locks transactional memory lock-free and wait-free

5 effort in The Future(s) of Shared Data Structures Alex Kogan and Maurice Herlihy PODC 2014 Concurrent Updates with RCU: Search Tree as an Example Maya Arbel and Hagit Attiya PODC 2014 Dynamic-Sized Nonblocking Hash Tables Yujie Liu, Kunlong Zhang and Michael Spear PODC 2014 Efficient Lock-free Binary Search Trees Bapi Chatterjee, Nhan Nguyen and Philippas Tsigas PODC 2014 The Amortized Complexity of Non-blocking Binary Search Trees Faith Ellen, Panagiota Fatourou, Joanna Helga and Eric Ruppert PODC 2014 The Adaptive Priority Queue with Elimination and Combining Irina Calciu, Hammurabi Mendes and Maurice Herlihy DISC 2014 Solo-fast Universal Constructions for Deterministic Abortable Objects Claire Capdevielle, Colette Johnen and Alessia Milani DISC 2014 On Deterministic Abortable Objects Vassos Hadzilacos and Sam Toueg PODC 2013 Leaplist: Lessons Learned in Designing TM-Supported Range Queries Hillel Avni, Nir Shavit, and Adi Suissa PODC 2013 The SkipTrie: Low-Depth Concurrent Search without Rebalancing Rotem Oshman and Nir Shavit PODC 2013 Pragmatic Primitives for Non-blocking Data Structures Trevor Brown, Faith Ellen, and Eric Ruppert PODC 2013 Lock-Free Data Structure Iterators Erez Petrank and Shahar Timnat DISC 2013 Practical Non-blocking Unordered Lists Kunlong Zhang, Yujiao Zhao, Yajun Yang, Yujie Liu and Michael Spear DISC 2013 Atomic snapshots in expected $O(\log^3 n)$ steps using randomized helping James Aspnes and Keren Censor-Hillel DISC 2013 An Optimal Implementation of Fetch-and-Increment Faith Ellen and Philipp Woelfel DISC 2013 On the Time and Space Complexity of Randomized Test-And-Set George Giakkoupis and Philipp Woelfel PODC 2012 Universal Constructions that Ensure Disjoint-Access Parallelism and Wait- Freedom Faith Ellen, Panagiota Fatourou, Eleftherios Kosmas, Alessia Milani, and Corentin Travers PODC 2012 Faster than Optimal Snapshots (for a While) James Aspnes, Hagit Attiya, Keren Censor-Hillel, and Faith Ellen PODC 2012 Strongly Linearizable Implementations: Possibilities and Impossibilities Maryam Helmi, Lisa Higham, and Philipp Woelfel PODC 2012 CBTree: A Practical Concurrent Self-Adjusting Search Tree Yehuda Afek, Haim Kaplan, Boris Korenfeld, Adam Morrison, Robert E. Tarjan DISC 2012 Efficient Fetch-and-Increment Faith Ellen, Vijaya Ramachandran, Philipp Woelfel DISC 2012

6 problems with concurrent data structure design herculean effort for each data structure rigid designs an even greater problem

7 problems with concurrent data structure design herculean effort for each data structure rigid designs an even greater problem new hardware architectures

8 our options? 1. underutilize the system 2. develop new data structures for each new architecture 3. we think there is a better way

9 architecture-aware black-box data structures transformation 1 architecture 1 sequential data structures transformation 2 architecture 2 transformation 3 architecture 3

10 architecture-aware black-box data structures FOCUS OF REST OF TALK transformation 1 NUMA architecture architecture 1 sequential data structures transformation 2 architecture 2 transformation 3 architecture 3

11 the NR algorithm

12 NUMA architecture Non-Uniform Memory Access node node core core core core core core core core cache cache cache cache cache cache cache cache cache cache memory memory local access more efficient

13 evaluation Intel Xeon E7-4850v3 56 cores, 4 nodes 2.2 GHz 512 GB RAM L3 35 MB L2 256 KB L1 64 KB

14 skip list priority queue 10% updates X (NR) Node Replication (FC+) FC + RWL (RWL) Readers-Writer Lock (LF) Lock-free X (FC) Flat Combining (SL) Spinlock 60 ops/us # threads

15 data structure in REDIS: 10% updates X (NR) Node Replication (FC+) FC + RWL (RWL) Readers-Writer Lock X (FC) Flat Combining (SL) Spinlock 6 ops/us # threads

16 the transformation given single-threaded execute(op,parameters) isreadonly(op) we produce multi-threaded execute(op,parameters) works well in NUMA servers

17 key ideas 1. replicate data structure across (NUMA) nodes state machine approach with a shared log 2. provide efficient NUMA-aware log large effort to optimize log

18 the transformation NUMA Node Local Replica NUMA Node Local Replica Thread Thread Thread Thread

19 the transformation NUMA Node Local Replica Shared Log NUMA Node Local Replica Local Tail Local Tail Thread Thread LogTail Thread Thread

20 how to implement log? key observation coordination within node cheaper than across nodes within node: we use flat combining across nodes: we use lock-free appending to log

21 correctness linearizability [Herlihy Wing 1990]: each operation appears to take effect instantaneously at a point between its invocation and response

22 whence performance comes trade memory + computation for less communication compact representation of operations limited cross-node synchronization and contention enable parallelism combiners across nodes readers within a node readers and the combiner on the same node leverage batching 22

23 conclusion fundamental changes in hardware exposed to software developers take-away: instead of individual data structures, let s develop general architecture-aware techniques

Linearizable Iterators

Linearizable Iterators Linearizable Iterators Supervised by Maurice Herlihy Abstract Petrank et. al. [5] provide a construction of lock-free, linearizable iterators for lock-free linked lists. We consider the problem of extending

More information

arxiv: v1 [cs.dc] 8 May 2017

arxiv: v1 [cs.dc] 8 May 2017 Towards Reduced Instruction Sets for Synchronization arxiv:1705.02808v1 [cs.dc] 8 May 2017 Rati Gelashvili MIT gelash@mit.edu Alexander Spiegelman Technion sashas@tx.technion.ac.il Idit Keidar Technion

More information

Cache-Aware Lock-Free Queues for Multiple Producers/Consumers and Weak Memory Consistency

Cache-Aware Lock-Free Queues for Multiple Producers/Consumers and Weak Memory Consistency Cache-Aware Lock-Free Queues for Multiple Producers/Consumers and Weak Memory Consistency Anders Gidenstam Håkan Sundell Philippas Tsigas School of business and informatics University of Borås Distributed

More information

How Hard Is It to Take a Snapshot?

How Hard Is It to Take a Snapshot? How Hard Is It to Take a Snapshot? Faith Ellen Fich University of Toronto Toronto, Canada fich@cs.utoronto.ca Abstract. The snapshot object is an important and well-studied primitive in distributed computing.

More information

Advanced Multiprocessor Programming Project Topics and Requirements

Advanced Multiprocessor Programming Project Topics and Requirements Advanced Multiprocessor Programming Project Topics and Requirements Jesper Larsson Trä TU Wien May 5th, 2017 J. L. Trä AMP SS17, Projects 1 / 21 Projects Goal: Get practical, own experience with concurrent

More information

Building Efficient Concurrent Graph Object through Composition of List-based Set

Building Efficient Concurrent Graph Object through Composition of List-based Set Building Efficient Concurrent Graph Object through Composition of List-based Set Sathya Peri Muktikanta Sa Nandini Singhal Department of Computer Science & Engineering Indian Institute of Technology Hyderabad

More information

Cost of Concurrency in Hybrid Transactional Memory. Trevor Brown (University of Toronto) Srivatsan Ravi (Purdue University)

Cost of Concurrency in Hybrid Transactional Memory. Trevor Brown (University of Toronto) Srivatsan Ravi (Purdue University) Cost of Concurrency in Hybrid Transactional Memory Trevor Brown (University of Toronto) Srivatsan Ravi (Purdue University) 1 Transactional Memory: a history Hardware TM Software TM Hybrid TM 1993 1995-today

More information

From Lock-Free to Wait-Free: Linked List. Edward Duong

From Lock-Free to Wait-Free: Linked List. Edward Duong From Lock-Free to Wait-Free: Linked List Edward Duong Outline 1) Outline operations of the locality conscious linked list [Braginsky 2012] 2) Transformation concept from lock-free -> wait-free [Timnat

More information

Transactional Interference-less Balanced Tree

Transactional Interference-less Balanced Tree Transactional Interference-less Balanced Tree Ahmed Hassan, Roberto Palmieri, Binoy Ravindran To cite this version: Ahmed Hassan, Roberto Palmieri, Binoy Ravindran. Transactional Interference-less Balanced

More information

Section 4 Concurrent Objects Correctness, Progress and Efficiency

Section 4 Concurrent Objects Correctness, Progress and Efficiency Section 4 Concurrent Objects Correctness, Progress and Efficiency CS586 - Panagiota Fatourou 1 Concurrent Objects A concurrent object is a data object shared by concurrently executing processes. Each object

More information

Relationships Between Broadcast and Shared Memory in Reliable Anonymous Distributed Systems

Relationships Between Broadcast and Shared Memory in Reliable Anonymous Distributed Systems Relationships Between Broadcast and Shared Memory in Reliable Anonymous Distributed Systems James Aspnes, Yale University Faith Ellen Fich, University of Toronto Eric Ruppert, York University Anonymity

More information

Partial Snapshot Objects

Partial Snapshot Objects Partial Snapshot Objects Hagit Attiya Technion Rachid Guerraoui EPFL Eric Ruppert York University ABSTRACT We introduce a generalization of the atomic snapshot object, which we call the partial snapshot

More information

WTTM 2012, the fourth workshop on the theory of transactional memory

WTTM 2012, the fourth workshop on the theory of transactional memory WTTM 2012, the fourth workshop on the theory of transactional memory Vincent Gramoli, Alessia Milani To cite this version: Vincent Gramoli, Alessia Milani. WTTM 2012, the fourth workshop on the theory

More information

Lock Oscillation: Boosting the Performance of Concurrent Data Structures

Lock Oscillation: Boosting the Performance of Concurrent Data Structures Lock Oscillation: Boosting the Performance of Concurrent Data Structures Panagiota Fatourou FORTH ICS & University of Crete Nikolaos D. Kallimanis FORTH ICS The Multicore Era The dominance of Multicore

More information

Shared Objects. Shared Objects

Shared Objects. Shared Objects Shared Objects Shared Objects Invoked operations have a non-zero duration Invocations can overlap Useful for: modeling distributed shared memory Objects can be combined together to implement higher level

More information

Universal Constructions that Ensure Disjoint-Access Parallelism and Wait-Freedom

Universal Constructions that Ensure Disjoint-Access Parallelism and Wait-Freedom Universal Constructions that Ensure Disjoint-Access Parallelism and Wait-Freedom Faith Ellen, Panagiota Fatourou, Eleftherios Kosmas, Alessia Milani, Corentin Travers To cite this version: Faith Ellen,

More information

Non-blocking Array-based Algorithms for Stacks and Queues!

Non-blocking Array-based Algorithms for Stacks and Queues! Non-blocking Array-based Algorithms for Stacks and Queues! Niloufar Shafiei! Department of Computer Science and Engineering York University ICDCN 09 Outline! Introduction! Stack algorithm! Queue algorithm!

More information

Linearizability of Persistent Memory Objects

Linearizability of Persistent Memory Objects Linearizability of Persistent Memory Objects Michael L. Scott Joint work with Joseph Izraelevitz & Hammurabi Mendes www.cs.rochester.edu/research/synchronization/ Workshop on the Theory of Transactional

More information

The Space Complexity of Unbounded Timestamps

The Space Complexity of Unbounded Timestamps The Space Complexity of Unbounded Timestamps Faith Ellen 1, Panagiota Fatourou 2, and Eric Ruppert 3 1 University of Toronto, Canada 2 University of Ioannina, Greece 3 York University, Canada Abstract.

More information

Shared Memory. Chapter Model

Shared Memory. Chapter Model Chapter 5 Shared Memory In distributed computing, various different models exist. So far, the focus of the course was on loosely-coupled distributed systems such as the Internet, where nodes asynchronously

More information

Approximate Shared-Memory Counting Despite a Strong Adversary

Approximate Shared-Memory Counting Despite a Strong Adversary Despite a Strong Adversary James Aspnes Keren Censor Processes can read and write shared atomic registers. Read on an atomic register returns value of last write. Timing of operations is controlled by

More information

Universal Constructions that Ensure Disjoint-Access Parallelism and Wait-Freedom

Universal Constructions that Ensure Disjoint-Access Parallelism and Wait-Freedom Universal Constructions that Ensure Disjoint-Access Parallelism and Wait-Freedom Faith Ellen University of Toronto faith@cs.toronto.edu Alessia Milani University of Bordeaux milani@labri.fr Panagiota Fatourou

More information

ffwd: delegation is (much) faster than you think Sepideh Roghanchi, Jakob Eriksson, Nilanjana Basu

ffwd: delegation is (much) faster than you think Sepideh Roghanchi, Jakob Eriksson, Nilanjana Basu ffwd: delegation is (much) faster than you think Sepideh Roghanchi, Jakob Eriksson, Nilanjana Basu int get_seqno() { } return ++seqno; // ~1 Billion ops/s // single-threaded int threadsafe_get_seqno()

More information

Of Concurrent Data Structures and Iterations

Of Concurrent Data Structures and Iterations Of Concurrent Data Structures and Iterations Yiannis Nikolakopoulos 1, Anders Gidenstam 2, Marina Papatriantafilou 1(B), and Philippas Tsigas 1 1 Chalmers University of Technology, Gothenburg, Sweden {ioaniko,ptrianta,tsigas}@chalmers.se

More information

Reducing contention in STM

Reducing contention in STM Reducing contention in STM Panagiota Fatourou Department of Computer Science University of Crete & FORTH ICS faturu@csd.uoc.gr Mykhailo Iaremko 1 Institute of Computer Science (ICS) Foundation for Research

More information

Reduced Hardware Lock Elision

Reduced Hardware Lock Elision Reduced Hardware Lock Elision Yehuda Afek Tel-Aviv University afek@post.tau.ac.il Alexander Matveev MIT matveeva@post.tau.ac.il Nir Shavit MIT shanir@csail.mit.edu Abstract Hardware lock elision (HLE)

More information

Cost of Concurrency in Hybrid Transactional Memory

Cost of Concurrency in Hybrid Transactional Memory Cost of Concurrency in Hybrid Transactional Memory Trevor Brown 1 and Srivatsan Ravi 2 1 Technion, Israel Institute of Technology, Haifa, Israel me@tbrown.pro 2 University of Southern California, Los Angeles,

More information

A Consistency Framework for Iteration Operations in Concurrent Data Structures

A Consistency Framework for Iteration Operations in Concurrent Data Structures A Consistency Framework for Iteration Operations in Concurrent Data Structures Yiannis Nikolakopoulos, Anders Gidenstam, Marina Papatriantafilou, Philippas Tsigas Chalmers University of Technology, Gothenburg,

More information

A ThreadScan: Automatic and Scalable Memory Reclamation

A ThreadScan: Automatic and Scalable Memory Reclamation A ThreadScan: Automatic and Scalable Memory Reclamation DAN ALISTARH, ETH Zurich WILLIAM LEISERSON, MIT ALEXANDER MATVEEV, MIT NIR SHAVIT, MIT 1. INTRODUCTION An important principle for data structure

More information

Lock-Free and Practical Doubly Linked List-Based Deques using Single-Word Compare-And-Swap

Lock-Free and Practical Doubly Linked List-Based Deques using Single-Word Compare-And-Swap Lock-Free and Practical Doubly Linked List-Based Deques using Single-Word Compare-And-Swap Håkan Sundell Philippas Tsigas OPODIS 2004: The 8th International Conference on Principles of Distributed Systems

More information

A Polylogarithmic Concurrent Data Structures from Monotone Circuits

A Polylogarithmic Concurrent Data Structures from Monotone Circuits A Polylogarithmic Concurrent Data Structures from Monotone Circuits JAMES ASPNES, Yale University HAGIT ATTIYA, Technion KEREN CENSOR-HILLEL, MIT The paper presents constructions of useful concurrent data

More information

PERFORMANCE ANALYSIS AND OPTIMIZATION OF SKIP LISTS FOR MODERN MULTI-CORE ARCHITECTURES

PERFORMANCE ANALYSIS AND OPTIMIZATION OF SKIP LISTS FOR MODERN MULTI-CORE ARCHITECTURES PERFORMANCE ANALYSIS AND OPTIMIZATION OF SKIP LISTS FOR MODERN MULTI-CORE ARCHITECTURES Anish Athalye and Patrick Long Mentors: Austin Clements and Stephen Tu 3 rd annual MIT PRIMES Conference Sequential

More information

Faster than Optimal Snapshots (for a While)

Faster than Optimal Snapshots (for a While) Faster than Optimal Snapshots (for a While) Preliminary Version ABSTRACT James Aspnes Department of Computer Science, Yale University aspnes@cs.yale.edu Keren Censor-Hillel Computer Science and Artificial

More information

Disjoint- Access Parallelism: Impossibility, Possibility, and Cost of Transactional Memory Implementations

Disjoint- Access Parallelism: Impossibility, Possibility, and Cost of Transactional Memory Implementations Disjoint- Access Parallelism: Impossibility, Possibility, and Cost of Transactional Memory Implementations Sebastiano Peluso, Roberto Palmieri, Paolo Romano 2, Binoy Ravindran and Francesco Quaglia 3 2

More information

NUMA-Aware Reader-Writer Locks PPoPP 2013

NUMA-Aware Reader-Writer Locks PPoPP 2013 NUMA-Aware Reader-Writer Locks PPoPP 2013 Irina Calciu Brown University Authors Irina Calciu @ Brown University Dave Dice Yossi Lev Victor Luchangco Virendra J. Marathe Nir Shavit @ MIT 2 Cores Chip (node)

More information

Transactional Memory

Transactional Memory Transactional Memory Michał Kapałka EPFL, LPD STiDC 08, 1.XII 2008 Michał Kapałka (EPFL, LPD) Transactional Memory STiDC 08, 1.XII 2008 1 / 25 Introduction How to Deal with Multi-Threading? Locks? Wait-free

More information

Using Elimination and Delegation to Implement a Scalable NUMA-Friendly Stack

Using Elimination and Delegation to Implement a Scalable NUMA-Friendly Stack Using Elimination and Delegation to Implement a Scalable NUMA-Friendly Stack Irina Calciu Brown University irina@cs.brown.edu Justin E. Gottschlich Intel Labs justin.e.gottschlich@intel.com Maurice Herlihy

More information

Practical Parallel Data Structures. Shahar Timnat

Practical Parallel Data Structures. Shahar Timnat Practical Parallel Data Structures Shahar Timnat Practical Parallel Data Structures Research Thesis Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy Shahar Timnat

More information

Faster Concurrent Range Queries with Contention Adapting Search Trees Using Immutable Data

Faster Concurrent Range Queries with Contention Adapting Search Trees Using Immutable Data Faster Concurrent Range Queries with Contention Adapting Search Trees Using Immutable Data Kjell Winblad Department of Information Technology, Uppsala University, Sweden kjell.winblad@it.uu.se Abstract

More information

arxiv: v1 [cs.dc] 31 Oct 2018

arxiv: v1 [cs.dc] 31 Oct 2018 A Concurrent Unbounded Wait-Free Graph Sathya Peri, Chandra Kiran Reddy, Muktikanta Sa Department of Computer Science & Engineering Indian Institute of Technology Hyderabad, India {sathya p, cs15btech11012,

More information

Optimization of thread affinity and memory affinity for remote core locking synchronization in multithreaded programs for multicore computer systems

Optimization of thread affinity and memory affinity for remote core locking synchronization in multithreaded programs for multicore computer systems Optimization of thread affinity and memory affinity for remote core locking synchronization in multithreaded programs for multicore computer systems Alexey Paznikov Saint Petersburg Electrotechnical University

More information

Fast and Lock-Free Concurrent Priority Queues for Multi-Thread Systems

Fast and Lock-Free Concurrent Priority Queues for Multi-Thread Systems Fast and Lock-Free Concurrent Priority Queues for Multi-Thread Systems Håkan Sundell Philippas Tsigas Outline Synchronization Methods Priority Queues Concurrent Priority Queues Lock-Free Algorithm: Problems

More information

Important Lessons. A Distributed Algorithm (2) Today's Lecture - Replication

Important Lessons. A Distributed Algorithm (2) Today's Lecture - Replication Important Lessons Lamport & vector clocks both give a logical timestamps Total ordering vs. causal ordering Other issues in coordinating node activities Exclusive access to resources/data Choosing a single

More information

arxiv: v1 [cs.dc] 5 Aug 2014

arxiv: v1 [cs.dc] 5 Aug 2014 The Adaptive Priority Queue with Elimination and Combining arxiv:1408.1021v1 [cs.dc] 5 Aug 2014 Irina Calciu, Hammurabi Mendes, and Maurice Herlihy Department of Computer Science Brown University 115 Waterman

More information

Lightweight Contention Management for Efficient Compare-and-Swap Operations

Lightweight Contention Management for Efficient Compare-and-Swap Operations Lightweight Contention Management for Efficient Compare-and-Swap Operations Dave Dice 1, Danny Hendler 2 and Ilya Mirsky 3 1 Sun Labs at Oracle 2 Ben-Gurion University of the Negev and Telekom Innovation

More information

Implementing Shared Registers in Asynchronous Message-Passing Systems, 1995; Attiya, Bar-Noy, Dolev

Implementing Shared Registers in Asynchronous Message-Passing Systems, 1995; Attiya, Bar-Noy, Dolev Implementing Shared Registers in Asynchronous Message-Passing Systems, 1995; Attiya, Bar-Noy, Dolev Eric Ruppert, York University, www.cse.yorku.ca/ ruppert INDEX TERMS: distributed computing, shared memory,

More information

The Relative Power of Synchronization Methods

The Relative Power of Synchronization Methods Chapter 5 The Relative Power of Synchronization Methods So far, we have been addressing questions of the form: Given objects X and Y, is there a wait-free implementation of X from one or more instances

More information

Replacing Competition with Cooperation to Achieve Scalable Lock-Free FIFO Queues

Replacing Competition with Cooperation to Achieve Scalable Lock-Free FIFO Queues Replacing Competition with Cooperation to Achieve Scalable Lock-Free FIFO Queues Thomas A. Henzinger and Hannes Payer and Ali Sezgin Technical Report No. IST-2013-124-v1+1 Deposited at 13 Jun 2013 11:52

More information

Viper: Communication-Layer Determinism and Scaling in Low-Latency Stream Processing

Viper: Communication-Layer Determinism and Scaling in Low-Latency Stream Processing Viper: Communication-Layer Determinism and Scaling in Low-Latency Stream Processing Ivan Walulya, Yiannis Nikolakopoulos, Vincenzo Gulisano Marina Papatriantafilou and Philippas Tsigas Auto-DaSP 2017 Chalmers

More information

Research Statement Rati Gelashvili

Research Statement Rati Gelashvili Research Statement Rati Gelashvili Introduction Distributed algorithms govern some of the most complex systems in the world, from data center clusters to multicore computing devices to biological systems.

More information

Indistinguishability: Friend and Foe of Concurrent Data Structures. Hagit Attiya CS, Technion

Indistinguishability: Friend and Foe of Concurrent Data Structures. Hagit Attiya CS, Technion Indistinguishability: Friend and Foe of Concurrent Data Structures Hagit Attiya CS, Technion Uncertainty is a main obstacle for designing correct applications in concurrent systems Formally captured by

More information

Transactions are Back but How Different They Are?

Transactions are Back but How Different They Are? Transactions are Back but How Different They Are? Relating STM and Databases Consistency Conditions (Preliminary Version) Hagit Attiya Technion hagit@cs.technion.ac.il Sandeep Hans Technion sandeep@cs.technion.ac.il

More information

Allocating memory in a lock-free manner

Allocating memory in a lock-free manner Allocating memory in a lock-free manner Anders Gidenstam, Marina Papatriantafilou and Philippas Tsigas Distributed Computing and Systems group, Department of Computer Science and Engineering, Chalmers

More information

A Wait-free Multi-word Atomic (1,N) Register for Large-scale Data Sharing on Multi-core Machines

A Wait-free Multi-word Atomic (1,N) Register for Large-scale Data Sharing on Multi-core Machines A Wait-free Multi-word Atomic (1,N) Register for Large-scale Data Sharing on Multi-core Machines Mauro Ianni, Alessandro Pellegrini DIAG Sapienza Università di Roma, Italy Email: {mianni,pellegrini}@dis.uniroma1.it

More information

Fully-Adaptive Algorithms for Long-Lived Renaming

Fully-Adaptive Algorithms for Long-Lived Renaming Fully-Adaptive Algorithms for Long-Lived Renaming Alex Brodsky 1, Faith Ellen 2, and Philipp Woelfel 2 1 Dept. of Applied Computer Science, University of Winnipeg, Winnipeg, Canada, a.brodsky@uwinnipeg.ca

More information

Algorithms that Adapt to Contention

Algorithms that Adapt to Contention Algorithms that Adapt to Contention Hagit Attiya Department of Computer Science Technion June 2003 Adaptive Algorithms / Hagit Attiya 1 Fast Mutex Algorithm [Lamport, 1986] In a well-designed system, most

More information

arxiv: v1 [cs.dc] 24 May 2013

arxiv: v1 [cs.dc] 24 May 2013 Lightweight Contention Management for Efficient Compare-and-Swap Operations Dave Dice 1, Danny Hendler 2 and Ilya Mirsky 2 1 Sun Labs at Oracle 2 Ben-Gurion University of the Negev arxiv:1305.5800v1 [cs.dc]

More information

NUMA-aware Reader-Writer Locks. Tom Herold, Marco Lamina NUMA Seminar

NUMA-aware Reader-Writer Locks. Tom Herold, Marco Lamina NUMA Seminar 04.02.2015 NUMA Seminar Agenda 1. Recap: Locking 2. in NUMA Systems 3. RW 4. Implementations 5. Hands On Why Locking? Parallel tasks access shared resources : Synchronization mechanism in concurrent environments

More information

Software transactional memory

Software transactional memory Transactional locking II (Dice et. al, DISC'06) Time-based STM (Felber et. al, TPDS'08) Mentor: Johannes Schneider March 16 th, 2011 Motivation Multiprocessor systems Speed up time-sharing applications

More information

Fork Sequential Consistency is Blocking

Fork Sequential Consistency is Blocking Fork Sequential Consistency is Blocking Christian Cachin Idit Keidar Alexander Shraer May 14, 2008 Abstract We consider an untrusted server storing shared data on behalf of clients. We show that no storage

More information

k-abortable Objects: Progress Under High Contention

k-abortable Objects: Progress Under High Contention k-abortable Objects: Progress Under High Contention Naama Ben-David 1, David Yu Cheng Chan 2(B), Vassos Hadzilacos 2, and Sam Toueg 2 1 Carnegie Mellon University, Pittsburgh, PA 15213, USA naama@cmu.edu

More information

k-abortable Objects: Progress under High Contention

k-abortable Objects: Progress under High Contention k-abortable Objects: Progress under High Contention Naama Ben-David 1, David Yu Cheng Chan 2, Vassos Hadzilacos 2, and Sam Toueg 2 Carnegie Mellon University 1 University of Toronto 2 Outline Background

More information

The Google File System

The Google File System October 13, 2010 Based on: S. Ghemawat, H. Gobioff, and S.-T. Leung: The Google file system, in Proceedings ACM SOSP 2003, Lake George, NY, USA, October 2003. 1 Assumptions Interface Architecture Single

More information

NVMe Over Fabrics: Scaling Up With The Storage Performance Development Kit

NVMe Over Fabrics: Scaling Up With The Storage Performance Development Kit NVMe Over Fabrics: Scaling Up With The Storage Performance Development Kit Ben Walker Data Center Group Intel Corporation 2018 Storage Developer Conference. Intel Corporation. All Rights Reserved. 1 Notices

More information

Fork Sequential Consistency is Blocking

Fork Sequential Consistency is Blocking Fork Sequential Consistency is Blocking Christian Cachin Idit Keidar Alexander Shraer Novembe4, 008 Abstract We consider an untrusted server storing shared data on behalf of clients. We show that no storage

More information

Solo-Valency and the Cost of Coordination

Solo-Valency and the Cost of Coordination Solo-Valency and the Cost of Coordination Danny Hendler Nir Shavit November 21, 2007 Abstract This paper introduces solo-valency, a variation on the valency proof technique originated by Fischer, Lynch,

More information

CLOUD-SCALE FILE SYSTEMS

CLOUD-SCALE FILE SYSTEMS Data Management in the Cloud CLOUD-SCALE FILE SYSTEMS 92 Google File System (GFS) Designing a file system for the Cloud design assumptions design choices Architecture GFS Master GFS Chunkservers GFS Clients

More information

Fast and Scalable Rendezvousing

Fast and Scalable Rendezvousing Fast and Scalable Rendezvousing Yehuda Afek, Michael Hakimi, and Adam Morrison School of Computer Science Tel Aviv University Abstract. In an asymmetric rendezvous system, such as an unfair synchronous

More information

arxiv: v1 [cs.dc] 22 May 2014

arxiv: v1 [cs.dc] 22 May 2014 Inherent Limitations of Hybrid Transactional Memory Dan Alistarh 1 Justin Kopinsky 4 Petr Kuznetsov 2 Srivatsan Ravi 3 Nir Shavit 4,5 1 Microsoft Research, Cambridge 2 Télécom ParisTech 3 TU Berlin 4 Massachusetts

More information

Linearizability of Persistent Memory Objects

Linearizability of Persistent Memory Objects Linearizability of Persistent Memory Objects Michael L. Scott Joint work with Joseph Izraelevitz & Hammurabi Mendes www.cs.rochester.edu/research/synchronization/ Compiler-Driven Performance Workshop,

More information

CBTree: A Practical Concurrent Self-adjusting Search Tree

CBTree: A Practical Concurrent Self-adjusting Search Tree CBTree: A Practical Concurrent Self-adjusting Search Tree Yehuda Afek 1, Haim Kaplan 1, Boris Korenfeld 1, Adam Morrison 1, and Robert E. Tarjan 2 1 Blavatnik School of Computer Science, Tel Aviv University

More information

Concurrent Data Structures Concurrent Algorithms 2016

Concurrent Data Structures Concurrent Algorithms 2016 Concurrent Data Structures Concurrent Algorithms 2016 Tudor David (based on slides by Vasileios Trigonakis) Tudor David 11.2016 1 Data Structures (DSs) Constructs for efficiently storing and retrieving

More information

Wait-Free Multi-Word Compare-And-Swap using Greedy Helping and Grabbing

Wait-Free Multi-Word Compare-And-Swap using Greedy Helping and Grabbing Wait-Free Multi-Word Compare-And-Swap using Greedy Helping and Grabbing H. Sundell 1 1 School of Business and Informatics, University of Borås, Borås, Sweden Abstract We present a new algorithm for implementing

More information

BQ: A Lock-Free Queue with Batching

BQ: A Lock-Free Queue with Batching BQ: A Lock-Free Queue with Batching Gal Milman Technion, Israel galy@cs.technion.ac.il Alex Kogan Oracle Labs, USA alex.kogan@oracle.com Yossi Lev Oracle Labs, USA levyossi@icloud.com ABSTRACT Victor Luchangco

More information

A Practical Transactional Memory Interface

A Practical Transactional Memory Interface A Practical Transactional Memory Interface Shahar Timnat 1, Maurice Herlihy 2, and Erez Petrank 1 1 Computer Science Department, Technion, 2 Computer Science Department, Brown University Abstract. Hardware

More information

Advance Operating Systems (CS202) Locks Discussion

Advance Operating Systems (CS202) Locks Discussion Advance Operating Systems (CS202) Locks Discussion Threads Locks Spin Locks Array-based Locks MCS Locks Sequential Locks Road Map Threads Global variables and static objects are shared Stored in the static

More information

An Efficient Wait-free Resizable Hash Table

An Efficient Wait-free Resizable Hash Table An Efficient Wait-free Resizable Hash Table Panagiota Fatourou FORTH ICS & University of Crete, Department of Computer Science faturu@csd.uoc.gr Nikolaos D. Kallimanis FORTH ICS nkallima@ics.forth.gr Thomas

More information

arxiv: v2 [cs.dc] 13 Nov 2015

arxiv: v2 [cs.dc] 13 Nov 2015 Progressive Transactional Memory in Time and Space arxiv:1502.04908v2 [cs.dc] 13 Nov 2015 Petr Kuznetsov 1 Srivatsan Ravi 2 1 Télécom ParisTech 2 TU Berlin October 12, 2018 Abstract Transactional memory

More information

Topics. File Buffer Cache for Performance. What to Cache? COS 318: Operating Systems. File Performance and Reliability

Topics. File Buffer Cache for Performance. What to Cache? COS 318: Operating Systems. File Performance and Reliability Topics COS 318: Operating Systems File Performance and Reliability File buffer cache Disk failure and recovery tools Consistent updates Transactions and logging 2 File Buffer Cache for Performance What

More information

arxiv: v1 [cs.ds] 16 Mar 2016

arxiv: v1 [cs.ds] 16 Mar 2016 Benchmarking Concurrent Priority Queues: Performance of k-lsm and Related Data Structures [Brief Announcement] Jakob Gruber TU Wien, Austria gruber@par.tuwien.ac.at Jesper Larsson Träff TU Wien, Austria

More information

Agenda. Designing Transactional Memory Systems. Why not obstruction-free? Why lock-based?

Agenda. Designing Transactional Memory Systems. Why not obstruction-free? Why lock-based? Agenda Designing Transactional Memory Systems Part III: Lock-based STMs Pascal Felber University of Neuchatel Pascal.Felber@unine.ch Part I: Introduction Part II: Obstruction-free STMs Part III: Lock-based

More information

Abstract of Theory and Applications of Parallelism with Futures by Zhiyu Liu, Ph.D., Brown University, May 2017.

Abstract of Theory and Applications of Parallelism with Futures by Zhiyu Liu, Ph.D., Brown University, May 2017. Abstract of Theory and Applications of Parallelism with Futures by Zhiyu Liu, Ph.D., Brown University, May 2017. Futures are an attractive way to structure parallel computations. When a thread creates

More information

Google File System. Arun Sundaram Operating Systems

Google File System. Arun Sundaram Operating Systems Arun Sundaram Operating Systems 1 Assumptions GFS built with commodity hardware GFS stores a modest number of large files A few million files, each typically 100MB or larger (Multi-GB files are common)

More information

MULTI-THREADED QUERIES

MULTI-THREADED QUERIES 15-721 Project 3 Final Presentation MULTI-THREADED QUERIES Wendong Li (wendongl) Lu Zhang (lzhang3) Rui Wang (ruiw1) Project Objective Intra-operator parallelism Use multiple threads in a single executor

More information

Parallel Programming in Distributed Systems Or Distributed Systems in Parallel Programming

Parallel Programming in Distributed Systems Or Distributed Systems in Parallel Programming Parallel Programming in Distributed Systems Or Distributed Systems in Parallel Programming Philippas Tsigas Chalmers University of Technology Computer Science and Engineering Department Philippas Tsigas

More information

Introduction. Companion slides for The Art of Multiprocessor Programming by Maurice Herlihy & Nir Shavit

Introduction. Companion slides for The Art of Multiprocessor Programming by Maurice Herlihy & Nir Shavit Introduction Companion slides for The by Maurice Herlihy & Nir Shavit Moore s Law Transistor count still rising Clock speed flattening sharply 2 Moore s Law (in practice) 3 Nearly Extinct: the Uniprocesor

More information

Concurrent Computing

Concurrent Computing Concurrent Computing Introduction SE205, P1, 2017 Administrivia Language: (fr)anglais? Lectures: Fridays (15.09-03.11), 13:30-16:45, Amphi Grenat Web page: https://se205.wp.imt.fr/ Exam: 03.11, 15:15-16:45

More information

Distributed Computing Column Maurice Herlihy s 60th Birthday Celebration

Distributed Computing Column Maurice Herlihy s 60th Birthday Celebration Distributed Computing Column Maurice Herlihy s 60th Birthday Celebration Panagiota Fatourou FORTH ICS & University of Crete faturu@csd.uoc.gr Maurice Herlihy is one of the most renowned members of the

More information

Non-blocking Array-based Algorithms for Stacks and Queues. Niloufar Shafiei

Non-blocking Array-based Algorithms for Stacks and Queues. Niloufar Shafiei Non-blocking Array-based Algorithms for Stacks and Queues Niloufar Shafiei Outline Introduction Concurrent stacks and queues Contributions New algorithms New algorithms using bounded counter values Correctness

More information

Scheduling Transactions in Replicated Distributed Transactional Memory

Scheduling Transactions in Replicated Distributed Transactional Memory Scheduling Transactions in Replicated Distributed Transactional Memory Junwhan Kim and Binoy Ravindran Virginia Tech USA {junwhan,binoy}@vt.edu CCGrid 2013 Concurrency control on chip multiprocessors significantly

More information

Early Foundations of a Transactional Boosting Library for Scala and Java

Early Foundations of a Transactional Boosting Library for Scala and Java Early Foundations of a Transactional Boosting Library for Scala and Java A Masters Project Report Authored by Marquita Ellis Supervised by Maurice Herlihy Conducted at Brown University Department of Computer

More information

Multi-threaded Queries. Intra-Query Parallelism in LLVM

Multi-threaded Queries. Intra-Query Parallelism in LLVM Multi-threaded Queries Intra-Query Parallelism in LLVM Multithreaded Queries Intra-Query Parallelism in LLVM Yang Liu Tianqi Wu Hao Li Interpreted vs Compiled (LLVM) Interpreted vs Compiled (LLVM) Interpreted

More information

Erasure Coding in Object Stores: Challenges and Opportunities

Erasure Coding in Object Stores: Challenges and Opportunities Erasure Coding in Object Stores: Challenges and Opportunities Lewis Tseng Boston College July 2018, PODC Acknowledgements Nancy Lynch Muriel Medard Kishori Konwar Prakash Narayana Moorthy Viveck R. Cadambe

More information

Progress Guarantees When Composing Lock-Free Objects

Progress Guarantees When Composing Lock-Free Objects Progress Guarantees When Composing Lock-Free Objects Nhan Nguyen Dang and Philippas Tsigas Department of Computer Science and Engineering Chalmers University of Technology Gothenburg, Sweden {nhann,tsigas}@chalmers.se

More information

Lock Oscillation: Boosting the Performance of Concurrent Data Structures

Lock Oscillation: Boosting the Performance of Concurrent Data Structures Lock Oscillation: Boosting the Performance of Concurrent Data Structures Panagiota Fatourou 1 and Nikolaos D. Kallimanis 2 1 Institute of Computer Science (ICS), Foundation of Research and Technology-Hellas

More information

Computer Architecture

Computer Architecture Jens Teubner Computer Architecture Summer 2016 1 Computer Architecture Jens Teubner, TU Dortmund jens.teubner@cs.tu-dortmund.de Summer 2016 Jens Teubner Computer Architecture Summer 2016 83 Part III Multi-Core

More information

Concurrent programming: From theory to practice. Concurrent Algorithms 2015 Vasileios Trigonakis

Concurrent programming: From theory to practice. Concurrent Algorithms 2015 Vasileios Trigonakis oncurrent programming: From theory to practice oncurrent Algorithms 2015 Vasileios Trigonakis From theory to practice Theoretical (design) Practical (design) Practical (implementation) 2 From theory to

More information

The benefits and costs of writing a POSIX kernel in a high-level language

The benefits and costs of writing a POSIX kernel in a high-level language 1 / 38 The benefits and costs of writing a POSIX kernel in a high-level language Cody Cutler, M. Frans Kaashoek, Robert T. Morris MIT CSAIL Should we use high-level languages to build OS kernels? 2 / 38

More information

Enhancing Concurrency in Distributed Transactional Memory through Commutativity

Enhancing Concurrency in Distributed Transactional Memory through Commutativity Enhancing Concurrency in Distributed Transactional Memory through Commutativity Junwhan Kim, Roberto Palmieri, Binoy Ravindran Virginia Tech USA Lock-based concurrency control has serious drawbacks Coarse

More information

6.852: Distributed Algorithms Fall, Class 21

6.852: Distributed Algorithms Fall, Class 21 6.852: Distributed Algorithms Fall, 2009 Class 21 Today s plan Wait-free synchronization. The wait-free consensus hierarchy Universality of consensus Reading: [Herlihy, Wait-free synchronization] (Another

More information