Recall from last time. Lecture 4: Wrap-up of Bayes net representation. Markov networks. Markov blanket. Isolating a node

Size: px
Start display at page:

Download "Recall from last time. Lecture 4: Wrap-up of Bayes net representation. Markov networks. Markov blanket. Isolating a node"

Transcription

1 Recall from last time Lecture 4: Wrap-up of Bayes net representation. Markov networks Markov blanket, moral graph Independence maps and perfect maps Undirected graphical models (Markov networks) A Bayes net can be viewed as an independence map (I-map) for some distribution The I-map property means that the distribution factorizes according to the graph structure of the net But the graph can have more arcs than necessary! Directed separation (d-separation) is a sound and complete way to characterize the distributions corresponding to a given graph structure. January 10, COMP-526 Lecture 4 January 10, COMP-526 Lecture 4 Isolating a node Suppose we want the smallest set of nodes U such that is independent of all other nodes in the network given U: ({ 1... n } {} U) U. What should U be? Markov blanket Clearly, at least s parents and children should be in U But this is not enough if there are v-structures; U will also have to include s spouses - i.e. the other parents of s children The set U consisting of s parents, children and other parents of its children is called the Markov blanket of. January 10, COMP-526 Lecture 4 January 10, COMP-526 Lecture 4

2 Moral graphs Given a DAG G, we define the moral graph of G to be an undirected graph U over the same set of vertices, such that the edge (, ) is in U if is in s Markov blanket Perfect maps A DAG G is a perfect map of a distribution p if it satisfies the following property: Z d-separates and Z If G is an I-map of p, then U will also be an I-map of p But many independencies are lost when going to a moral graph Moral graphs will prove to be useful when we talk about A perfect map captures all the independencies of a distribution Perfect maps are unique, up to DAG equivalence How can we construct a perfect map for a distribution? inference. January 10, COMP-526 Lecture 4 January 10, COMP-526 Lecture 4 Example Consider a distribution over 4 random variable,, Z, W such that: {Z,W } Z W {, } Can you find an I-map for this distribution? Can you find a perfect map? Some distributions do not have perfect maps! Example Consider a distribution over 4 random variable,, Z, W such that: {Z,W } Z W {, } Can you find an I-map for this distribution? Can you find a perfect map? Some distributions do not have perfect maps! January 10, COMP-526 Lecture 4 January 10, COMP-526 Lecture 4

3 Example: Pathfinder (Heckerman, 1991) Medical diagnostic system for lymph node diseases Large net! 60 diseases, 100 symptoms and test results, probabilities Network built by medical experts 8 hours to determine the variables 35 hours for network topology 40 hours for probability table values Experts found it easy to invent causal links and probabilities Pathfinder is now outperforming world experts in diagnosis Commercialized by Intellipath and Chapman Hall Publishing; extended to other medical domains Typical applications for Bayes nets Medical diagnosis Bioinformatics (data integration) Risk assessment Environmental science (e.g., wildlife habitat viability, risk of foreign species invasion) Analysis of demographic data In general, diagnosis and causal reasoning tasks Many commercial packages available (e.g. Netica, Hugin, WinMine,...) Sometimes Bayes net technology is incorporated in business software January 10, COMP-526 Lecture 4 January 10, COMP-526 Lecture 4 Undirected graphical models So far we have used directed graphs as the underlying structure of a Bayes net Why not use undirected graphs as well? E.g., variables might not be in a causality relation, but they can still be correlated, like the pixels in a neighborhood in an image An undirected graph over a set of random variables { 1,... n } is called a undirected graphical model or Markov random field or Markov network Conditional independence We need to be able to specify, for a given graph, if Z, for any disjoint subsets of nodes,, Z. In directed graphs, we did this using the Bayes Ball algorithm In undirected graphs, independence can be established simply by graph separation: if every path from a node in to a node in Z goes through a node in, we conclude that Z Hence, independence can be established by removing the nodes in the conditioning set then doing reachability analysis on the remaining graph. What is the Markov blanket of a node in an undirected model? January 10, COMP-526 Lecture 4 January 10, COMP-526 Lecture 4

4 How expressive are undirected models? Are undirected models more expressive than directed models? Example: An undirected graph I.e. for any directed model, can we find an undirected model that satisfies exactly the same conditional independence relations? Z W Are undirected models less expressive? I.e. for any undirected model, can we find a directed model that satisfies exactly the same conditional independencies? Can we find a directed graph that satisfies the same independence relations? January 10, COMP-526 Lecture 4 January 10, COMP-526 Lecture 4 Local parameterization Example: A directed graph Z Can we find an undirected graph that satisfies the same independence relations? In directed models, we had local probability models (CPDs) attached to every node, giving the conditional probability of the corresponding random variable given its parents We want a similar property in undirected models: the joint probability distribution should factorize over the graph This means that the joint can be written as a product of local factors, which depend on subsets of the variables. What should the local factors be? January 10, COMP-526 Lecture 4 January 10, COMP-526 Lecture 4

5 Local parameterizations: Try 2 What about local marginal parameterizations? Suppose we express the joint as: p( 1,... n ) = i It is local and has a nice interpretation So consider using it for an example: p( i, Neighbors( i )) Z Consider a pair of nodes and that are not directly connected through an arc According to the conditional independence interpretation, and are independent given all the other nodes in the graph { 1,... n } Hence, there must be a factorization in which they do not appear in the same factor This suggests that we should define factors on cliques Recall that a clique is a fully connected subset of nodes (i.e., there is an arc between every pair of nodes) January 10, COMP-526 Lecture 4 January 10, COMP-526 Lecture 4 Example: what are the cliques? A B C D January 10, COMP-526 Lecture 4

2. Graphical Models. Undirected graphical models. Factor graphs. Bayesian networks. Conversion between graphical models. Graphical Models 2-1

2. Graphical Models. Undirected graphical models. Factor graphs. Bayesian networks. Conversion between graphical models. Graphical Models 2-1 Graphical Models 2-1 2. Graphical Models Undirected graphical models Factor graphs Bayesian networks Conversion between graphical models Graphical Models 2-2 Graphical models There are three families of

More information

Lecture 5: Exact inference. Queries. Complexity of inference. Queries (continued) Bayesian networks can answer questions about the underlying

Lecture 5: Exact inference. Queries. Complexity of inference. Queries (continued) Bayesian networks can answer questions about the underlying given that Maximum a posteriori (MAP query: given evidence 2 which has the highest probability: instantiation of all other variables in the network,, Most probable evidence (MPE: given evidence, find an

More information

FMA901F: Machine Learning Lecture 6: Graphical Models. Cristian Sminchisescu

FMA901F: Machine Learning Lecture 6: Graphical Models. Cristian Sminchisescu FMA901F: Machine Learning Lecture 6: Graphical Models Cristian Sminchisescu Graphical Models Provide a simple way to visualize the structure of a probabilistic model and can be used to design and motivate

More information

Lecture 4: Undirected Graphical Models

Lecture 4: Undirected Graphical Models Lecture 4: Undirected Graphical Models Department of Biostatistics University of Michigan zhenkewu@umich.edu http://zhenkewu.com/teaching/graphical_model 15 September, 2016 Zhenke Wu BIOSTAT830 Graphical

More information

Lecture 5: Exact inference

Lecture 5: Exact inference Lecture 5: Exact inference Queries Inference in chains Variable elimination Without evidence With evidence Complexity of variable elimination which has the highest probability: instantiation of all other

More information

Lecture 3: Conditional Independence - Undirected

Lecture 3: Conditional Independence - Undirected CS598: Graphical Models, Fall 2016 Lecture 3: Conditional Independence - Undirected Lecturer: Sanmi Koyejo Scribe: Nate Bowman and Erin Carrier, Aug. 30, 2016 1 Review for the Bayes-Ball Algorithm Recall

More information

2. Graphical Models. Undirected pairwise graphical models. Factor graphs. Bayesian networks. Conversion between graphical models. Graphical Models 2-1

2. Graphical Models. Undirected pairwise graphical models. Factor graphs. Bayesian networks. Conversion between graphical models. Graphical Models 2-1 Graphical Models 2-1 2. Graphical Models Undirected pairwise graphical models Factor graphs Bayesian networks Conversion between graphical models Graphical Models 2-2 Graphical models Families of graphical

More information

The Basics of Graphical Models

The Basics of Graphical Models The Basics of Graphical Models David M. Blei Columbia University September 30, 2016 1 Introduction (These notes follow Chapter 2 of An Introduction to Probabilistic Graphical Models by Michael Jordan.

More information

D-Separation. b) the arrows meet head-to-head at the node, and neither the node, nor any of its descendants, are in the set C.

D-Separation. b) the arrows meet head-to-head at the node, and neither the node, nor any of its descendants, are in the set C. D-Separation Say: A, B, and C are non-intersecting subsets of nodes in a directed graph. A path from A to B is blocked by C if it contains a node such that either a) the arrows on the path meet either

More information

Graphical Models. Pradeep Ravikumar Department of Computer Science The University of Texas at Austin

Graphical Models. Pradeep Ravikumar Department of Computer Science The University of Texas at Austin Graphical Models Pradeep Ravikumar Department of Computer Science The University of Texas at Austin Useful References Graphical models, exponential families, and variational inference. M. J. Wainwright

More information

PATTERN RECOGNITION AND MACHINE LEARNING CHAPTER 8: GRAPHICAL MODELS

PATTERN RECOGNITION AND MACHINE LEARNING CHAPTER 8: GRAPHICAL MODELS PATTERN RECOGNITION AND MACHINE LEARNING CHAPTER 8: GRAPHICAL MODELS Bayesian Networks Directed Acyclic Graph (DAG) Bayesian Networks General Factorization Bayesian Curve Fitting (1) Polynomial Bayesian

More information

Computer Vision Group Prof. Daniel Cremers. 4. Probabilistic Graphical Models Directed Models

Computer Vision Group Prof. Daniel Cremers. 4. Probabilistic Graphical Models Directed Models Prof. Daniel Cremers 4. Probabilistic Graphical Models Directed Models The Bayes Filter (Rep.) (Bayes) (Markov) (Tot. prob.) (Markov) (Markov) 2 Graphical Representation (Rep.) We can describe the overall

More information

Graphical Models. David M. Blei Columbia University. September 17, 2014

Graphical Models. David M. Blei Columbia University. September 17, 2014 Graphical Models David M. Blei Columbia University September 17, 2014 These lecture notes follow the ideas in Chapter 2 of An Introduction to Probabilistic Graphical Models by Michael Jordan. In addition,

More information

3 : Representation of Undirected GMs

3 : Representation of Undirected GMs 0-708: Probabilistic Graphical Models 0-708, Spring 202 3 : Representation of Undirected GMs Lecturer: Eric P. Xing Scribes: Nicole Rafidi, Kirstin Early Last Time In the last lecture, we discussed directed

More information

Machine Learning. Sourangshu Bhattacharya

Machine Learning. Sourangshu Bhattacharya Machine Learning Sourangshu Bhattacharya Bayesian Networks Directed Acyclic Graph (DAG) Bayesian Networks General Factorization Curve Fitting Re-visited Maximum Likelihood Determine by minimizing sum-of-squares

More information

Directed Graphical Models (Bayes Nets) (9/4/13)

Directed Graphical Models (Bayes Nets) (9/4/13) STA561: Probabilistic machine learning Directed Graphical Models (Bayes Nets) (9/4/13) Lecturer: Barbara Engelhardt Scribes: Richard (Fangjian) Guo, Yan Chen, Siyang Wang, Huayang Cui 1 Introduction For

More information

STA 4273H: Statistical Machine Learning

STA 4273H: Statistical Machine Learning STA 4273H: Statistical Machine Learning Russ Salakhutdinov Department of Statistics! rsalakhu@utstat.toronto.edu! http://www.utstat.utoronto.ca/~rsalakhu/ Sidney Smith Hall, Room 6002 Lecture 5 Inference

More information

Lecture 9: Undirected Graphical Models Machine Learning

Lecture 9: Undirected Graphical Models Machine Learning Lecture 9: Undirected Graphical Models Machine Learning Andrew Rosenberg March 5, 2010 1/1 Today Graphical Models Probabilities in Undirected Graphs 2/1 Undirected Graphs What if we allow undirected graphs?

More information

Computer vision: models, learning and inference. Chapter 10 Graphical Models

Computer vision: models, learning and inference. Chapter 10 Graphical Models Computer vision: models, learning and inference Chapter 10 Graphical Models Independence Two variables x 1 and x 2 are independent if their joint probability distribution factorizes as Pr(x 1, x 2 )=Pr(x

More information

Computer Vision Group Prof. Daniel Cremers. 4. Probabilistic Graphical Models Directed Models

Computer Vision Group Prof. Daniel Cremers. 4. Probabilistic Graphical Models Directed Models Prof. Daniel Cremers 4. Probabilistic Graphical Models Directed Models The Bayes Filter (Rep.) (Bayes) (Markov) (Tot. prob.) (Markov) (Markov) 2 Graphical Representation (Rep.) We can describe the overall

More information

COMP90051 Statistical Machine Learning

COMP90051 Statistical Machine Learning COMP90051 Statistical Machine Learning Semester 2, 2016 Lecturer: Trevor Cohn 21. Independence in PGMs; Example PGMs Independence PGMs encode assumption of statistical independence between variables. Critical

More information

Part II. C. M. Bishop PATTERN RECOGNITION AND MACHINE LEARNING CHAPTER 8: GRAPHICAL MODELS

Part II. C. M. Bishop PATTERN RECOGNITION AND MACHINE LEARNING CHAPTER 8: GRAPHICAL MODELS Part II C. M. Bishop PATTERN RECOGNITION AND MACHINE LEARNING CHAPTER 8: GRAPHICAL MODELS Converting Directed to Undirected Graphs (1) Converting Directed to Undirected Graphs (2) Add extra links between

More information

Bayesian Machine Learning - Lecture 6

Bayesian Machine Learning - Lecture 6 Bayesian Machine Learning - Lecture 6 Guido Sanguinetti Institute for Adaptive and Neural Computation School of Informatics University of Edinburgh gsanguin@inf.ed.ac.uk March 2, 2015 Today s lecture 1

More information

These notes present some properties of chordal graphs, a set of undirected graphs that are important for undirected graphical models.

These notes present some properties of chordal graphs, a set of undirected graphs that are important for undirected graphical models. Undirected Graphical Models: Chordal Graphs, Decomposable Graphs, Junction Trees, and Factorizations Peter Bartlett. October 2003. These notes present some properties of chordal graphs, a set of undirected

More information

Workshop report 1. Daniels report is on website 2. Don t expect to write it based on listening to one project (we had 6 only 2 was sufficient

Workshop report 1. Daniels report is on website 2. Don t expect to write it based on listening to one project (we had 6 only 2 was sufficient Workshop report 1. Daniels report is on website 2. Don t expect to write it based on listening to one project (we had 6 only 2 was sufficient quality) 3. I suggest writing it on one presentation. 4. Include

More information

Probabilistic Graphical Models

Probabilistic Graphical Models Overview of Part One Probabilistic Graphical Models Part One: Graphs and Markov Properties Christopher M. Bishop Graphs and probabilities Directed graphs Markov properties Undirected graphs Examples Microsoft

More information

Graphical models and message-passing algorithms: Some introductory lectures

Graphical models and message-passing algorithms: Some introductory lectures Graphical models and message-passing algorithms: Some introductory lectures Martin J. Wainwright 1 Introduction Graphical models provide a framework for describing statistical dependencies in (possibly

More information

Chapter 8 of Bishop's Book: Graphical Models

Chapter 8 of Bishop's Book: Graphical Models Chapter 8 of Bishop's Book: Graphical Models Review of Probability Probability density over possible values of x Used to find probability of x falling in some range For continuous variables, the probability

More information

Lecture 2 - Graph Theory Fundamentals - Reachability and Exploration 1

Lecture 2 - Graph Theory Fundamentals - Reachability and Exploration 1 CME 305: Discrete Mathematics and Algorithms Instructor: Professor Aaron Sidford (sidford@stanford.edu) January 11, 2018 Lecture 2 - Graph Theory Fundamentals - Reachability and Exploration 1 In this lecture

More information

Probabilistic Graphical Models

Probabilistic Graphical Models Probabilistic Graphical Models Raquel Urtasun and Tamir Hazan TTI Chicago April 8, 2011 Raquel Urtasun and Tamir Hazan (TTI-C) Graphical Models April 8, 2011 1 / 19 Factor Graphs H does not reveal the

More information

Stat 5421 Lecture Notes Graphical Models Charles J. Geyer April 27, Introduction. 2 Undirected Graphs

Stat 5421 Lecture Notes Graphical Models Charles J. Geyer April 27, Introduction. 2 Undirected Graphs Stat 5421 Lecture Notes Graphical Models Charles J. Geyer April 27, 2016 1 Introduction Graphical models come in many kinds. There are graphical models where all the variables are categorical (Lauritzen,

More information

4 Factor graphs and Comparing Graphical Model Types

4 Factor graphs and Comparing Graphical Model Types Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science 6.438 Algorithms for Inference Fall 2014 4 Factor graphs and Comparing Graphical Model Types We now introduce

More information

Lecture 11: May 1, 2000

Lecture 11: May 1, 2000 / EE596 Pat. Recog. II: Introduction to Graphical Models Spring 2000 Lecturer: Jeff Bilmes Lecture 11: May 1, 2000 University of Washington Dept. of Electrical Engineering Scribe: David Palmer 11.1 Graph

More information

A Brief Introduction to Bayesian Networks AIMA CIS 391 Intro to Artificial Intelligence

A Brief Introduction to Bayesian Networks AIMA CIS 391 Intro to Artificial Intelligence A Brief Introduction to Bayesian Networks AIMA 14.1-14.3 CIS 391 Intro to Artificial Intelligence (LDA slides from Lyle Ungar from slides by Jonathan Huang (jch1@cs.cmu.edu)) Bayesian networks A simple,

More information

Bayesian Networks. A Bayesian network is a directed acyclic graph that represents causal relationships between random variables. Earthquake.

Bayesian Networks. A Bayesian network is a directed acyclic graph that represents causal relationships between random variables. Earthquake. Bayes Nets Independence With joint probability distributions we can compute many useful things, but working with joint PD's is often intractable. The naïve Bayes' approach represents one (boneheaded?)

More information

Machine Learning

Machine Learning Machine Learning 10-701 Tom M. Mitchell Machine Learning Department Carnegie Mellon University February 15, 2011 Today: Graphical models Inference Conditional independence and D-separation Learning from

More information

1 : Introduction to GM and Directed GMs: Bayesian Networks. 3 Multivariate Distributions and Graphical Models

1 : Introduction to GM and Directed GMs: Bayesian Networks. 3 Multivariate Distributions and Graphical Models 10-708: Probabilistic Graphical Models, Spring 2015 1 : Introduction to GM and Directed GMs: Bayesian Networks Lecturer: Eric P. Xing Scribes: Wenbo Liu, Venkata Krishna Pillutla 1 Overview This lecture

More information

V,T C3: S,L,B T C4: A,L,T A,L C5: A,L,B A,B C6: C2: X,A A

V,T C3: S,L,B T C4: A,L,T A,L C5: A,L,B A,B C6: C2: X,A A Inference II Daphne Koller Stanford University CS228 Handout #13 In the previous chapter, we showed how efficient inference can be done in a BN using an algorithm called Variable Elimination, that sums

More information

Matching Algorithms. Proof. If a bipartite graph has a perfect matching, then it is easy to see that the right hand side is a necessary condition.

Matching Algorithms. Proof. If a bipartite graph has a perfect matching, then it is easy to see that the right hand side is a necessary condition. 18.433 Combinatorial Optimization Matching Algorithms September 9,14,16 Lecturer: Santosh Vempala Given a graph G = (V, E), a matching M is a set of edges with the property that no two of the edges have

More information

Loopy Belief Propagation

Loopy Belief Propagation Loopy Belief Propagation Research Exam Kristin Branson September 29, 2003 Loopy Belief Propagation p.1/73 Problem Formalization Reasoning about any real-world problem requires assumptions about the structure

More information

Recitation 4: Elimination algorithm, reconstituted graph, triangulation

Recitation 4: Elimination algorithm, reconstituted graph, triangulation Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science 6.438 Algorithms For Inference Fall 2014 Recitation 4: Elimination algorithm, reconstituted graph, triangulation

More information

6 : Factor Graphs, Message Passing and Junction Trees

6 : Factor Graphs, Message Passing and Junction Trees 10-708: Probabilistic Graphical Models 10-708, Spring 2018 6 : Factor Graphs, Message Passing and Junction Trees Lecturer: Kayhan Batmanghelich Scribes: Sarthak Garg 1 Factor Graphs Factor Graphs are graphical

More information

Graphical Analysis of Value of Information in Decision Models

Graphical Analysis of Value of Information in Decision Models From: FLAIRS-01 Proceedings. Copyright 2001, AAAI (www.aaai.org). All rights reserved. Graphical Analysis of Value of Information in Decision Models Songsong Xu Kim-Leng Poh Department of lndustrial &

More information

Lecture 3: Graphs and flows

Lecture 3: Graphs and flows Chapter 3 Lecture 3: Graphs and flows Graphs: a useful combinatorial structure. Definitions: graph, directed and undirected graph, edge as ordered pair, path, cycle, connected graph, strongly connected

More information

Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science Algorithms For Inference Fall 2014

Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science Algorithms For Inference Fall 2014 Suggested Reading: Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science 6.438 Algorithms For Inference Fall 2014 Probabilistic Modelling and Reasoning: The Junction

More information

Machine Learning

Machine Learning Machine Learning 10-601 Tom M. Mitchell Machine Learning Department Carnegie Mellon University October 2, 2012 Today: Graphical models Bayes Nets: Representing distributions Conditional independencies

More information

CS242: Probabilistic Graphical Models Lecture 3: Factor Graphs & Variable Elimination

CS242: Probabilistic Graphical Models Lecture 3: Factor Graphs & Variable Elimination CS242: Probabilistic Graphical Models Lecture 3: Factor Graphs & Variable Elimination Instructor: Erik Sudderth Brown University Computer Science September 11, 2014 Some figures and materials courtesy

More information

Machine Learning

Machine Learning Machine Learning 10-601 Tom M. Mitchell Machine Learning Department Carnegie Mellon University February 18, 2015 Today: Graphical models Bayes Nets: Representing distributions Conditional independencies

More information

Finding Strongly Connected Components

Finding Strongly Connected Components Yufei Tao ITEE University of Queensland We just can t get enough of the beautiful algorithm of DFS! In this lecture, we will use it to solve a problem finding strongly connected components that seems to

More information

Junction tree propagation - BNDG 4-4.6

Junction tree propagation - BNDG 4-4.6 Junction tree propagation - BNDG 4-4. Finn V. Jensen and Thomas D. Nielsen Junction tree propagation p. 1/2 Exact Inference Message Passing in Join Trees More sophisticated inference technique; used in

More information

CSC 373: Algorithm Design and Analysis Lecture 4

CSC 373: Algorithm Design and Analysis Lecture 4 CSC 373: Algorithm Design and Analysis Lecture 4 Allan Borodin January 14, 2013 1 / 16 Lecture 4: Outline (for this lecture and next lecture) Some concluding comments on optimality of EST Greedy Interval

More information

Decomposition of log-linear models

Decomposition of log-linear models Graphical Models, Lecture 5, Michaelmas Term 2009 October 27, 2009 Generating class Dependence graph of log-linear model Conformal graphical models Factor graphs A density f factorizes w.r.t. A if there

More information

Paths, Flowers and Vertex Cover

Paths, Flowers and Vertex Cover Paths, Flowers and Vertex Cover Venkatesh Raman, M.S. Ramanujan, and Saket Saurabh Presenting: Hen Sender 1 Introduction 2 Abstract. It is well known that in a bipartite (and more generally in a Konig)

More information

Exact Inference: Elimination and Sum Product (and hidden Markov models)

Exact Inference: Elimination and Sum Product (and hidden Markov models) Exact Inference: Elimination and Sum Product (and hidden Markov models) David M. Blei Columbia University October 13, 2015 The first sections of these lecture notes follow the ideas in Chapters 3 and 4

More information

Approximate (Monte Carlo) Inference in Bayes Nets. Monte Carlo (continued)

Approximate (Monte Carlo) Inference in Bayes Nets. Monte Carlo (continued) Approximate (Monte Carlo) Inference in Bayes Nets Basic idea: Let s repeatedly sample according to the distribution represented by the Bayes Net. If in 400/1000 draws, the variable X is true, then we estimate

More information

Machine Learning. Lecture Slides for. ETHEM ALPAYDIN The MIT Press, h1p://

Machine Learning. Lecture Slides for. ETHEM ALPAYDIN The MIT Press, h1p:// Lecture Slides for INTRODUCTION TO Machine Learning ETHEM ALPAYDIN The MIT Press, 2010 alpaydin@boun.edu.tr h1p://www.cmpe.boun.edu.tr/~ethem/i2ml2e CHAPTER 16: Graphical Models Graphical Models Aka Bayesian

More information

COMP260 Spring 2014 Notes: February 4th

COMP260 Spring 2014 Notes: February 4th COMP260 Spring 2014 Notes: February 4th Andrew Winslow In these notes, all graphs are undirected. We consider matching, covering, and packing in bipartite graphs, general graphs, and hypergraphs. We also

More information

Homework Set #2 Math 440 Topology Topology by J. Munkres

Homework Set #2 Math 440 Topology Topology by J. Munkres Homework Set #2 Math 440 Topology Topology by J. Munkres Clayton J. Lungstrum October 26, 2012 Exercise 1. Prove that a topological space X is Hausdorff if and only if the diagonal = {(x, x) : x X} is

More information

Lecture 22 Tuesday, April 10

Lecture 22 Tuesday, April 10 CIS 160 - Spring 2018 (instructor Val Tannen) Lecture 22 Tuesday, April 10 GRAPH THEORY Directed Graphs Directed graphs (a.k.a. digraphs) are an important mathematical modeling tool in Computer Science,

More information

Treewidth and graph minors

Treewidth and graph minors Treewidth and graph minors Lectures 9 and 10, December 29, 2011, January 5, 2012 We shall touch upon the theory of Graph Minors by Robertson and Seymour. This theory gives a very general condition under

More information

Chapter 2 PRELIMINARIES. 1. Random variables and conditional independence

Chapter 2 PRELIMINARIES. 1. Random variables and conditional independence Chapter 2 PRELIMINARIES In this chapter the notation is presented and the basic concepts related to the Bayesian network formalism are treated. Towards the end of the chapter, we introduce the Bayesian

More information

ECE521 W17 Tutorial 10

ECE521 W17 Tutorial 10 ECE521 W17 Tutorial 10 Shenlong Wang and Renjie Liao *Some of materials are credited to Jimmy Ba, Eric Sudderth, Chris Bishop Introduction to A4 1, Graphical Models 2, Message Passing 3, HMM Introduction

More information

Belief propagation in a bucket-tree. Handouts, 275B Fall Rina Dechter. November 1, 2000

Belief propagation in a bucket-tree. Handouts, 275B Fall Rina Dechter. November 1, 2000 Belief propagation in a bucket-tree Handouts, 275B Fall-2000 Rina Dechter November 1, 2000 1 From bucket-elimination to tree-propagation The bucket-elimination algorithm, elim-bel, for belief updating

More information

Bayes Net Learning. EECS 474 Fall 2016

Bayes Net Learning. EECS 474 Fall 2016 Bayes Net Learning EECS 474 Fall 2016 Homework Remaining Homework #3 assigned Homework #4 will be about semi-supervised learning and expectation-maximization Homeworks #3-#4: the how of Graphical Models

More information

5 Minimal I-Maps, Chordal Graphs, Trees, and Markov Chains

5 Minimal I-Maps, Chordal Graphs, Trees, and Markov Chains Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science 6.438 Algorithms for Inference Fall 2014 5 Minimal I-Maps, Chordal Graphs, Trees, and Markov Chains Recall

More information

CS 188: Artificial Intelligence Spring Announcements

CS 188: Artificial Intelligence Spring Announcements CS 188: Artificial Intelligence Spring 2011 Lecture 20: Naïve Bayes 4/11/2011 Pieter Abbeel UC Berkeley Slides adapted from Dan Klein. W4 due right now Announcements P4 out, due Friday First contest competition

More information

Modeling and Reasoning with Bayesian Networks. Adnan Darwiche University of California Los Angeles, CA

Modeling and Reasoning with Bayesian Networks. Adnan Darwiche University of California Los Angeles, CA Modeling and Reasoning with Bayesian Networks Adnan Darwiche University of California Los Angeles, CA darwiche@cs.ucla.edu June 24, 2008 Contents Preface 1 1 Introduction 1 1.1 Automated Reasoning........................

More information

Introduction to Graph Theory

Introduction to Graph Theory Introduction to Graph Theory Tandy Warnow January 20, 2017 Graphs Tandy Warnow Graphs A graph G = (V, E) is an object that contains a vertex set V and an edge set E. We also write V (G) to denote the vertex

More information

Reasoning About Uncertainty

Reasoning About Uncertainty Reasoning About Uncertainty Graphical representation of causal relations (examples) Graphical models Inference in graphical models (introduction) 1 Jensen, 1996 Example 1: Icy Roads 2 1 Jensen, 1996 Example

More information

Graphical Models. Dmitrij Lagutin, T Machine Learning: Basic Principles

Graphical Models. Dmitrij Lagutin, T Machine Learning: Basic Principles Graphical Models Dmitrij Lagutin, dlagutin@cc.hut.fi T-61.6020 - Machine Learning: Basic Principles 12.3.2007 Contents Introduction to graphical models Bayesian networks Conditional independence Markov

More information

6. Lecture notes on matroid intersection

6. Lecture notes on matroid intersection Massachusetts Institute of Technology 18.453: Combinatorial Optimization Michel X. Goemans May 2, 2017 6. Lecture notes on matroid intersection One nice feature about matroids is that a simple greedy algorithm

More information

Exam Advanced Data Mining Date: Time:

Exam Advanced Data Mining Date: Time: Exam Advanced Data Mining Date: 11-11-2010 Time: 13.30-16.30 General Remarks 1. You are allowed to consult 1 A4 sheet with notes written on both sides. 2. Always show how you arrived at the result of your

More information

Paths, Flowers and Vertex Cover

Paths, Flowers and Vertex Cover Paths, Flowers and Vertex Cover Venkatesh Raman M. S. Ramanujan Saket Saurabh Abstract It is well known that in a bipartite (and more generally in a König) graph, the size of the minimum vertex cover is

More information

OSU CS 536 Probabilistic Graphical Models. Loopy Belief Propagation and Clique Trees / Join Trees

OSU CS 536 Probabilistic Graphical Models. Loopy Belief Propagation and Clique Trees / Join Trees OSU CS 536 Probabilistic Graphical Models Loopy Belief Propagation and Clique Trees / Join Trees Slides from Kevin Murphy s Graphical Model Tutorial (with minor changes) Reading: Koller and Friedman Ch

More information

Math 454 Final Exam, Fall 2005

Math 454 Final Exam, Fall 2005 c IIT Dept. Applied Mathematics, December 12, 2005 1 PRINT Last name: Signature: First name: Student ID: Math 454 Final Exam, Fall 2005 I. Examples, Counterexamples and short answer. (6 2 ea.) Do not give

More information

Dependency Preserving Probabilistic Modeling of Switching Activity using Bayesian Networks

Dependency Preserving Probabilistic Modeling of Switching Activity using Bayesian Networks Dependency Preserving Probabilistic Modeling of Switching Activity using Bayesian Networks Sanjukta Bhanja Dept. of Computer Science and Engineering Center for Microelectronics Research University of South

More information

Problem Set 2 Solutions

Problem Set 2 Solutions Design and Analysis of Algorithms February, 01 Massachusetts Institute of Technology 6.046J/18.410J Profs. Dana Moshkovitz and Bruce Tidor Handout 8 Problem Set Solutions This problem set is due at 9:00pm

More information

Graphical Models Reconstruction

Graphical Models Reconstruction Graphical Models Reconstruction Graph Theory Course Project Firoozeh Sepehr April 27 th 2016 Firoozeh Sepehr Graphical Models Reconstruction 1/50 Outline 1 Overview 2 History and Background 3 Graphical

More information

Machine Learning Lecture 16

Machine Learning Lecture 16 ourse Outline Machine Learning Lecture 16 undamentals (2 weeks) ayes ecision Theory Probability ensity stimation Undirected raphical Models & Inference 28.06.2016 iscriminative pproaches (5 weeks) Linear

More information

Computer Vision Group Prof. Daniel Cremers. 4a. Inference in Graphical Models

Computer Vision Group Prof. Daniel Cremers. 4a. Inference in Graphical Models Group Prof. Daniel Cremers 4a. Inference in Graphical Models Inference on a Chain (Rep.) The first values of µ α and µ β are: The partition function can be computed at any node: Overall, we have O(NK 2

More information

Info 2950, Lecture 16

Info 2950, Lecture 16 Info 2950, Lecture 16 28 Mar 2017 Prob Set 5: due Fri night 31 Mar Breadth first search (BFS) and Depth First Search (DFS) Must have an ordering on the vertices of the graph. In most examples here, the

More information

Topology 550A Homework 3, Week 3 (Corrections: February 22, 2012)

Topology 550A Homework 3, Week 3 (Corrections: February 22, 2012) Topology 550A Homework 3, Week 3 (Corrections: February 22, 2012) Michael Tagare De Guzman January 31, 2012 4A. The Sorgenfrey Line The following material concerns the Sorgenfrey line, E, introduced in

More information

12.1 Formulation of General Perfect Matching

12.1 Formulation of General Perfect Matching CSC5160: Combinatorial Optimization and Approximation Algorithms Topic: Perfect Matching Polytope Date: 22/02/2008 Lecturer: Lap Chi Lau Scribe: Yuk Hei Chan, Ling Ding and Xiaobing Wu In this lecture,

More information

Sequential Dependency and Reliability Analysis of Embedded Systems. Yu Jiang Tsinghua university, Beijing, China

Sequential Dependency and Reliability Analysis of Embedded Systems. Yu Jiang Tsinghua university, Beijing, China Sequential Dependency and Reliability Analysis of Embedded Systems Yu Jiang Tsinghua university, Beijing, China outline Motivation Background Reliability Block Diagram, Fault Tree Bayesian Network, Dynamic

More information

STRUCTURES AND STRATEGIES FOR STATE SPACE SEARCH

STRUCTURES AND STRATEGIES FOR STATE SPACE SEARCH Slide 3.1 3 STRUCTURES AND STRATEGIES FOR STATE SPACE SEARCH 3.0 Introduction 3.1 Graph Theory 3.2 Strategies for State Space Search 3.3 Using the State Space to Represent Reasoning with the Predicate

More information

The clique number of a random graph in (,1 2) Let ( ) # -subgraphs in = 2 =: ( ) We will be interested in s.t. ( )~1. To gain some intuition note ( )

The clique number of a random graph in (,1 2) Let ( ) # -subgraphs in = 2 =: ( ) We will be interested in s.t. ( )~1. To gain some intuition note ( ) The clique number of a random graph in (,1 2) Let () # -subgraphs in = 2 =:() We will be interested in s.t. ()~1. To gain some intuition note ()~ 2 =2 and so ~2log. Now let us work rigorously. () (+1)

More information

10708 Graphical Models: Homework 2

10708 Graphical Models: Homework 2 10708 Graphical Models: Homework 2 Due October 15th, beginning of class October 1, 2008 Instructions: There are six questions on this assignment. Each question has the name of one of the TAs beside it,

More information

The clique number of a random graph in (,1 2) Let ( ) # -subgraphs in = 2 =: ( ) 2 ( ) ( )

The clique number of a random graph in (,1 2) Let ( ) # -subgraphs in = 2 =: ( ) 2 ( ) ( ) 1 The clique number of a random graph in (,1 2) Let () # -subgraphs in = 2 =:() We will be interested in s.t. ()~1. To gain some intuition note ()~ 2 =2 and so ~2log. Now let us work rigorously. () (+1)

More information

CS473-Algorithms I. Lecture 13-A. Graphs. Cevdet Aykanat - Bilkent University Computer Engineering Department

CS473-Algorithms I. Lecture 13-A. Graphs. Cevdet Aykanat - Bilkent University Computer Engineering Department CS473-Algorithms I Lecture 3-A Graphs Graphs A directed graph (or digraph) G is a pair (V, E), where V is a finite set, and E is a binary relation on V The set V: Vertex set of G The set E: Edge set of

More information

CS 343: Artificial Intelligence

CS 343: Artificial Intelligence CS 343: Artificial Intelligence Naïve Bayes Prof. Scott Niekum The University of Texas at Austin [These slides based on those of Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley. All CS188

More information

Statistical and Learning Techniques in Computer Vision Lecture 1: Markov Random Fields Jens Rittscher and Chuck Stewart

Statistical and Learning Techniques in Computer Vision Lecture 1: Markov Random Fields Jens Rittscher and Chuck Stewart Statistical and Learning Techniques in Computer Vision Lecture 1: Markov Random Fields Jens Rittscher and Chuck Stewart 1 Motivation Up to now we have considered distributions of a single random variable

More information

A New Approach For Convert Multiply-Connected Trees in Bayesian networks

A New Approach For Convert Multiply-Connected Trees in Bayesian networks A New Approach For Convert Multiply-Connected Trees in Bayesian networks 1 Hussein Baloochian, Alireza khantimoory, 2 Saeed Balochian 1 Islamic Azad university branch of zanjan 2 Islamic Azad university

More information

Cheng Soon Ong & Christian Walder. Canberra February June 2018

Cheng Soon Ong & Christian Walder. Canberra February June 2018 Cheng Soon Ong & Christian Walder Research Group and College of Engineering and Computer Science Canberra February June 2018 Outlines Overview Introduction Linear Algebra Probability Linear Regression

More information

CSE 331: Introduction to Algorithm Analysis and Design Graphs

CSE 331: Introduction to Algorithm Analysis and Design Graphs CSE 331: Introduction to Algorithm Analysis and Design Graphs 1 Graph Definitions Graph: A graph consists of a set of verticies V and a set of edges E such that: G = (V, E) V = {v 0, v 1,..., v n 1 } E

More information

Homework 1: Belief Propagation & Factor Graphs

Homework 1: Belief Propagation & Factor Graphs Homework 1: Belief Propagation & Factor Graphs Brown University CS 242: Probabilistic Graphical Models Homework due at 11:59pm on October 5, 2016 We examine the problem of computing marginal distributions

More information

Machine Learning

Machine Learning Machine Learning 10-601 Tom M. Mitchell Machine Learning Department Carnegie Mellon University April 1, 2019 Today: Inference in graphical models Learning graphical models Readings: Bishop chapter 8 Bayesian

More information

Algorithm Design and Analysis

Algorithm Design and Analysis Algorithm Design and Analysis LECTURE 4 Graphs Definitions Traversals Adam Smith 9/8/10 Exercise How can you simulate an array with two unbounded stacks and a small amount of memory? (Hint: think of a

More information

CS 343: Artificial Intelligence

CS 343: Artificial Intelligence CS 343: Artificial Intelligence Bayes Nets: Independence Prof. Scott Niekum The University of Texas at Austin [These slides based on those of Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley.

More information

CS 188: Artificial Intelligence Fall Machine Learning

CS 188: Artificial Intelligence Fall Machine Learning CS 188: Artificial Intelligence Fall 2007 Lecture 23: Naïve Bayes 11/15/2007 Dan Klein UC Berkeley Machine Learning Up till now: how to reason or make decisions using a model Machine learning: how to select

More information

ECE 6504: Advanced Topics in Machine Learning Probabilistic Graphical Models and Large-Scale Learning

ECE 6504: Advanced Topics in Machine Learning Probabilistic Graphical Models and Large-Scale Learning ECE 6504: Advanced Topics in Machine Learning Probabilistic Graphical Models and Large-Scale Learning Topics Bayes Nets: Inference (Finish) Variable Elimination Graph-view of VE: Fill-edges, induced width

More information