Graph Mining: Overview of different graph models

Size: px
Start display at page:

Download "Graph Mining: Overview of different graph models"

Transcription

1 Graph Mining: Overview of different graph models Davide Mottin, Konstantina Lazaridou Hasso Plattner Institute Graph Mining course Winter Semester 2016

2 Lecture road Anomaly detection (previous lecture) Representatives of Probabilistic (Uncertain) graphs Introduction to Signed networks 2

3 Graph models Graphs are everywhere! Various interesting models that we haven t analyzed in the lecture.. graph streams evolving graphs attributed graphs probabilistic graphs signed graphs colored graphs... 3

4 Definitions Graph stream sequence of unordered pairs e = {u, v} where u, v [n], S = (e 1, e 2,..., e mi ) Time evolving graph sequence of static graphs {G1, G2,..., Gn}, where Gt = (Vt,Et) is a snapshot of the evolving graph at timestamp t Attributed graph G = (V, E, A) where V is the vertex set, E is the edge set, and A is the attribute set that contains unary attribute a i (linked to each node n i ) and binary attribute a ij (linked to each edge e k =(n i,n j ) E), Colored graph G = (V, E) in which each vertex is assigned a color. properly colored graph: color assignments conform to the coloring rules applied to the graph 4

5 Probabilistic graphs - Outline Uncertainty in data Introduction to uncertain graphs Model definition Applications Problems Finding representatives in probabilistic graphs Problem definition Algorithms GRAPH MINING WS

6 Uncertainty in data Noise in generation sensors Noise in collection missing instances Biological data protein-protein interaction probability Problem s nature risk, trust, influence, status Anonymized data privacy preservation of user generated data GRAPH MINING WS

7 What is an uncertain graph? A graph where each edge has an associated probability p:[0,1] to it Figure 1: (left) An unweighted probabilistic graph G, (right) G with the expected vertex degrees (in Italics) associated to each node GRAPH MINING WS

8 Possible applications and problems Modelling of probabilities in protein-protein interaction graphs Modelling relationships in social graphs Problems that apply to deterministic graphs algorithms need to be redesigned to incorporate uncertainty Data anonymization one of the possible worlds corresponds the original data Frequent subgraph mining frequency is redefined using the edge probabilities Queries based on shortest paths returns paths with very low probabilities GRAPH MINING WS

9 Graph model definition A probabilistic graph is represented as G = (V, E, W, p), where V is the set of vertices, E is the set of edges, for weighted graphs W: V х V R denotes the weights associated with every edge and p maps every pair of nodes to a real number in [0, 1] p uv represents the probability that edge (u,v) exists in the uncertain network For a probabilistic graph G, 2 " deterministic graphs can be generated these graphs are called possible worlds GRAPH MINING WS

10 Possible world semantics [1] Often in the literature it is assumed that the edge probabilities are independent is this always the case? For simplicity, various approaches treat the probabilities of the edges as weights Others only consider the edges having a probability p>t not valid assumptions in many scenarios! [1] S. Abiteboul, P. Kanellakis, and G. Grahne. On the representation and querying of sets of possible worlds, SIGMOD 1987 GRAPH MINING WS

11 Sampling The probability that a certain graph G=(V,E) will be sampled from G is computed as follows: P[G] = Π(u,v) ϵ E Puv * Π(u,v) ϵ (VxV)\E (1 Puv) Given G and the vertex degrees, we can also calculated the vertex discrepancies disu(g) = degu(g) degu(g), where u is a node in G G s discrepancy is defined as the sum of all node discrepancies G = argmin G: world of G Δ(G) Figure 2: (left) G with the expected vertex degrees associated to each node, (right) a certain instance G of G with the vertex discrepancies GRAPH MINING WS

12 What if we could work on a deterministic graph instead? How do we benefit? Computational complexity would be much lower! Traditional data mining algorithms could be applied Which characteristics should this certain graph maintain from the uncertain one? same number of vertices.. which edges should be included? GRAPH MINING WS

13 Outline - Probabilistic graphs Uncertainty in data Introduction to uncertain graphs Model definition Applications Problems Finding representatives in probabilistic graphs Problem definition Algorithms GRAPH MINING WS

14 Finding representatives in probabilistic graphs [2] A representative G of a probabilistic graph G is a deterministic graph that its vertices will present the least possible discrepancy More formally Given an undirected uncertain graph G = (V, E, W, p), the representative is an exact instance G of G (possible world), such that each vertex degree will have the minimum deviation from its expected value [2] The Pursuit of a Good Possible World: Extracting Representative Instances of Uncertain Graphs, Panos Parchas et. al, ACM SIGMOD 2014 GRAPH MINING WS

15 Introduced algorithms Baseline 1 : Greedy probability each edge e=(u,v) belongs to G, if it decreases the total discrepancy Baseline 2 : Most probable each edge e=(u,v) belongs to G, if p e 0.5 holds ADR (average degree rewiring) aims at preserving the expected average degree of G ABM (approximate b-matching) preserves the expected vertex degrees GRAPH MINING WS

16 ADR: average degree rewiring What is the expected average degree? degavg(g) = 2*P/ V, where P is the sum of all edge probabilities in G In order to preserve it, G should contain exactly P edges Main steps of ADR Construct a seed set E0 of the edges in G For a given number of times k Swap the edges in E0 with edges in E\E0, so that the overall discrepancy of the representative decreases GRAPH MINING WS

17 Pseudocode Initialization, computation of P, sort E in decreasing order by the edge probabilities For each e in E if random x<=pe: insert into E0, update G C = E\E0 For k times For each node u in G I = incident edges of u choose randomly e1 in I and e2 in C to swap compute the overall discrepancy before and after the potential swap if improvement: swap e1 with e2in E,C respectively, update discrepancies GRAPH MINING WS

18 ADR example: edge probabilities GRAPH MINING WS

19 ADR: a possible world and the discrepancies GRAPH MINING WS

20 ADR: first iterations GRAPH MINING WS

21 d1+d2 < 0 explanation For replacing (u,v) with (x,y) d1 = disu (G) disv (G) 1 - ( disu (G) + disv (G) ) d2 = disx (G) disy(g) ( disx (G) + disy(g) ) Sumuv_bef = disu (G) + disv (G) Sumuv_after = disu (G) 1 + disv (G) 1 Sumxy_bef = disx (G) + disy (G) Sumxy_after = disx (G) disy (G) + 1 d1 = Sumuv_after Sumuv_bef d2 = Sumxy_after Sumxy_bef If d1 and d2 are positive, then Sumuv_after > Sumuv_bef Sumxy_after > Sumxy_bef none of the underlying nodes benefits from the swap... GRAPH MINING WS

22 References Uncertain data On the representation and querying of sets of possible worlds A survey of uncertain data algorithms and applications Uncertain graphs The pursuit of a good possible world: extracting representative instances of uncertain graphs Uncertain graph sparsification Uncertain graph processing through representative instances Triangle-based representative possible worlds of uncertain graphs Clustering large probabilistic graphs Algorithms for mining uncertain graph data K-nearest neighbors in uncertain graphs GRAPH MINING WS

23 Lecture road Anomaly detection Representatives of Probabilistic (Uncertain) graphs Introduction to signed networks 23

24 What is a signed network? It is a graph G=(V,E), where each edge is mapped to a sign A sign can be positive or negative The sign of a path is the product of the signs of its edges Typically a signed network is denoted by: Σ = G(V,E,σ), where σ, or the signature of the graph, is the function σ: E->(+,-) u v +/- +/- k +/- GRAPH MINING WS

25 What is balance? The enemy of my enemy is my friend! History.. Fritz Heider (psychologist) and Frank Harary (mathematician) lay the foundations of the signed graphs and the balance theory Original idea of P-O-X model how are social relations modeled? are they balanced? P + O - X + GRAPH MINING WS

26 Example of the P-O-X model Imagine that you are person P and that O is someone, whom you think highly of, now imagine X is a presidential candidate you dislike, but X vehemently endorsees O. What do you suspect would happen? + P needs to agree with his friend O, or needs to unfriend O! - + the situation is unbalanced... GRAPH MINING WS

27 Balance theory Theorem 1: G is balanced if every path p between u, v have the same sign Theorem 2: A signed graph is balanced if and only if V can be bipartitioned, s. t. each edge between the parts is negative and each edge within a part is positive GRAPH MINING WS

28 Status theory [3] The signs in balance theory are perceived as likes/dislikes Can they also indicate another relation? in the context of directed social networks, the intention of the user creating the link matters.. I think O has a higher status than I do P + O - X I think O has a lower status than I do [3] Signed Networks in Social Media, Jure Leskovec, SIGCHI 2010 GRAPH MINING WS

29 Some possible applications Modelling interactions in Chemical/Biological networks Social network analysis Political and economical relations Graph Algorithms, Applications and Implementations, Charles Phillips GRAPH MINING WS

30 References More material Signed graphs, Matthias Beck Graph Algorithms, Applications and Implementations, Charles Phillips Harary : On the notion of balance of a signed graph Networks, Crowds, and Markets: Reasoning about a Highly Connected World, Chapter 5: Positive and Negative Relationships Research problems on signed graphs Signed graphs in social media Community Mining in Signed Social Networks An Automated Approach Polarity Related Influence Maximization in Signed Social Networks Node Classification in Signed Social Networks Predicting Positive and Negative Links in Online Social Networks GRAPH MINING WS

31 In the next episodes 3rd presentation date Course Evaluation Exams and maybe more! 31

32 Questions? 32

33 References Akoglu, L., McGlohon, M. and Faloutsos, C.. Oddball: Spotting anomalies in weighted graphs. PAKDD, Tong, H. and Lin, C.Y. Non-Negative Residual Matrix Factorization with Application to Graph Anomaly Detection. In SDM, Xing, E.P., Ng, A.Y., Jordan, M.I. and Russell, S. Distance metric learning with application to clustering with side-information. In NIPS,

Non Overlapping Communities

Non Overlapping Communities Non Overlapping Communities Davide Mottin, Konstantina Lazaridou HassoPlattner Institute Graph Mining course Winter Semester 2016 Acknowledgements Most of this lecture is taken from: http://web.stanford.edu/class/cs224w/slides

More information

Graph Mining: Introduction

Graph Mining: Introduction Graph Mining: Introduction Davide Mottin, Konstantina Lazaridou HassoPlattner Institute Graph Mining course Winter Semester 2016 Lecture road Course Information Introduction to graph mining Graphs: models

More information

CS224W: Social and Information Network Analysis Jure Leskovec, Stanford University

CS224W: Social and Information Network Analysis Jure Leskovec, Stanford University CS224W: Social and Information Network Analysis Jure Leskovec, Stanford University http://cs224w.stanford.edu 10/10/2011 Jure Leskovec, Stanford CS224W: Social and Information Network Analysis, http://cs224w.stanford.edu

More information

V2: Measures and Metrics (II)

V2: Measures and Metrics (II) - Betweenness Centrality V2: Measures and Metrics (II) - Groups of Vertices - Transitivity - Reciprocity - Signed Edges and Structural Balance - Similarity - Homophily and Assortative Mixing 1 Betweenness

More information

Positive and Negative Links

Positive and Negative Links Positive and Negative Links Web Science (VU) (707.000) Elisabeth Lex KTI, TU Graz May 4, 2015 Elisabeth Lex (KTI, TU Graz) Networks May 4, 2015 1 / 66 Outline 1 Repetition 2 Motivation 3 Structural Balance

More information

Scalable Clustering of Signed Networks Using Balance Normalized Cut

Scalable Clustering of Signed Networks Using Balance Normalized Cut Scalable Clustering of Signed Networks Using Balance Normalized Cut Kai-Yang Chiang,, Inderjit S. Dhillon The 21st ACM International Conference on Information and Knowledge Management (CIKM 2012) Oct.

More information

Exploiting Social Network Structure for Person-to-Person Sentiment Analysis (Supplementary Material to [WPLP14])

Exploiting Social Network Structure for Person-to-Person Sentiment Analysis (Supplementary Material to [WPLP14]) Exploiting Social Network Structure for Person-to-Person Sentiment Analysis (Supplementary Material to [WPLP14]) Robert West, Hristo S. Paskov, Jure Leskovec, Christopher Potts Stanford University west@cs.stanford.edu,

More information

Random projection for non-gaussian mixture models

Random projection for non-gaussian mixture models Random projection for non-gaussian mixture models Győző Gidófalvi Department of Computer Science and Engineering University of California, San Diego La Jolla, CA 92037 gyozo@cs.ucsd.edu Abstract Recently,

More information

Coloring Signed Graphs

Coloring Signed Graphs Coloring Signed Graphs Lynn Takeshita May 12, 2016 Abstract This survey paper provides an introduction to signed graphs, focusing on coloring. We shall introduce the concept of signed graphs, a proper

More information

CS246: Mining Massive Datasets Jure Leskovec, Stanford University

CS246: Mining Massive Datasets Jure Leskovec, Stanford University CS246: Mining Massive Datasets Jure Leskovec, Stanford University http://cs246.stanford.edu HITS (Hypertext Induced Topic Selection) Is a measure of importance of pages or documents, similar to PageRank

More information

Fast Nearest Neighbor Search on Large Time-Evolving Graphs

Fast Nearest Neighbor Search on Large Time-Evolving Graphs Fast Nearest Neighbor Search on Large Time-Evolving Graphs Leman Akoglu Srinivasan Parthasarathy Rohit Khandekar Vibhore Kumar Deepak Rajan Kun-Lung Wu Graphs are everywhere Leman Akoglu Fast Nearest Neighbor

More information

Characterizing Graphs (3) Characterizing Graphs (1) Characterizing Graphs (2) Characterizing Graphs (4)

Characterizing Graphs (3) Characterizing Graphs (1) Characterizing Graphs (2) Characterizing Graphs (4) S-72.2420/T-79.5203 Basic Concepts 1 S-72.2420/T-79.5203 Basic Concepts 3 Characterizing Graphs (1) Characterizing Graphs (3) Characterizing a class G by a condition P means proving the equivalence G G

More information

1. a graph G = (V (G), E(G)) consists of a set V (G) of vertices, and a set E(G) of edges (edges are pairs of elements of V (G))

1. a graph G = (V (G), E(G)) consists of a set V (G) of vertices, and a set E(G) of edges (edges are pairs of elements of V (G)) 10 Graphs 10.1 Graphs and Graph Models 1. a graph G = (V (G), E(G)) consists of a set V (G) of vertices, and a set E(G) of edges (edges are pairs of elements of V (G)) 2. an edge is present, say e = {u,

More information

Graph Exploration: Taking the User into the Loop

Graph Exploration: Taking the User into the Loop Graph Exploration: Taking the User into the Loop Davide Mottin, Anja Jentzsch, Emmanuel Müller Hasso Plattner Institute, Potsdam, Germany 2016/10/24 CIKM2016, Indianapolis, US Where we are Background (5

More information

Approximation Algorithms

Approximation Algorithms Chapter 8 Approximation Algorithms Algorithm Theory WS 2016/17 Fabian Kuhn Approximation Algorithms Optimization appears everywhere in computer science We have seen many examples, e.g.: scheduling jobs

More information

CS473-Algorithms I. Lecture 13-A. Graphs. Cevdet Aykanat - Bilkent University Computer Engineering Department

CS473-Algorithms I. Lecture 13-A. Graphs. Cevdet Aykanat - Bilkent University Computer Engineering Department CS473-Algorithms I Lecture 3-A Graphs Graphs A directed graph (or digraph) G is a pair (V, E), where V is a finite set, and E is a binary relation on V The set V: Vertex set of G The set E: Edge set of

More information

Probabilistic Graph Summarization

Probabilistic Graph Summarization Probabilistic Graph Summarization Nasrin Hassanlou, Maryam Shoaran, and Alex Thomo University of Victoria, Victoria, Canada {hassanlou,maryam,thomo}@cs.uvic.ca 1 Abstract We study group-summarization of

More information

Scalable Network Analysis

Scalable Network Analysis Inderjit S. Dhillon University of Texas at Austin COMAD, Ahmedabad, India Dec 20, 2013 Outline Unstructured Data - Scale & Diversity Evolving Networks Machine Learning Problems arising in Networks Recommender

More information

Algorithms and Applications in Social Networks. 2017/2018, Semester B Slava Novgorodov

Algorithms and Applications in Social Networks. 2017/2018, Semester B Slava Novgorodov Algorithms and Applications in Social Networks 2017/2018, Semester B Slava Novgorodov 1 Lesson #1 Administrative questions Course overview Introduction to Social Networks Basic definitions Network properties

More information

Introduction to Machine Learning

Introduction to Machine Learning Introduction to Machine Learning Clustering Varun Chandola Computer Science & Engineering State University of New York at Buffalo Buffalo, NY, USA chandola@buffalo.edu Chandola@UB CSE 474/574 1 / 19 Outline

More information

Solving problems on graph algorithms

Solving problems on graph algorithms Solving problems on graph algorithms Workshop Organized by: ACM Unit, Indian Statistical Institute, Kolkata. Tutorial-3 Date: 06.07.2017 Let G = (V, E) be an undirected graph. For a vertex v V, G {v} is

More information

Chapter 9 Graph Algorithms

Chapter 9 Graph Algorithms Introduction graph theory useful in practice represent many real-life problems can be if not careful with data structures Chapter 9 Graph s 2 Definitions Definitions an undirected graph is a finite set

More information

Chapter 9 Graph Algorithms

Chapter 9 Graph Algorithms Chapter 9 Graph Algorithms 2 Introduction graph theory useful in practice represent many real-life problems can be slow if not careful with data structures 3 Definitions an undirected graph G = (V, E)

More information

11/22/2016. Chapter 9 Graph Algorithms. Introduction. Definitions. Definitions. Definitions. Definitions

11/22/2016. Chapter 9 Graph Algorithms. Introduction. Definitions. Definitions. Definitions. Definitions Introduction Chapter 9 Graph Algorithms graph theory useful in practice represent many real-life problems can be slow if not careful with data structures 2 Definitions an undirected graph G = (V, E) is

More information

Topic: Local Search: Max-Cut, Facility Location Date: 2/13/2007

Topic: Local Search: Max-Cut, Facility Location Date: 2/13/2007 CS880: Approximations Algorithms Scribe: Chi Man Liu Lecturer: Shuchi Chawla Topic: Local Search: Max-Cut, Facility Location Date: 2/3/2007 In previous lectures we saw how dynamic programming could be

More information

Combinatorial Optimization

Combinatorial Optimization Combinatorial Optimization Frank de Zeeuw EPFL 2012 Today Introduction Graph problems - What combinatorial things will we be optimizing? Algorithms - What kind of solution are we looking for? Linear Programming

More information

Automatic Domain Partitioning for Multi-Domain Learning

Automatic Domain Partitioning for Multi-Domain Learning Automatic Domain Partitioning for Multi-Domain Learning Di Wang diwang@cs.cmu.edu Chenyan Xiong cx@cs.cmu.edu William Yang Wang ww@cmu.edu Abstract Multi-Domain learning (MDL) assumes that the domain labels

More information

CS246: Mining Massive Datasets Jure Leskovec, Stanford University

CS246: Mining Massive Datasets Jure Leskovec, Stanford University CS246: Mining Massive Datasets Jure Leskovec, Stanford University http://cs246.stanford.edu SPAM FARMING 2/11/2013 Jure Leskovec, Stanford C246: Mining Massive Datasets 2 2/11/2013 Jure Leskovec, Stanford

More information

Chapter 9 Graph Algorithms

Chapter 9 Graph Algorithms Chapter 9 Graph Algorithms 2 Introduction graph theory useful in practice represent many real-life problems can be if not careful with data structures 3 Definitions an undirected graph G = (V, E) is a

More information

CS224W: Analysis of Networks Jure Leskovec, Stanford University

CS224W: Analysis of Networks Jure Leskovec, Stanford University CS224W: Analysis of Networks Jure Leskovec, Stanford University http://cs224w.stanford.edu 11/13/17 Jure Leskovec, Stanford CS224W: Analysis of Networks, http://cs224w.stanford.edu 2 Observations Models

More information

Mining Social Network Graphs

Mining Social Network Graphs Mining Social Network Graphs Analysis of Large Graphs: Community Detection Rafael Ferreira da Silva rafsilva@isi.edu http://rafaelsilva.com Note to other teachers and users of these slides: We would be

More information

Link Prediction for Social Network

Link Prediction for Social Network Link Prediction for Social Network Ning Lin Computer Science and Engineering University of California, San Diego Email: nil016@eng.ucsd.edu Abstract Friendship recommendation has become an important issue

More information

Paths, Circuits, and Connected Graphs

Paths, Circuits, and Connected Graphs Paths, Circuits, and Connected Graphs Paths and Circuits Definition: Let G = (V, E) be an undirected graph, vertices u, v V A path of length n from u to v is a sequence of edges e i = {u i 1, u i} E for

More information

CS200: Graphs. Rosen Ch , 9.6, Walls and Mirrors Ch. 14

CS200: Graphs. Rosen Ch , 9.6, Walls and Mirrors Ch. 14 CS200: Graphs Rosen Ch. 9.1-9.4, 9.6, 10.4-10.5 Walls and Mirrors Ch. 14 Trees as Graphs Tree: an undirected connected graph that has no cycles. A B C D E F G H I J K L M N O P Rooted Trees A rooted tree

More information

Lecture 5: Exact inference. Queries. Complexity of inference. Queries (continued) Bayesian networks can answer questions about the underlying

Lecture 5: Exact inference. Queries. Complexity of inference. Queries (continued) Bayesian networks can answer questions about the underlying given that Maximum a posteriori (MAP query: given evidence 2 which has the highest probability: instantiation of all other variables in the network,, Most probable evidence (MPE: given evidence, find an

More information

Graph Theory. ICT Theory Excerpt from various sources by Robert Pergl

Graph Theory. ICT Theory Excerpt from various sources by Robert Pergl Graph Theory ICT Theory Excerpt from various sources by Robert Pergl What can graphs model? Cost of wiring electronic components together. Shortest route between two cities. Finding the shortest distance

More information

Graph Theory S 1 I 2 I 1 S 2 I 1 I 2

Graph Theory S 1 I 2 I 1 S 2 I 1 I 2 Graph Theory S I I S S I I S Graphs Definition A graph G is a pair consisting of a vertex set V (G), and an edge set E(G) ( ) V (G). x and y are the endpoints of edge e = {x, y}. They are called adjacent

More information

Modeling Dynamic Behavior in Large Evolving Graphs

Modeling Dynamic Behavior in Large Evolving Graphs Modeling Dynamic Behavior in Large Evolving Graphs R. Rossi, J. Neville, B. Gallagher, and K. Henderson Presented by: Doaa Altarawy 1 Outline - Motivation - Proposed Model - Definitions - Modeling dynamic

More information

CS224W: Analysis of Networks Jure Leskovec, Stanford University

CS224W: Analysis of Networks Jure Leskovec, Stanford University CS224W: Analysis of Networks Jure Leskovec, Stanford University http://cs224w.stanford.edu Start with the intuition [Heider 46]: Friend of my friend is my friend Enemy of enemy is my friend Enemy of friend

More information

Lecture Note: Computation problems in social. network analysis

Lecture Note: Computation problems in social. network analysis Lecture Note: Computation problems in social network analysis Bang Ye Wu CSIE, Chung Cheng University, Taiwan September 29, 2008 In this lecture note, several computational problems are listed, including

More information

Randomized Graph Algorithms

Randomized Graph Algorithms Randomized Graph Algorithms Vasileios-Orestis Papadigenopoulos School of Electrical and Computer Engineering - NTUA papadigenopoulos orestis@yahoocom July 22, 2014 Vasileios-Orestis Papadigenopoulos (NTUA)

More information

Edge Classification in Networks

Edge Classification in Networks Charu C. Aggarwal, Peixiang Zhao, and Gewen He Florida State University IBM T J Watson Research Center Edge Classification in Networks ICDE Conference, 2016 Introduction We consider in this paper the edge

More information

Epilog: Further Topics

Epilog: Further Topics Ludwig-Maximilians-Universität München Institut für Informatik Lehr- und Forschungseinheit für Datenbanksysteme Knowledge Discovery in Databases SS 2016 Epilog: Further Topics Lecture: Prof. Dr. Thomas

More information

Graph Theory: Matchings and Factors

Graph Theory: Matchings and Factors Graph Theory: Matchings and Factors Pallab Dasgupta, Professor, Dept. of Computer Sc. and Engineering, IIT Kharagpur pallab@cse.iitkgp.ernet.in Matchings A matching of size k in a graph G is a set of k

More information

Matching and Covering

Matching and Covering Matching and Covering Matchings A matching of size k in a graph G is a set of k pairwise disjoint edges The vertices belonging to the edges of a matching are saturated by the matching; the others are unsaturated

More information

Computer-based Tracking Protocols: Improving Communication between Databases

Computer-based Tracking Protocols: Improving Communication between Databases Computer-based Tracking Protocols: Improving Communication between Databases Amol Deshpande Database Group Department of Computer Science University of Maryland Overview Food tracking and traceability

More information

CSE 255 Lecture 6. Data Mining and Predictive Analytics. Community Detection

CSE 255 Lecture 6. Data Mining and Predictive Analytics. Community Detection CSE 255 Lecture 6 Data Mining and Predictive Analytics Community Detection Dimensionality reduction Goal: take high-dimensional data, and describe it compactly using a small number of dimensions Assumption:

More information

Definition: A graph G = (V, E) is called a tree if G is connected and acyclic. The following theorem captures many important facts about trees.

Definition: A graph G = (V, E) is called a tree if G is connected and acyclic. The following theorem captures many important facts about trees. Tree 1. Trees and their Properties. Spanning trees 3. Minimum Spanning Trees 4. Applications of Minimum Spanning Trees 5. Minimum Spanning Tree Algorithms 1.1 Properties of Trees: Definition: A graph G

More information

Adjacent: Two distinct vertices u, v are adjacent if there is an edge with ends u, v. In this case we let uv denote such an edge.

Adjacent: Two distinct vertices u, v are adjacent if there is an edge with ends u, v. In this case we let uv denote such an edge. 1 Graph Basics What is a graph? Graph: a graph G consists of a set of vertices, denoted V (G), a set of edges, denoted E(G), and a relation called incidence so that each edge is incident with either one

More information

CS246: Mining Massive Datasets Jure Leskovec, Stanford University

CS246: Mining Massive Datasets Jure Leskovec, Stanford University CS246: Mining Massive Datasets Jure Leskovec, Stanford University http://cs246.stanford.edu Can we identify node groups? (communities, modules, clusters) 2/13/2014 Jure Leskovec, Stanford C246: Mining

More information

Elements of Graph Theory

Elements of Graph Theory Elements of Graph Theory Quick review of Chapters 9.1 9.5, 9.7 (studied in Mt1348/2008) = all basic concepts must be known New topics we will mostly skip shortest paths (Chapter 9.6), as that was covered

More information

1 Unweighted Set Cover

1 Unweighted Set Cover Comp 60: Advanced Algorithms Tufts University, Spring 018 Prof. Lenore Cowen Scribe: Yuelin Liu Lecture 7: Approximation Algorithms: Set Cover and Max Cut 1 Unweighted Set Cover 1.1 Formulations There

More information

Discrete Structures CISC 2315 FALL Graphs & Trees

Discrete Structures CISC 2315 FALL Graphs & Trees Discrete Structures CISC 2315 FALL 2010 Graphs & Trees Graphs A graph is a discrete structure, with discrete components Components of a Graph edge vertex (node) Vertices A graph G = (V, E), where V is

More information

Balanced and partitionable signed graphs

Balanced and partitionable signed graphs A. Mrvar: Balanced and partitionable signed graphs 1 Balanced and partitionable signed graphs Signed graphs Signed graph is an ordered pair (G,σ), where: G = (V,L) is a graph with a set of vertices V and

More information

Mining of Massive Datasets Jure Leskovec, AnandRajaraman, Jeff Ullman Stanford University

Mining of Massive Datasets Jure Leskovec, AnandRajaraman, Jeff Ullman Stanford University Note to other teachers and users of these slides: We would be delighted if you found this our material useful in giving your own lectures. Feel free to use these slides verbatim, or to modify them to fit

More information

COMP 251 Winter 2017 Online quizzes with answers

COMP 251 Winter 2017 Online quizzes with answers COMP 251 Winter 2017 Online quizzes with answers Open Addressing (2) Which of the following assertions are true about open address tables? A. You cannot store more records than the total number of slots

More information

Extracting Information from Complex Networks

Extracting Information from Complex Networks Extracting Information from Complex Networks 1 Complex Networks Networks that arise from modeling complex systems: relationships Social networks Biological networks Distinguish from random networks uniform

More information

Algorithm Circle Extra Lecture: Solving the Assignment Problem with Network Flow

Algorithm Circle Extra Lecture: Solving the Assignment Problem with Network Flow The Network Flow Minimum-Cost Maximum Flow Shameless Plug Algorithm Circle Extra Lecture: Solving the with Network Flow 17 September 2012 The Network Flow Minimum-Cost Maximum Flow Shameless Plug Outline

More information

An Introduction to Graph Theory

An Introduction to Graph Theory An Introduction to Graph Theory CIS008-2 Logic and Foundations of Mathematics David Goodwin david.goodwin@perisic.com 12:00, Friday 17 th February 2012 Outline 1 Graphs 2 Paths and cycles 3 Graphs and

More information

Clustering Using Graph Connectivity

Clustering Using Graph Connectivity Clustering Using Graph Connectivity Patrick Williams June 3, 010 1 Introduction It is often desirable to group elements of a set into disjoint subsets, based on the similarity between the elements in the

More information

Modularity CMSC 858L

Modularity CMSC 858L Modularity CMSC 858L Module-detection for Function Prediction Biological networks generally modular (Hartwell+, 1999) We can try to find the modules within a network. Once we find modules, we can look

More information

Graph Theory: Applications and Algorithms

Graph Theory: Applications and Algorithms Graph Theory: Applications and Algorithms CIS008-2 Logic and Foundations of Mathematics David Goodwin david.goodwin@perisic.com 11:00, Tuesday 21 st February 2012 Outline 1 n-cube 2 Gray Codes 3 Shortest-Path

More information

CAIM: Cerca i Anàlisi d Informació Massiva

CAIM: Cerca i Anàlisi d Informació Massiva 1 / 72 CAIM: Cerca i Anàlisi d Informació Massiva FIB, Grau en Enginyeria Informàtica Slides by Marta Arias, José Balcázar, Ricard Gavaldá Department of Computer Science, UPC Fall 2016 http://www.cs.upc.edu/~caim

More information

Approximation Algorithms: The Primal-Dual Method. My T. Thai

Approximation Algorithms: The Primal-Dual Method. My T. Thai Approximation Algorithms: The Primal-Dual Method My T. Thai 1 Overview of the Primal-Dual Method Consider the following primal program, called P: min st n c j x j j=1 n a ij x j b i j=1 x j 0 Then the

More information

Lecture 5: Exact inference

Lecture 5: Exact inference Lecture 5: Exact inference Queries Inference in chains Variable elimination Without evidence With evidence Complexity of variable elimination which has the highest probability: instantiation of all other

More information

A Partition Method for Graph Isomorphism

A Partition Method for Graph Isomorphism Available online at www.sciencedirect.com Physics Procedia ( ) 6 68 International Conference on Solid State Devices and Materials Science A Partition Method for Graph Isomorphism Lijun Tian, Chaoqun Liu

More information

Greedy Algorithms. Previous Examples: Huffman coding, Minimum Spanning Tree Algorithms

Greedy Algorithms. Previous Examples: Huffman coding, Minimum Spanning Tree Algorithms Greedy Algorithms A greedy algorithm is one where you take the step that seems the best at the time while executing the algorithm. Previous Examples: Huffman coding, Minimum Spanning Tree Algorithms Coin

More information

Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science Algorithms For Inference Fall 2014

Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science Algorithms For Inference Fall 2014 Suggested Reading: Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science 6.438 Algorithms For Inference Fall 2014 Probabilistic Modelling and Reasoning: The Junction

More information

ECS 20 Lecture 17b = Discussion D8 Fall Nov 2013 Phil Rogaway

ECS 20 Lecture 17b = Discussion D8 Fall Nov 2013 Phil Rogaway 1 ECS 20 Lecture 17b = Discussion D8 Fall 2013 25 Nov 2013 Phil Rogaway Today: Using discussion section to finish up graph theory. Much of these notes the same as those prepared for last lecture and the

More information

Introduction to Mathematical Programming IE406. Lecture 16. Dr. Ted Ralphs

Introduction to Mathematical Programming IE406. Lecture 16. Dr. Ted Ralphs Introduction to Mathematical Programming IE406 Lecture 16 Dr. Ted Ralphs IE406 Lecture 16 1 Reading for This Lecture Bertsimas 7.1-7.3 IE406 Lecture 16 2 Network Flow Problems Networks are used to model

More information

Introduction to Parallel & Distributed Computing Parallel Graph Algorithms

Introduction to Parallel & Distributed Computing Parallel Graph Algorithms Introduction to Parallel & Distributed Computing Parallel Graph Algorithms Lecture 16, Spring 2014 Instructor: 罗国杰 gluo@pku.edu.cn In This Lecture Parallel formulations of some important and fundamental

More information

CS224W: Social and Information Network Analysis Jure Leskovec, Stanford University

CS224W: Social and Information Network Analysis Jure Leskovec, Stanford University CS224W: Social and Information Network Analysis Jure Leskovec, Stanford University http://cs224w.stanford.edu How to organize the Web? First try: Human curated Web directories Yahoo, DMOZ, LookSmart Second

More information

CPS 102: Discrete Mathematics. Quiz 3 Date: Wednesday November 30, Instructor: Bruce Maggs NAME: Prob # Score. Total 60

CPS 102: Discrete Mathematics. Quiz 3 Date: Wednesday November 30, Instructor: Bruce Maggs NAME: Prob # Score. Total 60 CPS 102: Discrete Mathematics Instructor: Bruce Maggs Quiz 3 Date: Wednesday November 30, 2011 NAME: Prob # Score Max Score 1 10 2 10 3 10 4 10 5 10 6 10 Total 60 1 Problem 1 [10 points] Find a minimum-cost

More information

Paths. Path is a sequence of edges that begins at a vertex of a graph and travels from vertex to vertex along edges of the graph.

Paths. Path is a sequence of edges that begins at a vertex of a graph and travels from vertex to vertex along edges of the graph. Paths Path is a sequence of edges that begins at a vertex of a graph and travels from vertex to vertex along edges of the graph. Formal Definition of a Path (Undirected) Let n be a nonnegative integer

More information

CS224W: Social and Information Network Analysis Jure Leskovec, Stanford University

CS224W: Social and Information Network Analysis Jure Leskovec, Stanford University CS224W: Social and Information Network Analysis Jure Leskovec, Stanford University http://cs224w.stanford.edu How to organize the Web? First try: Human curated Web directories Yahoo, DMOZ, LookSmart Second

More information

DENSITY BASED AND PARTITION BASED CLUSTERING OF UNCERTAIN DATA BASED ON KL-DIVERGENCE SIMILARITY MEASURE

DENSITY BASED AND PARTITION BASED CLUSTERING OF UNCERTAIN DATA BASED ON KL-DIVERGENCE SIMILARITY MEASURE DENSITY BASED AND PARTITION BASED CLUSTERING OF UNCERTAIN DATA BASED ON KL-DIVERGENCE SIMILARITY MEASURE Sinu T S 1, Mr.Joseph George 1,2 Computer Science and Engineering, Adi Shankara Institute of Engineering

More information

Part II. Graph Theory. Year

Part II. Graph Theory. Year Part II Year 2017 2016 2015 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 2017 53 Paper 3, Section II 15H Define the Ramsey numbers R(s, t) for integers s, t 2. Show that R(s, t) exists for all s,

More information

Algorithm Design and Analysis

Algorithm Design and Analysis Algorithm Design and Analysis LECTURE 3 Data Structures Graphs Traversals Strongly connected components Sofya Raskhodnikova L3.1 Measuring Running Time Focus on scalability: parameterize the running time

More information

Networks in economics and finance. Lecture 1 - Measuring networks

Networks in economics and finance. Lecture 1 - Measuring networks Networks in economics and finance Lecture 1 - Measuring networks What are networks and why study them? A network is a set of items (nodes) connected by edges or links. Units (nodes) Individuals Firms Banks

More information

Algorithms for Grid Graphs in the MapReduce Model

Algorithms for Grid Graphs in the MapReduce Model University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Computer Science and Engineering: Theses, Dissertations, and Student Research Computer Science and Engineering, Department

More information

Weighted Graphs and Greedy Algorithms

Weighted Graphs and Greedy Algorithms COMP 182 Algorithmic Thinking Weighted Graphs and Greedy Algorithms Luay Nakhleh Computer Science Rice University Reading Material Chapter 10, Section 6 Chapter 11, Sections 4, 5 Weighted Graphs In many

More information

Graphs (MTAT , 6 EAP) Lectures: Mon 14-16, hall 404 Exercises: Wed 14-16, hall 402

Graphs (MTAT , 6 EAP) Lectures: Mon 14-16, hall 404 Exercises: Wed 14-16, hall 402 Graphs (MTAT.05.080, 6 EAP) Lectures: Mon 14-16, hall 404 Exercises: Wed 14-16, hall 402 homepage: http://courses.cs.ut.ee/2012/graafid (contains slides) For grade: Homework + three tests (during or after

More information

Optimal tour along pubs in the UK

Optimal tour along pubs in the UK 1 From Facebook Optimal tour along 24727 pubs in the UK Road distance (by google maps) see also http://www.math.uwaterloo.ca/tsp/pubs/index.html (part of TSP homepage http://www.math.uwaterloo.ca/tsp/

More information

princeton univ. F 17 cos 521: Advanced Algorithm Design Lecture 24: Online Algorithms

princeton univ. F 17 cos 521: Advanced Algorithm Design Lecture 24: Online Algorithms princeton univ. F 17 cos 521: Advanced Algorithm Design Lecture 24: Online Algorithms Lecturer: Matt Weinberg Scribe:Matt Weinberg Lecture notes sourced from Avrim Blum s lecture notes here: http://www.cs.cmu.edu/

More information

NP-Completeness. Algorithms

NP-Completeness. Algorithms NP-Completeness Algorithms The NP-Completeness Theory Objective: Identify a class of problems that are hard to solve. Exponential time is hard. Polynomial time is easy. Why: Do not try to find efficient

More information

Algorithms. Graphs. Algorithms

Algorithms. Graphs. Algorithms Algorithms Graphs Algorithms Graphs Definition: A graph is a collection of edges and vertices. Each edge connects two vertices. Algorithms 1 Graphs Vertices: Nodes, points, computers, users, items,...

More information

Introduction to Approximation Algorithms

Introduction to Approximation Algorithms Introduction to Approximation Algorithms Dr. Gautam K. Das Departmet of Mathematics Indian Institute of Technology Guwahati, India gkd@iitg.ernet.in February 19, 2016 Outline of the lecture Background

More information

Analysis of Biological Networks. 1. Clustering 2. Random Walks 3. Finding paths

Analysis of Biological Networks. 1. Clustering 2. Random Walks 3. Finding paths Analysis of Biological Networks 1. Clustering 2. Random Walks 3. Finding paths Problem 1: Graph Clustering Finding dense subgraphs Applications Identification of novel pathways, complexes, other modules?

More information

Semi-Automatic Transcription Tool for Ancient Manuscripts

Semi-Automatic Transcription Tool for Ancient Manuscripts The Venice Atlas A Digital Humanities atlas project by DH101 EPFL Students Semi-Automatic Transcription Tool for Ancient Manuscripts In this article, we investigate various techniques from the fields of

More information

Greedy Approximations

Greedy Approximations CS 787: Advanced Algorithms Instructor: Dieter van Melkebeek Greedy Approximations Approximation algorithms give a solution to a problem in polynomial time, at most a given factor away from the correct

More information

Notes for Lecture 24

Notes for Lecture 24 U.C. Berkeley CS170: Intro to CS Theory Handout N24 Professor Luca Trevisan December 4, 2001 Notes for Lecture 24 1 Some NP-complete Numerical Problems 1.1 Subset Sum The Subset Sum problem is defined

More information

Final Exam DATA MINING I - 1DL360

Final Exam DATA MINING I - 1DL360 Uppsala University Department of Information Technology Kjell Orsborn Final Exam 2012-10-17 DATA MINING I - 1DL360 Date... Wednesday, October 17, 2012 Time... 08:00-13:00 Teacher on duty... Kjell Orsborn,

More information

1 The Traveling Salesperson Problem (TSP)

1 The Traveling Salesperson Problem (TSP) CS 598CSC: Approximation Algorithms Lecture date: January 23, 2009 Instructor: Chandra Chekuri Scribe: Sungjin Im In the previous lecture, we had a quick overview of several basic aspects of approximation

More information

Introduction to Graph Theory

Introduction to Graph Theory Introduction to Graph Theory Tandy Warnow January 20, 2017 Graphs Tandy Warnow Graphs A graph G = (V, E) is an object that contains a vertex set V and an edge set E. We also write V (G) to denote the vertex

More information

Instructor: Paul Zeitz, University of San Francisco

Instructor: Paul Zeitz, University of San Francisco Berkeley Math Circle Graph Theory and Ramsey Theory Instructor: Paul Zeitz, University of San Francisco (zeitz@usfca.edu) Definitions 1 A graph is a pair (V,E), where V is a finite set and E is a set of

More information

Note Set 4: Finite Mixture Models and the EM Algorithm

Note Set 4: Finite Mixture Models and the EM Algorithm Note Set 4: Finite Mixture Models and the EM Algorithm Padhraic Smyth, Department of Computer Science University of California, Irvine Finite Mixture Models A finite mixture model with K components, for

More information

Graph Data Processing with MapReduce

Graph Data Processing with MapReduce Distributed data processing on the Cloud Lecture 5 Graph Data Processing with MapReduce Satish Srirama Some material adapted from slides by Jimmy Lin, 2015 (licensed under Creation Commons Attribution

More information

E-Companion: On Styles in Product Design: An Analysis of US. Design Patents

E-Companion: On Styles in Product Design: An Analysis of US. Design Patents E-Companion: On Styles in Product Design: An Analysis of US Design Patents 1 PART A: FORMALIZING THE DEFINITION OF STYLES A.1 Styles as categories of designs of similar form Our task involves categorizing

More information

Spectral Clustering X I AO ZE N G + E L HA M TA BA S SI CS E CL A S S P R ESENTATION MA RCH 1 6,

Spectral Clustering X I AO ZE N G + E L HA M TA BA S SI CS E CL A S S P R ESENTATION MA RCH 1 6, Spectral Clustering XIAO ZENG + ELHAM TABASSI CSE 902 CLASS PRESENTATION MARCH 16, 2017 1 Presentation based on 1. Von Luxburg, Ulrike. "A tutorial on spectral clustering." Statistics and computing 17.4

More information

Algorithm Design and Analysis

Algorithm Design and Analysis Algorithm Design and Analysis LECTURE 4 Graphs Definitions Traversals Adam Smith 9/8/10 Exercise How can you simulate an array with two unbounded stacks and a small amount of memory? (Hint: think of a

More information