Exploring Cassandra and HBase with BigTable Model

Size: px
Start display at page:

Download "Exploring Cassandra and HBase with BigTable Model"

Transcription

1 Exploring Cassandra and HBase with BigTable Model Hemanth Gokavarapu (Guidance of Prof. Judy Qiu) Department of Computer Science Indiana University Bloomington Abstract Cassandra is a distributed database designed to be highly scalable both in terms of storage volume and request throughput while not being subject to any single point of failure. Cassandra aim to run on top of an infrastructure of hundred nodes (Possibly spread across different data centers.). HBase is an open source, non-relational, distributed database modeled after Google's BigTable and is written in Java. It is developed as part of Apache Software Foundation's Hadoop project and runs on top of HDFS (Hadoop Distributed Filesystem), providing BigTable-like capabilities for Hadoop. This paper presents a overview of BigTable Model with Cassandra, HBase and discusses how its design is founded in fundamental principles of distributed systems. We will also discuss the usage and compare both the NoSQL databases in detailed. Introduction to NOSQL Over the last couple of years, there is an emerging data storage mechanism for storing large scale of data. These storage solutions differ quite significantly with the RDMS model and are also known as the NOSQL. Some of the key players include GoogleBigTable, HBase, Hypertable, AmazonDynamo, Voldemort, Cassandra, Redis, CouchDB, MongoDB. These solutions have a number of characteristics in common such as Key value store Run on large number of commodity machines Data are partitioned and replicated among these machines Relax the data consistency requirement. Data Model: The underlying data model can be considered as a large Hashtable ( key/ value store ). The basic form of API access is get(key) Extract the value given a key put(key,value) Create or update the value given its key delete (key) remove the key and its associated value execute (key, operation, parameters ) invoke an operation to the value ( given its key ) which is a special data structure (e.g. List, Set, Map etc ). Mapreduce ( keylist, mapfunction, reducefunction )

2 invoke a map/reduce function across a key range. Machine Layout: Machines connected through a network. We can each machine a physical node (PN). Each PN has the same set of software configuration but may have varying hardware capacity in terms of CPU, memory and disk storage. Within each PN, there will be a variable number of virtual node (VN) running according to the available hardware capacity of the PN. Data partitioning: The overall hashtable is distributed across many VNs, we need a way to map each key to the corresponding VN. One way is to use partition= key mod( total_vns). The disadvantage of this scheme is when we alter the number of VN s then the ownership of existing keys has changed dramatically, which requires full data redistribution. Most large scale store use a consistent hashing technique to minimize the amount of ownership changes. In the consistent hashing scheme, the key space is finite and lies on the circumference of a ring. The Virtual node id is also allocated from the same key space. For any key, its owner node is defined as the first encountered virtual node if walking clockwise from that key. If the owner node crashes, all the key it owns will be adopted by its clockwise neighbor. Therefore, key redistribution happens only within the neighbor of the crashed node, all other nodes retain the same set of keys. Data Replication: To provide high reliability from individual unreliable resources, we need to replicate the data partitions. Replication not only improves the overall reliability of data, it also helps performance by spreading the workload across multiple replicas. While read-only request can be dispatched to any replicas, update request is more challenging because we need to carefully coordinate update, which happens in these replicas. Map Reduce Execution: The distributed store architecture fits well into distributed processing as well. For example, to process a Map/ Reduce operation over an input key lists. The system will push the map and reduce function to all the nodes (ie: moving the processing logic towards the data). The map function of the input keys will

3 be distributed among the replicas of owning those input, and then forward the map output to the reduce function, where the aggregation logic will be executed. Storage Implementation: One strategy is to use make the storage implementation pluggable. e.g. A local MySQL DB, Berkeley DB, Filesystem or even a in memory Hashtable can be used as a storage mechanism. Another strategy is to implement the storage in a highly scalable way. Here are some techniques that we can learn from CouchDB and Google BigTable. CouchDB has a MVCC model that uses a copy-on-modified approach. Any update will cause a private copy being made which in turn cause the index also need to be modified and causing the a private copy of the index as well, all the way up to the root pointer. Notice that the update happens in an append-only mode where the modified data is appended to the file and the old data becomes garbage. Periodic garbage collection is done to compact the data. Here is how the model is implemented in memory and disks. In Google BigTable model, the data is broken down into multiple generations and the memory is use to hold the newest generation. Any query will search the mem data as well as all the data sets on disks and merge all the return results. Fast detection of whether a generation contains a key can be done by checking a bloom filter. When update happens, both the mem data and the commit log will be written so that if the machine crashes before the mem data flush to disk, it can be recovered from the commit log. Big Table Model: Both Hbase and Cassandra are based on Google BigTable model. Some of the key characteristics of BigTable are discussed below. Fundamentally Distributed: BigTable is built from the ground up on a "highly distributed", "share nothing"

4 architecture. Data is supposed to store in large number of unreliable, commodity server boxes by "partitioning" and "replication". Data partitioning means the data are partitioned by its key and stored in different servers. Replication means the same data element is replicated multiple times at different servers. columns with multi-value attributes. The BigTable model introduces the "Column Family" concept such that a row has a fixed number of "column family" but within the "column family", a row can have a variable number of columns that can be different in each row. Column Oriented: Unlike traditional RDBMS implementation where each "row" is stored contiguous on disk, BigTable, on the other hand, store each column contiguously on disk. The underlying assumption is that in most cases not all columns are needed for data access, column oriented layout allows more records sitting in a disk block and hence can reduce the disk I/O. Column oriented layout is also very effective to store very sparse data (many cells have NULL value) as well as multi-value cell. The following diagram illustrates the difference between a Row-oriented layout and a Column-oriented layout. Variable number of Columns: In RDBMS, each row must have a fixed set of columns defined by the table schema, and therefore it is not easy to support In the Bigtable model, the basic data storage unit is a cell, (addressed by a particular row and column). Bigtable allow multiple timestamp versions of data within a cell. In other words, user can address a data element by the rowid, column name and the timestamp. At the configuration level, Bigtable allows the user to specify how many versions can be stored within each cell either by count (how many) or by freshness (how old). At the physical level, BigTable store each column family contiguously on disk (imagine one file per column family), and physically sort the order of data by rowid, column name and timestamp. After that, the sorted data will be compressed so that a disk block size can store more data. On the other hand, since data within a column family usually has a similar pattern, data compression can be very effective. Sequential Write: BigTable model is highly optimized for write operation (insert/update/delete) with

5 sequential write (no disk seek is needed). Basically, write happens by first appending a transaction entry to a log file (hence the disk write I/O is sequential with no disk seek), followed by writing the data into an inmemory Memtable. In case of the machine crashes and all in-memory state is lost, the recovery step will bring the Memtable up to date by replaying the updates in the log file. All the latest update therefore will be stored at the Memtable, which will grow until reaching a size threshold, then it will flushed the Memtable to the disk as an SSTable (sorted by the String key). Over a period of time there will be multiple SSTables on the disk that store the data. Merged Read: Whenever a read request is received, the system will first lookup the Memtable by its row key to see if it contains the data. If not, it will look at the on-disk SSTable to see if the row-key is there. We call this the "merged read" as the system need to look at multiple places for the data. To speed up the detection, SSTable has a companion Bloom filter such that it can rapidly detect the absence of the row-key. In other words, only when the bloom filter returns positive will the system be doing a detail lookup within the SSTable. Periodic Data Compaction: As you can imagine, it can be quite inefficient for the read operation when there are too many SSTables scattering around. Therefore, the system periodically merge the SSTable. Notice that since each of the SSTable is individually sorted by key, a simple "merge sort" is sufficient to merge multiple SSTable into one. The merge mechanism is based on a logarithm property where two SSTable of the same size will be merge into a single SSTable will doubling the size. Therefore the number of SSTable is proportion to O(logN) where N is the number of rows. HBASE: Based on the BigTable, HBase uses the Hadoop Filesystem (HDFS) as its data storage engine. The advantage of this approach is then HBase doesn't need to worry about data replication, data consistency and resiliency because HDFS has handled it already. Of course, the downside is that it is also constrained by the characteristics of HDFS, which is not optimized for random read access. In addition, there will be an extra network latency between the DB server to the File server (which is the data node of Hadoop). In the HBase architecture, data is stored in a farm of Region Servers. The "keyto-server" mapping is needed to locate the corresponding server and this mapping is stored as a "Table" similar to other user data table. Before a client do any DB operation, it needs to first locate the corresponding region server. 1. The client contacts a predefined Master server who replies the endpoint of a region server that holds a "Root Region" table. 2. The client contacts the region server who replies the endpoint of a second region server who holds a "Meta Region" table, which contains a mapping from "user table" to "region server". 3. The client contacts this second region

6 server, passing along the user table name. This second region server will lookup its meta region and reply an endpoint of a third region server who holds a "User Region", which contains a mapping from "key range" to "region server" 4. The client contacts this third region server, passing along the row key that it wants to lookup. This third region server will lookup its user region and replies the endpoint of a fourth region server who holds the data that the client is looking for. 5. Client will cache the result along this process so subsequent request doesn't need to go through this multi-step process again to resolve the corresponding endpoint. In Hbase, the in-memory data storage (what we refer to as "Memtable" in above paragraph) is implemented in Memcache. The on-disk data storage (what we refer to as "SSTable" in above paragraph) is implemented as a HDFS file residing in Hadoop data node server. The Log file is also stored as an HDFS file. (I feel storing a transaction log file remotely will hurt performance) Also in the HBase architecture, there is a special machine playing the "role of master" that monitors and coordinates the activities of all region servers (the heavyduty worker node). The master node is the single point of failure at this moment. CASSANDRA: Cassandra is open sourced by Facebook in July This original version of Cassandra was written primarily by an exemployee from Amazon and one from Microsoft. It was strongly influenced by Dynamo, Amazon s pioneering distributed key/value database. Based on the BigTable model, Cassandra uses the DHT model to partition its data. Consistent Hashing via O(1) DHT: Each machine (node) is associated with a particular id that is distributed in a keyspace (e.g. 128 bit). All the data element is also associated with a key (in the same key space). The server owns all the data whose key lies between its id and the preceding server's id. Data is also replicated across multiple servers. Cassandra offers multiple replication schema including storing the replicas in neighbor servers (whose id succeed the server owning the data), or a rack-aware strategy by storing the replicas in a physical location. The simple partition strategy is as follows. Tunable Consistency Level: Unlike Hbase, Cassandra allows you to choose the consistency level that is suitable to your application, so you can gain more scalability if willing to tradeoff some data consistency. For example, it allows you to choose how many ACK to receive from different replicas before considering a WRITE to be successful. Similarly, you can choose how many replicas response to be received in the case of READ before return the result to the client. By choosing the appropriate number for W and R response, you can choose the level of

7 consistency you like. For example, to achieve Strict Consistency, we just need to pick W, R such that W + R > N. This including the possibility of (W = one and R = all), (R = one and W = all), (W = quorum and R = quorum). Of course, if you don't need strict consistency, you can even choose a smaller value for W and R and gain a bigger availability. Regardless of what consistency level you choose, the data will be eventual consistent by the "hinted handoff", "read repair" and "anti-entropy sync" mechanism described below. Hinted Handoff: The client performs a write by send the request to any Cassandra node, which will act as the proxy to the client. This proxy node will located N corresponding nodes that holds the data replicas and forward the write request to all of them. In case any node is failed, it will pick a random node as a handoff node and write the request with a hint telling it to forward the write request back to the failed node after it recovers. The handoff node will then periodically check for the recovery of the failed node and forward the write to it. Therefore, the original node will eventually receive all the write request. Conflict Resolution: Since write can reach different replica, the corresponding timestamp of the data is used to resolve conflict, in other words, the latest timestamp wins and push the earlier timestamps into an earlier version (they are not lost) Read Repair: When the client performs a "read", the proxy node will issue N reads but only wait for R copies of responses and return the one with the latest version. In case some nodes respond with an older version, the proxy node will send the latest version to them asynchronously; hence these left-behind nodes will still eventually catch up with the latest version. Anti-Entropy data sync : To ensure the data is still in sync even there is no READ and WRITE occurs to the data, replica nodes periodically gossip with each other to figure out if anyone out of sync. For each key range of data, each member in the replica group compute a Merkel tree (a hash encoding tree where the difference can be located quickly) and send it to other neighbors. By comparing the received Merkel tree with its own tree, each member can quickly determine which data portion is out of sync. If so, it will send the diff to the left-behind members. Anti-entropy is the "catch-all" way to guarantee eventual consistency, but is also pretty expensive and therefore is not done frequently. By combining the data sync with read repair and hinted handoff, we can keep the replicas pretty up-to-date. Hbase Vs Cassandra: Cassandra in the following way. Finally, we can compare Hbase versus

8 Cassandra HBase Written In: Java JAVA Main Point: Best of BigTable and Dynamo Billions of rows and X millions of columns License: Apache Apache Protocol: Custom, Binary (Thrift ) HTTP/ REST (also Thrift ) Trade Off: Tunable trade-off for Modeled after BigTable distribution and replication( Map / reduce with Hadoop N, R, W ) Query prediction push down Querying by column,range of keys via server side scan and get filters. BigTable-like features: Optimizations for real time columns, column families queries. Writes are much faster than A high performance Thrift reads gateway Map / reduce possible with HTTP supports XML, Apache Hadoop. Protobuf and Binary I admit being a bit biased Cascading, hive, and pig against it, because of the source and sink modules. bloat and complexity it has Jruby-based (JIRB) shell partly because of Java ( No single point of failure Configuration, seeing Rolling restart for exceptions, etc) configuration changes and minor upgrades. Random access performance is like MySQL Best Used: When you write more than you read. If every component of the system must be in Java. Example Banking, Financial industry. Writes are faster than reads, so one natural niche is real time data analysis. If you are in love with BigTable. And when you need random, realtime read/ write access to your Big Data. Facebook Messaging Database CONCLUSION: This paper has provided and introduction to NoSQL and fundamental distributed system principals on which it is based. The concept of BigTable Model has been discussed in detailed along with its usage in Cassandra and Hbase. We have also seen the

9 differences between Cassandra and Hbase and their usage. nosql-databases-part-1-landscape.html> March 9th, on [5] Jeffery Dean et. al. (2006). Bigtable: A Distributed Storage System for Structured Data. REFERENCES: [1] O Reilly Cassandra- The Definitive Guide by Eben Hewitt. [2] Wikipedia (2010). Social media [www]. Retrieved from 2004/PODC-keynote.pdf> on April 27th, < [7] Cassandra Wiki (2010). Hinted Handoff. on March 9th, Retrieved from [3] The NoSQL Community (2010). NoSQL Databases [www]. Retrieved from < on April 19th, [4] Vineet Gupta (2010). NoSql Databases - Landscape [www]. Retrieved In Proceedings of OSDI 2006, Seattle, WA. [6] Brewer, E. (2004). Towards Robust Distributed Systems [www]. Retrieved from < off> on May 2nd, [8] Eure, I. (2009). Looking to the future with Cassandra. Retrieved from <http: //about.digg.com/blog/looking-futurecassandra> on May 2nd, from< [9] Chang, et al. (2006). Bigtable: A Distributed Storage System for Structured Data [10] ^ Powered By HBase [11] Hbase Vs Cassandra: NoSQL Battle [12] Cassandra and HBase Compared [13] Learning NoSQL from Twitter s Experience

CISC 7610 Lecture 2b The beginnings of NoSQL

CISC 7610 Lecture 2b The beginnings of NoSQL CISC 7610 Lecture 2b The beginnings of NoSQL Topics: Big Data Google s infrastructure Hadoop: open google infrastructure Scaling through sharding CAP theorem Amazon s Dynamo 5 V s of big data Everyone

More information

CS 655 Advanced Topics in Distributed Systems

CS 655 Advanced Topics in Distributed Systems Presented by : Walid Budgaga CS 655 Advanced Topics in Distributed Systems Computer Science Department Colorado State University 1 Outline Problem Solution Approaches Comparison Conclusion 2 Problem 3

More information

Big Data Infrastructure CS 489/698 Big Data Infrastructure (Winter 2017)

Big Data Infrastructure CS 489/698 Big Data Infrastructure (Winter 2017) Big Data Infrastructure CS 489/698 Big Data Infrastructure (Winter 2017) Week 10: Mutable State (1/2) March 14, 2017 Jimmy Lin David R. Cheriton School of Computer Science University of Waterloo These

More information

CSE 544 Principles of Database Management Systems. Magdalena Balazinska Winter 2015 Lecture 14 NoSQL

CSE 544 Principles of Database Management Systems. Magdalena Balazinska Winter 2015 Lecture 14 NoSQL CSE 544 Principles of Database Management Systems Magdalena Balazinska Winter 2015 Lecture 14 NoSQL References Scalable SQL and NoSQL Data Stores, Rick Cattell, SIGMOD Record, December 2010 (Vol. 39, No.

More information

Cassandra- A Distributed Database

Cassandra- A Distributed Database Cassandra- A Distributed Database Tulika Gupta Department of Information Technology Poornima Institute of Engineering and Technology Jaipur, Rajasthan, India Abstract- A relational database is a traditional

More information

Distributed File Systems II

Distributed File Systems II Distributed File Systems II To do q Very-large scale: Google FS, Hadoop FS, BigTable q Next time: Naming things GFS A radically new environment NFS, etc. Independence Small Scale Variety of workloads Cooperation

More information

NoSQL systems. Lecture 21 (optional) Instructor: Sudeepa Roy. CompSci 516 Data Intensive Computing Systems

NoSQL systems. Lecture 21 (optional) Instructor: Sudeepa Roy. CompSci 516 Data Intensive Computing Systems CompSci 516 Data Intensive Computing Systems Lecture 21 (optional) NoSQL systems Instructor: Sudeepa Roy Duke CS, Spring 2016 CompSci 516: Data Intensive Computing Systems 1 Key- Value Stores Duke CS,

More information

Goal of the presentation is to give an introduction of NoSQL databases, why they are there.

Goal of the presentation is to give an introduction of NoSQL databases, why they are there. 1 Goal of the presentation is to give an introduction of NoSQL databases, why they are there. We want to present "Why?" first to explain the need of something like "NoSQL" and then in "What?" we go in

More information

PROFESSIONAL. NoSQL. Shashank Tiwari WILEY. John Wiley & Sons, Inc.

PROFESSIONAL. NoSQL. Shashank Tiwari WILEY. John Wiley & Sons, Inc. PROFESSIONAL NoSQL Shashank Tiwari WILEY John Wiley & Sons, Inc. Examining CONTENTS INTRODUCTION xvil CHAPTER 1: NOSQL: WHAT IT IS AND WHY YOU NEED IT 3 Definition and Introduction 4 Context and a Bit

More information

CS November 2017

CS November 2017 Bigtable Highly available distributed storage Distributed Systems 18. Bigtable Built with semi-structured data in mind URLs: content, metadata, links, anchors, page rank User data: preferences, account

More information

Cassandra Design Patterns

Cassandra Design Patterns Cassandra Design Patterns Sanjay Sharma Chapter No. 1 "An Overview of Architecture and Data Modeling in Cassandra" In this package, you will find: A Biography of the author of the book A preview chapter

More information

Extreme Computing. NoSQL.

Extreme Computing. NoSQL. Extreme Computing NoSQL PREVIOUSLY: BATCH Query most/all data Results Eventually NOW: ON DEMAND Single Data Points Latency Matters One problem, three ideas We want to keep track of mutable state in a scalable

More information

NoSQL Databases. Amir H. Payberah. Swedish Institute of Computer Science. April 10, 2014

NoSQL Databases. Amir H. Payberah. Swedish Institute of Computer Science. April 10, 2014 NoSQL Databases Amir H. Payberah Swedish Institute of Computer Science amir@sics.se April 10, 2014 Amir H. Payberah (SICS) NoSQL Databases April 10, 2014 1 / 67 Database and Database Management System

More information

Typical size of data you deal with on a daily basis

Typical size of data you deal with on a daily basis Typical size of data you deal with on a daily basis Processes More than 161 Petabytes of raw data a day https://aci.info/2014/07/12/the-dataexplosion-in-2014-minute-by-minuteinfographic/ On average, 1MB-2MB

More information

Rule 14 Use Databases Appropriately

Rule 14 Use Databases Appropriately Rule 14 Use Databases Appropriately Rule 14: What, When, How, and Why What: Use relational databases when you need ACID properties to maintain relationships between your data. For other data storage needs

More information

CS November 2018

CS November 2018 Bigtable Highly available distributed storage Distributed Systems 19. Bigtable Built with semi-structured data in mind URLs: content, metadata, links, anchors, page rank User data: preferences, account

More information

CompSci 516 Database Systems

CompSci 516 Database Systems CompSci 516 Database Systems Lecture 20 NoSQL and Column Store Instructor: Sudeepa Roy Duke CS, Fall 2018 CompSci 516: Database Systems 1 Reading Material NOSQL: Scalable SQL and NoSQL Data Stores Rick

More information

10. Replication. Motivation

10. Replication. Motivation 10. Replication Page 1 10. Replication Motivation Reliable and high-performance computation on a single instance of a data object is prone to failure. Replicate data to overcome single points of failure

More information

Distributed Data Store

Distributed Data Store Distributed Data Store Large-Scale Distributed le system Q: What if we have too much data to store in a single machine? Q: How can we create one big filesystem over a cluster of machines, whose data is

More information

Bigtable. A Distributed Storage System for Structured Data. Presenter: Yunming Zhang Conglong Li. Saturday, September 21, 13

Bigtable. A Distributed Storage System for Structured Data. Presenter: Yunming Zhang Conglong Li. Saturday, September 21, 13 Bigtable A Distributed Storage System for Structured Data Presenter: Yunming Zhang Conglong Li References SOCC 2010 Key Note Slides Jeff Dean Google Introduction to Distributed Computing, Winter 2008 University

More information

Big Data Infrastructure CS 489/698 Big Data Infrastructure (Winter 2016)

Big Data Infrastructure CS 489/698 Big Data Infrastructure (Winter 2016) Big Data Infrastructure CS 489/698 Big Data Infrastructure (Winter 2016) Week 10: Mutable State (1/2) March 15, 2016 Jimmy Lin David R. Cheriton School of Computer Science University of Waterloo These

More information

Bigtable: A Distributed Storage System for Structured Data By Fay Chang, et al. OSDI Presented by Xiang Gao

Bigtable: A Distributed Storage System for Structured Data By Fay Chang, et al. OSDI Presented by Xiang Gao Bigtable: A Distributed Storage System for Structured Data By Fay Chang, et al. OSDI 2006 Presented by Xiang Gao 2014-11-05 Outline Motivation Data Model APIs Building Blocks Implementation Refinement

More information

CSE 444: Database Internals. Lectures 26 NoSQL: Extensible Record Stores

CSE 444: Database Internals. Lectures 26 NoSQL: Extensible Record Stores CSE 444: Database Internals Lectures 26 NoSQL: Extensible Record Stores CSE 444 - Spring 2014 1 References Scalable SQL and NoSQL Data Stores, Rick Cattell, SIGMOD Record, December 2010 (Vol. 39, No. 4)

More information

Tools for Social Networking Infrastructures

Tools for Social Networking Infrastructures Tools for Social Networking Infrastructures 1 Cassandra - a decentralised structured storage system Problem : Facebook Inbox Search hundreds of millions of users distributed infrastructure inbox changes

More information

Axway API Management 7.5.x Cassandra Best practices. #axway

Axway API Management 7.5.x Cassandra Best practices. #axway Axway API Management 7.5.x Cassandra Best practices #axway Axway API Management 7.5.x Cassandra Best practices Agenda Apache Cassandra - Overview Apache Cassandra - Focus on consistency level Apache Cassandra

More information

ΕΠΛ 602:Foundations of Internet Technologies. Cloud Computing

ΕΠΛ 602:Foundations of Internet Technologies. Cloud Computing ΕΠΛ 602:Foundations of Internet Technologies Cloud Computing 1 Outline Bigtable(data component of cloud) Web search basedonch13of thewebdatabook 2 What is Cloud Computing? ACloudis an infrastructure, transparent

More information

CSE-E5430 Scalable Cloud Computing Lecture 9

CSE-E5430 Scalable Cloud Computing Lecture 9 CSE-E5430 Scalable Cloud Computing Lecture 9 Keijo Heljanko Department of Computer Science School of Science Aalto University keijo.heljanko@aalto.fi 15.11-2015 1/24 BigTable Described in the paper: Fay

More information

Introduction to Computer Science. William Hsu Department of Computer Science and Engineering National Taiwan Ocean University

Introduction to Computer Science. William Hsu Department of Computer Science and Engineering National Taiwan Ocean University Introduction to Computer Science William Hsu Department of Computer Science and Engineering National Taiwan Ocean University Chapter 9: Database Systems supplementary - nosql You can have data without

More information

Comparing SQL and NOSQL databases

Comparing SQL and NOSQL databases COSC 6397 Big Data Analytics Data Formats (II) HBase Edgar Gabriel Spring 2014 Comparing SQL and NOSQL databases Types Development History Data Storage Model SQL One type (SQL database) with minor variations

More information

Advanced Database Technologies NoSQL: Not only SQL

Advanced Database Technologies NoSQL: Not only SQL Advanced Database Technologies NoSQL: Not only SQL Christian Grün Database & Information Systems Group NoSQL Introduction 30, 40 years history of well-established database technology all in vain? Not at

More information

Big Data Development CASSANDRA NoSQL Training - Workshop. November 20 to (5 days) 9 am to 5 pm HOTEL DUBAI GRAND DUBAI

Big Data Development CASSANDRA NoSQL Training - Workshop. November 20 to (5 days) 9 am to 5 pm HOTEL DUBAI GRAND DUBAI Big Data Development CASSANDRA NoSQL Training - Workshop November 20 to 24 2016 (5 days) 9 am to 5 pm HOTEL DUBAI GRAND DUBAI ISIDUS TECH TEAM FZE PO Box 9798 Dubai UAE, email training-coordinator@isidusnet

More information

ADVANCED DATABASES CIS 6930 Dr. Markus Schneider

ADVANCED DATABASES CIS 6930 Dr. Markus Schneider ADVANCED DATABASES CIS 6930 Dr. Markus Schneider Group 2 Archana Nagarajan, Krishna Ramesh, Raghav Ravishankar, Satish Parasaram Drawbacks of RDBMS Replication Lag Master Slave Vertical Scaling. ACID doesn

More information

CISC 7610 Lecture 5 Distributed multimedia databases. Topics: Scaling up vs out Replication Partitioning CAP Theorem NoSQL NewSQL

CISC 7610 Lecture 5 Distributed multimedia databases. Topics: Scaling up vs out Replication Partitioning CAP Theorem NoSQL NewSQL CISC 7610 Lecture 5 Distributed multimedia databases Topics: Scaling up vs out Replication Partitioning CAP Theorem NoSQL NewSQL Motivation YouTube receives 400 hours of video per minute That is 200M hours

More information

Cassandra, MongoDB, and HBase. Cassandra, MongoDB, and HBase. I have chosen these three due to their recent

Cassandra, MongoDB, and HBase. Cassandra, MongoDB, and HBase. I have chosen these three due to their recent Tanton Jeppson CS 401R Lab 3 Cassandra, MongoDB, and HBase Introduction For my report I have chosen to take a deeper look at 3 NoSQL database systems: Cassandra, MongoDB, and HBase. I have chosen these

More information

Jargons, Concepts, Scope and Systems. Key Value Stores, Document Stores, Extensible Record Stores. Overview of different scalable relational systems

Jargons, Concepts, Scope and Systems. Key Value Stores, Document Stores, Extensible Record Stores. Overview of different scalable relational systems Jargons, Concepts, Scope and Systems Key Value Stores, Document Stores, Extensible Record Stores Overview of different scalable relational systems Examples of different Data stores Predictions, Comparisons

More information

Big Data Analytics. Rasoul Karimi

Big Data Analytics. Rasoul Karimi Big Data Analytics Rasoul Karimi Information Systems and Machine Learning Lab (ISMLL) Institute of Computer Science University of Hildesheim, Germany Big Data Analytics Big Data Analytics 1 / 1 Outline

More information

Spotify. Scaling storage to million of users world wide. Jimmy Mårdell October 14, 2014

Spotify. Scaling storage to million of users world wide. Jimmy Mårdell October 14, 2014 Cassandra @ Spotify Scaling storage to million of users world wide! Jimmy Mårdell October 14, 2014 2 About me Jimmy Mårdell Tech Product Owner in the Cassandra team 4 years at Spotify

More information

Introduction to Distributed Data Systems

Introduction to Distributed Data Systems Introduction to Distributed Data Systems Serge Abiteboul Ioana Manolescu Philippe Rigaux Marie-Christine Rousset Pierre Senellart Web Data Management and Distribution http://webdam.inria.fr/textbook January

More information

Outline. Introduction Background Use Cases Data Model & Query Language Architecture Conclusion

Outline. Introduction Background Use Cases Data Model & Query Language Architecture Conclusion Outline Introduction Background Use Cases Data Model & Query Language Architecture Conclusion Cassandra Background What is Cassandra? Open-source database management system (DBMS) Several key features

More information

A BigData Tour HDFS, Ceph and MapReduce

A BigData Tour HDFS, Ceph and MapReduce A BigData Tour HDFS, Ceph and MapReduce These slides are possible thanks to these sources Jonathan Drusi - SCInet Toronto Hadoop Tutorial, Amir Payberah - Course in Data Intensive Computing SICS; Yahoo!

More information

Migrating to Cassandra in the Cloud, the Netflix Way

Migrating to Cassandra in the Cloud, the Netflix Way Migrating to Cassandra in the Cloud, the Netflix Way Jason Brown - @jasobrown Senior Software Engineer, Netflix Tech History, 1998-2008 In the beginning, there was the webapp and a single database in a

More information

Performance Analysis of Hbase

Performance Analysis of Hbase Performance Analysis of Hbase Neseeba P.B, Dr. Zahid Ansari Department of Computer Science & Engineering, P. A. College of Engineering, Mangalore, 574153, India Abstract Hbase is a distributed column-oriented

More information

Federated Array of Bricks Y Saito et al HP Labs. CS 6464 Presented by Avinash Kulkarni

Federated Array of Bricks Y Saito et al HP Labs. CS 6464 Presented by Avinash Kulkarni Federated Array of Bricks Y Saito et al HP Labs CS 6464 Presented by Avinash Kulkarni Agenda Motivation Current Approaches FAB Design Protocols, Implementation, Optimizations Evaluation SSDs in enterprise

More information

Why NoSQL? Why Riak?

Why NoSQL? Why Riak? Why NoSQL? Why Riak? Justin Sheehy justin@basho.com 1 What's all of this NoSQL nonsense? Riak Voldemort HBase MongoDB Neo4j Cassandra CouchDB Membase Redis (and the list goes on...) 2 What went wrong with

More information

Bigtable. Presenter: Yijun Hou, Yixiao Peng

Bigtable. Presenter: Yijun Hou, Yixiao Peng Bigtable Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C. Hsieh, Deborah A. Wallach Mike Burrows, Tushar Chandra, Andrew Fikes, Robert E. Gruber Google, Inc. OSDI 06 Presenter: Yijun Hou, Yixiao Peng

More information

BigTable: A Distributed Storage System for Structured Data

BigTable: A Distributed Storage System for Structured Data BigTable: A Distributed Storage System for Structured Data Amir H. Payberah amir@sics.se Amirkabir University of Technology (Tehran Polytechnic) Amir H. Payberah (Tehran Polytechnic) BigTable 1393/7/26

More information

Cassandra - A Decentralized Structured Storage System. Avinash Lakshman and Prashant Malik Facebook

Cassandra - A Decentralized Structured Storage System. Avinash Lakshman and Prashant Malik Facebook Cassandra - A Decentralized Structured Storage System Avinash Lakshman and Prashant Malik Facebook Agenda Outline Data Model System Architecture Implementation Experiments Outline Extension of Bigtable

More information

CIB Session 12th NoSQL Databases Structures

CIB Session 12th NoSQL Databases Structures CIB Session 12th NoSQL Databases Structures By: Shahab Safaee & Morteza Zahedi Software Engineering PhD Email: safaee.shx@gmail.com, morteza.zahedi.a@gmail.com cibtrc.ir cibtrc cibtrc 2 Agenda What is

More information

MapReduce and Friends

MapReduce and Friends MapReduce and Friends Craig C. Douglas University of Wyoming with thanks to Mookwon Seo Why was it invented? MapReduce is a mergesort for large distributed memory computers. It was the basis for a web

More information

Ghislain Fourny. Big Data 5. Column stores

Ghislain Fourny. Big Data 5. Column stores Ghislain Fourny Big Data 5. Column stores 1 Introduction 2 Relational model 3 Relational model Schema 4 Issues with relational databases (RDBMS) Small scale Single machine 5 Can we fix a RDBMS? Scale up

More information

/ Cloud Computing. Recitation 10 March 22nd, 2016

/ Cloud Computing. Recitation 10 March 22nd, 2016 15-319 / 15-619 Cloud Computing Recitation 10 March 22nd, 2016 Overview Administrative issues Office Hours, Piazza guidelines Last week s reflection Project 3.3, OLI Unit 4, Module 15, Quiz 8 This week

More information

Understanding NoSQL Database Implementations

Understanding NoSQL Database Implementations Understanding NoSQL Database Implementations Sadalage and Fowler, Chapters 7 11 Class 07: Understanding NoSQL Database Implementations 1 Foreword NoSQL is a broad and diverse collection of technologies.

More information

References. What is Bigtable? Bigtable Data Model. Outline. Key Features. CSE 444: Database Internals

References. What is Bigtable? Bigtable Data Model. Outline. Key Features. CSE 444: Database Internals References CSE 444: Database Internals Scalable SQL and NoSQL Data Stores, Rick Cattell, SIGMOD Record, December 2010 (Vol 39, No 4) Lectures 26 NoSQL: Extensible Record Stores Bigtable: A Distributed

More information

4. Managing Big Data. Cloud Computing & Big Data MASTER ENGINYERIA INFORMÀTICA FIB/UPC. Fall Jordi Torres, UPC - BSC

4. Managing Big Data. Cloud Computing & Big Data MASTER ENGINYERIA INFORMÀTICA FIB/UPC. Fall Jordi Torres, UPC - BSC 4. Managing Big Data Cloud Computing & Big Data MASTER ENGINYERIA INFORMÀTICA FIB/UPC Fall - 2013 Jordi Torres, UPC - BSC www.jorditorres.eu Slides are only for presentation guide We will discuss+debate

More information

Challenges for Data Driven Systems

Challenges for Data Driven Systems Challenges for Data Driven Systems Eiko Yoneki University of Cambridge Computer Laboratory Data Centric Systems and Networking Emergence of Big Data Shift of Communication Paradigm From end-to-end to data

More information

Data Informatics. Seon Ho Kim, Ph.D.

Data Informatics. Seon Ho Kim, Ph.D. Data Informatics Seon Ho Kim, Ph.D. seonkim@usc.edu HBase HBase is.. A distributed data store that can scale horizontally to 1,000s of commodity servers and petabytes of indexed storage. Designed to operate

More information

SCALABLE CONSISTENCY AND TRANSACTION MODELS

SCALABLE CONSISTENCY AND TRANSACTION MODELS Data Management in the Cloud SCALABLE CONSISTENCY AND TRANSACTION MODELS 69 Brewer s Conjecture Three properties that are desirable and expected from realworld shared-data systems C: data consistency A:

More information

Bigtable: A Distributed Storage System for Structured Data. Andrew Hon, Phyllis Lau, Justin Ng

Bigtable: A Distributed Storage System for Structured Data. Andrew Hon, Phyllis Lau, Justin Ng Bigtable: A Distributed Storage System for Structured Data Andrew Hon, Phyllis Lau, Justin Ng What is Bigtable? - A storage system for managing structured data - Used in 60+ Google services - Motivation:

More information

BigTable. Chubby. BigTable. Chubby. Why Chubby? How to do consensus as a service

BigTable. Chubby. BigTable. Chubby. Why Chubby? How to do consensus as a service BigTable BigTable Doug Woos and Tom Anderson In the early 2000s, Google had way more than anybody else did Traditional bases couldn t scale Want something better than a filesystem () BigTable optimized

More information

10 Million Smart Meter Data with Apache HBase

10 Million Smart Meter Data with Apache HBase 10 Million Smart Meter Data with Apache HBase 5/31/2017 OSS Solution Center Hitachi, Ltd. Masahiro Ito OSS Summit Japan 2017 Who am I? Masahiro Ito ( 伊藤雅博 ) Software Engineer at Hitachi, Ltd. Focus on

More information

Haridimos Kondylakis Computer Science Department, University of Crete

Haridimos Kondylakis Computer Science Department, University of Crete CS-562 Advanced Topics in Databases Haridimos Kondylakis Computer Science Department, University of Crete QSX (LN2) 2 NoSQL NoSQL: Not Only SQL. User case of NoSQL? Massive write performance. Fast key

More information

Cassandra 1.0 and Beyond

Cassandra 1.0 and Beyond Cassandra 1.0 and Beyond Jake Luciani, DataStax jake@datastax.com, 11/11/11 1 About me http://twitter.com/tjake Cassandra Committer Thrift PMC Early DataStax employee Ex-Wall St. (happily) Job Trends from

More information

NOSQL EGCO321 DATABASE SYSTEMS KANAT POOLSAWASD DEPARTMENT OF COMPUTER ENGINEERING MAHIDOL UNIVERSITY

NOSQL EGCO321 DATABASE SYSTEMS KANAT POOLSAWASD DEPARTMENT OF COMPUTER ENGINEERING MAHIDOL UNIVERSITY NOSQL EGCO321 DATABASE SYSTEMS KANAT POOLSAWASD DEPARTMENT OF COMPUTER ENGINEERING MAHIDOL UNIVERSITY WHAT IS NOSQL? Stands for No-SQL or Not Only SQL. Class of non-relational data storage systems E.g.

More information

Overview. * Some History. * What is NoSQL? * Why NoSQL? * RDBMS vs NoSQL. * NoSQL Taxonomy. *TowardsNewSQL

Overview. * Some History. * What is NoSQL? * Why NoSQL? * RDBMS vs NoSQL. * NoSQL Taxonomy. *TowardsNewSQL * Some History * What is NoSQL? * Why NoSQL? * RDBMS vs NoSQL * NoSQL Taxonomy * Towards NewSQL Overview * Some History * What is NoSQL? * Why NoSQL? * RDBMS vs NoSQL * NoSQL Taxonomy *TowardsNewSQL NoSQL

More information

CSE 344 JULY 9 TH NOSQL

CSE 344 JULY 9 TH NOSQL CSE 344 JULY 9 TH NOSQL ADMINISTRATIVE MINUTIAE HW3 due Wednesday tests released actual_time should have 0s not NULLs upload new data file or use UPDATE to change 0 ~> NULL Extra OOs on Mondays 5-7pm in

More information

Big Data Processing Technologies. Chentao Wu Associate Professor Dept. of Computer Science and Engineering

Big Data Processing Technologies. Chentao Wu Associate Professor Dept. of Computer Science and Engineering Big Data Processing Technologies Chentao Wu Associate Professor Dept. of Computer Science and Engineering wuct@cs.sjtu.edu.cn Schedule (1) Storage system part (first eight weeks) lec1: Introduction on

More information

Big Table. Google s Storage Choice for Structured Data. Presented by Group E - Dawei Yang - Grace Ramamoorthy - Patrick O Sullivan - Rohan Singla

Big Table. Google s Storage Choice for Structured Data. Presented by Group E - Dawei Yang - Grace Ramamoorthy - Patrick O Sullivan - Rohan Singla Big Table Google s Storage Choice for Structured Data Presented by Group E - Dawei Yang - Grace Ramamoorthy - Patrick O Sullivan - Rohan Singla Bigtable: Introduction Resembles a database. Does not support

More information

Distributed Data Management Replication

Distributed Data Management Replication Felix Naumann F-2.03/F-2.04, Campus II Hasso Plattner Institut Distributing Data Motivation Scalability (Elasticity) If data volume, processing, or access exhausts one machine, you might want to spread

More information

Horizontal or vertical scalability? Horizontal scaling is challenging. Today. Scaling Out Key-Value Storage

Horizontal or vertical scalability? Horizontal scaling is challenging. Today. Scaling Out Key-Value Storage Horizontal or vertical scalability? Scaling Out Key-Value Storage COS 418: Distributed Systems Lecture 8 Kyle Jamieson Vertical Scaling Horizontal Scaling [Selected content adapted from M. Freedman, B.

More information

Presented by Sunnie S Chung CIS 612

Presented by Sunnie S Chung CIS 612 By Yasin N. Silva, Arizona State University Presented by Sunnie S Chung CIS 612 This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. See http://creativecommons.org/licenses/by-nc-sa/4.0/

More information

June 20, 2017 Revision NoSQL Database Architectural Comparison

June 20, 2017 Revision NoSQL Database Architectural Comparison June 20, 2017 Revision 0.07 NoSQL Database Architectural Comparison Table of Contents Executive Summary... 1 Introduction... 2 Cluster Topology... 4 Consistency Model... 6 Replication Strategy... 8 Failover

More information

BigTable. CSE-291 (Cloud Computing) Fall 2016

BigTable. CSE-291 (Cloud Computing) Fall 2016 BigTable CSE-291 (Cloud Computing) Fall 2016 Data Model Sparse, distributed persistent, multi-dimensional sorted map Indexed by a row key, column key, and timestamp Values are uninterpreted arrays of bytes

More information

Dynamo: Amazon s Highly Available Key-Value Store

Dynamo: Amazon s Highly Available Key-Value Store Dynamo: Amazon s Highly Available Key-Value Store DeCandia et al. Amazon.com Presented by Sushil CS 5204 1 Motivation A storage system that attains high availability, performance and durability Decentralized

More information

Shen PingCAP 2017

Shen PingCAP 2017 Shen Li @ PingCAP About me Shen Li ( 申砾 ) Tech Lead of TiDB, VP of Engineering Netease / 360 / PingCAP Infrastructure software engineer WHY DO WE NEED A NEW DATABASE? Brief History Standalone RDBMS NoSQL

More information

Scylla Open Source 3.0

Scylla Open Source 3.0 SCYLLADB PRODUCT OVERVIEW Scylla Open Source 3.0 Scylla is an open source NoSQL database that offers the horizontal scale-out and fault-tolerance of Apache Cassandra, but delivers 10X the throughput and

More information

CSE 544 Principles of Database Management Systems. Magdalena Balazinska Winter 2009 Lecture 12 Google Bigtable

CSE 544 Principles of Database Management Systems. Magdalena Balazinska Winter 2009 Lecture 12 Google Bigtable CSE 544 Principles of Database Management Systems Magdalena Balazinska Winter 2009 Lecture 12 Google Bigtable References Bigtable: A Distributed Storage System for Structured Data. Fay Chang et. al. OSDI

More information

We are ready to serve Latest Testing Trends, Are you ready to learn?? New Batches Info

We are ready to serve Latest Testing Trends, Are you ready to learn?? New Batches Info We are ready to serve Latest Testing Trends, Are you ready to learn?? New Batches Info START DATE : TIMINGS : DURATION : TYPE OF BATCH : FEE : FACULTY NAME : LAB TIMINGS : PH NO: 9963799240, 040-40025423

More information

Outline. Spanner Mo/va/on. Tom Anderson

Outline. Spanner Mo/va/on. Tom Anderson Spanner Mo/va/on Tom Anderson Outline Last week: Chubby: coordina/on service BigTable: scalable storage of structured data GFS: large- scale storage for bulk data Today/Friday: Lessons from GFS/BigTable

More information

8/24/2017 Week 1-B Instructor: Sangmi Lee Pallickara

8/24/2017 Week 1-B Instructor: Sangmi Lee Pallickara Week 1-B-0 Week 1-B-1 CS535 BIG DATA FAQs Slides are available on the course web Wait list Term project topics PART 0. INTRODUCTION 2. DATA PROCESSING PARADIGMS FOR BIG DATA Sangmi Lee Pallickara Computer

More information

Scaling Up HBase. Duen Horng (Polo) Chau Assistant Professor Associate Director, MS Analytics Georgia Tech. CSE6242 / CX4242: Data & Visual Analytics

Scaling Up HBase. Duen Horng (Polo) Chau Assistant Professor Associate Director, MS Analytics Georgia Tech. CSE6242 / CX4242: Data & Visual Analytics http://poloclub.gatech.edu/cse6242 CSE6242 / CX4242: Data & Visual Analytics Scaling Up HBase Duen Horng (Polo) Chau Assistant Professor Associate Director, MS Analytics Georgia Tech Partly based on materials

More information

10/18/2017. Announcements. NoSQL Motivation. NoSQL. Serverless Architecture. What is the Problem? Database Systems CSE 414

10/18/2017. Announcements. NoSQL Motivation. NoSQL. Serverless Architecture. What is the Problem? Database Systems CSE 414 Announcements Database Systems CSE 414 Lecture 11: NoSQL & JSON (mostly not in textbook only Ch 11.1) HW5 will be posted on Friday and due on Nov. 14, 11pm [No Web Quiz 5] Today s lecture: NoSQL & JSON

More information

Map-Reduce. Marco Mura 2010 March, 31th

Map-Reduce. Marco Mura 2010 March, 31th Map-Reduce Marco Mura (mura@di.unipi.it) 2010 March, 31th This paper is a note from the 2009-2010 course Strumenti di programmazione per sistemi paralleli e distribuiti and it s based by the lessons of

More information

Scaling Out Key-Value Storage

Scaling Out Key-Value Storage Scaling Out Key-Value Storage COS 418: Distributed Systems Logan Stafman [Adapted from K. Jamieson, M. Freedman, B. Karp] Horizontal or vertical scalability? Vertical Scaling Horizontal Scaling 2 Horizontal

More information

big picture parallel db (one data center) mix of OLTP and batch analysis lots of data, high r/w rates, 1000s of cheap boxes thus many failures

big picture parallel db (one data center) mix of OLTP and batch analysis lots of data, high r/w rates, 1000s of cheap boxes thus many failures Lecture 20 -- 11/20/2017 BigTable big picture parallel db (one data center) mix of OLTP and batch analysis lots of data, high r/w rates, 1000s of cheap boxes thus many failures what does paper say Google

More information

DIVING IN: INSIDE THE DATA CENTER

DIVING IN: INSIDE THE DATA CENTER 1 DIVING IN: INSIDE THE DATA CENTER Anwar Alhenshiri Data centers 2 Once traffic reaches a data center it tunnels in First passes through a filter that blocks attacks Next, a router that directs it to

More information

Bigtable: A Distributed Storage System for Structured Data by Google SUNNIE CHUNG CIS 612

Bigtable: A Distributed Storage System for Structured Data by Google SUNNIE CHUNG CIS 612 Bigtable: A Distributed Storage System for Structured Data by Google SUNNIE CHUNG CIS 612 Google Bigtable 2 A distributed storage system for managing structured data that is designed to scale to a very

More information

CS5412: DIVING IN: INSIDE THE DATA CENTER

CS5412: DIVING IN: INSIDE THE DATA CENTER 1 CS5412: DIVING IN: INSIDE THE DATA CENTER Lecture V Ken Birman We ve seen one cloud service 2 Inside a cloud, Dynamo is an example of a service used to make sure that cloud-hosted applications can scale

More information

Scaling for Humongous amounts of data with MongoDB

Scaling for Humongous amounts of data with MongoDB Scaling for Humongous amounts of data with MongoDB Alvin Richards Technical Director, EMEA alvin@10gen.com @jonnyeight alvinonmongodb.com From here... http://bit.ly/ot71m4 ...to here... http://bit.ly/oxcsis

More information

Big Data Hadoop Course Content

Big Data Hadoop Course Content Big Data Hadoop Course Content Topics covered in the training Introduction to Linux and Big Data Virtual Machine ( VM) Introduction/ Installation of VirtualBox and the Big Data VM Introduction to Linux

More information

18-hdfs-gfs.txt Thu Oct 27 10:05: Notes on Parallel File Systems: HDFS & GFS , Fall 2011 Carnegie Mellon University Randal E.

18-hdfs-gfs.txt Thu Oct 27 10:05: Notes on Parallel File Systems: HDFS & GFS , Fall 2011 Carnegie Mellon University Randal E. 18-hdfs-gfs.txt Thu Oct 27 10:05:07 2011 1 Notes on Parallel File Systems: HDFS & GFS 15-440, Fall 2011 Carnegie Mellon University Randal E. Bryant References: Ghemawat, Gobioff, Leung, "The Google File

More information

Intro Cassandra. Adelaide Big Data Meetup.

Intro Cassandra. Adelaide Big Data Meetup. Intro Cassandra Adelaide Big Data Meetup instaclustr.com @Instaclustr Who am I and what do I do? Alex Lourie Worked at Red Hat, Datastax and now Instaclustr We currently manage x10s nodes for various customers,

More information

DEMYSTIFYING BIG DATA WITH RIAK USE CASES. Martin Schneider Basho Technologies!

DEMYSTIFYING BIG DATA WITH RIAK USE CASES. Martin Schneider Basho Technologies! DEMYSTIFYING BIG DATA WITH RIAK USE CASES Martin Schneider Basho Technologies! Agenda Defining Big Data in Regards to Riak A Series of Trade-Offs Use Cases Q & A About Basho & Riak Basho Technologies is

More information

FAQs Snapshots and locks Vector Clock

FAQs Snapshots and locks Vector Clock //08 CS5 Introduction to Big - FALL 08 W.B.0.0 CS5 Introduction to Big //08 CS5 Introduction to Big - FALL 08 W.B. FAQs Snapshots and locks Vector Clock PART. LARGE SCALE DATA STORAGE SYSTEMS NO SQL DATA

More information

relational Relational to Riak Why Move From Relational to Riak? Introduction High Availability Riak At-a-Glance

relational Relational to Riak Why Move From Relational to Riak? Introduction High Availability Riak At-a-Glance WHITEPAPER Relational to Riak relational Introduction This whitepaper looks at why companies choose Riak over a relational database. We focus specifically on availability, scalability, and the / data model.

More information

W b b 2.0. = = Data Ex E pl p o l s o io i n

W b b 2.0. = = Data Ex E pl p o l s o io i n Hypertable Doug Judd Zvents, Inc. Background Web 2.0 = Data Explosion Web 2.0 Mt. Web 2.0 Traditional Tools Don t Scale Well Designed for a single machine Typical scaling solutions ad-hoc manual/static

More information

18-hdfs-gfs.txt Thu Nov 01 09:53: Notes on Parallel File Systems: HDFS & GFS , Fall 2012 Carnegie Mellon University Randal E.

18-hdfs-gfs.txt Thu Nov 01 09:53: Notes on Parallel File Systems: HDFS & GFS , Fall 2012 Carnegie Mellon University Randal E. 18-hdfs-gfs.txt Thu Nov 01 09:53:32 2012 1 Notes on Parallel File Systems: HDFS & GFS 15-440, Fall 2012 Carnegie Mellon University Randal E. Bryant References: Ghemawat, Gobioff, Leung, "The Google File

More information

Ghislain Fourny. Big Data 5. Wide column stores

Ghislain Fourny. Big Data 5. Wide column stores Ghislain Fourny Big Data 5. Wide column stores Data Technology Stack User interfaces Querying Data stores Indexing Processing Validation Data models Syntax Encoding Storage 2 Where we are User interfaces

More information

Hadoop File System S L I D E S M O D I F I E D F R O M P R E S E N T A T I O N B Y B. R A M A M U R T H Y 11/15/2017

Hadoop File System S L I D E S M O D I F I E D F R O M P R E S E N T A T I O N B Y B. R A M A M U R T H Y 11/15/2017 Hadoop File System 1 S L I D E S M O D I F I E D F R O M P R E S E N T A T I O N B Y B. R A M A M U R T H Y Moving Computation is Cheaper than Moving Data Motivation: Big Data! What is BigData? - Google

More information

Dynamo: Key-Value Cloud Storage

Dynamo: Key-Value Cloud Storage Dynamo: Key-Value Cloud Storage Brad Karp UCL Computer Science CS M038 / GZ06 22 nd February 2016 Context: P2P vs. Data Center (key, value) Storage Chord and DHash intended for wide-area peer-to-peer systems

More information

Data Storage in the Cloud

Data Storage in the Cloud Data Storage in the Cloud KHALID ELGAZZAR GOODWIN 531 ELGAZZAR@CS.QUEENSU.CA Outline 1. Distributed File Systems 1.1. Google File System (GFS) 2. NoSQL Data Store 2.1. BigTable Elgazzar - CISC 886 - Fall

More information