Minimum Tree Spanner Problem for Butterfly and Benes Networks

Size: px
Start display at page:

Download "Minimum Tree Spanner Problem for Butterfly and Benes Networks"

Transcription

1 Minimum Tree Spanner Problem for Butterfly and Benes Networks Bharati Rajan, Indra Rajasingh, Department of Mathematics, Loyola College, Chennai 600 0, India Amutha A Department of Mathematics, Loyola College, Chennai 600 0, India amutha_a@yahoo.co.in Paul Manuel Department of Information Science, Kuwait University, Kuwait 060 ABSTRACT The minimum tree spanner problem requires selecting a spanning tree of a fixed interconnection network that minimizes the cost of transmission between each pair of processors over the tree edges. In [8] we developed a technique to solve this problem for all parallel architectures including hypercube, CCC, wrapped butterfly, torus, star graphs which are classified under Cayley graphs. We introduced a new class of graphs called Diametrically Uniform Graphs and we provided a simple, efficient parallel algorithm to decide whether or not a parallel architecture is diametrically uniform. In this paper we consider the class of Butterfly and Benes networks, which are diametrically uniform and we solve the minimum tree spanner problem for this class. Keywords: Parallel architectures, Butterfly and Benes networks, t-spanner, tree t-spanner, minimum tree spanner.. Introduction The design of optimal communication and transportation networks, which satisfy a given set of requirements, has been studied extensively in the literature. We want to find a communication network among the vertices, where the communication delay is measured in terms of the length of a shortest path between the vertices. A desirable communication network is naturally one that minimizes the diameter. To keep the routing protocols simple, often the communication network is restricted to be a spanning tree. When communication takes place only between a specified collection of pairs of vertices, it is natural to minimize the maximum communication delay between vertices that need to communicate. In other words, it becomes necessary to find a spanning tree that connects all given vertices and satisfies their communication requirements with minimum communication links along the spanning tree. A similar situation arises in the field of parallel architecture. When algorithms are executed on a parallel computer, processors are often required to exchange information. It is well known that the overhead associated with this interprocessor communication is the major drawback of parallel computers in which processors are linked by an interconnection network. It is important to find ways to efficiently exchange messages through communication links. A common approach to implement communication algorithms on interconnection networks is to embed spanning trees with special properties on those networks []. The minimum tree spanner problem requires selecting a spanning tree of a network that minimizes the cost of transmission between any two sites over

2 the tree edges. A spanner ζ (T, G) of a spanning tree T of G is defined as ζ(t, G) = max {d T (u, v): (u, v) E(G)} where d T (u, v) denotes the distance between u and v in T. A minimum spanner ζ(g) of G is defined as ζ(g) = min {ζ(t, G): T is a spanning tree of G} A spanning tree T is called a minimum tree spanner, if ζ(t, G) = ζ(g). Equivalently T is a minimum tree spanner if ζ(t, G) ζ(t, G), for all spanning trees T of G. In other words, the minimum tree spanner problem of a graph G is to find a minimum tree spanner of G []. A polynomial time algorithm is available to solve this problem for digraphs [] and directed path graphs []. All the NPcomplete results on the tree t-spanner admissible problem [,, ] hold good for the minimum tree spanner problem. It is also shown that the minimum tree spanner problem is NP-complete for planar graphs []. In the literature the term t-spanner or tree t-spanner refers to a spanning sub graph or a spanning tree. We deviate from the standard notations for convenience. Throughout the paper by the term spanner we mean only the stretch factor and not the spanning subgraph or spanning tree. For each vertex u of a graph G, the maximum distance d(u, v) to any other vertex v of G is called its eccentricity and is denoted by ecc(u). In a graph G, the maximum value of eccentricity of vertices of G is called the diameter of G and is denoted by λ. Let G be a graph with diameter λ. A vertex v of G is said to be diametrically opposite to a vertex u of G, if d G (u, v) = λ. A graph G is said to be a diametrically uniform graph if every vertex of G has at least one diametrically opposite vertex. The set of diametrically opposite vertices of a vertex x in G is denoted by D(x). A graph G is diametrically uniform with λ = if and only if G is complete. Here we consider the diametrically uniform graphs with λ >. The parameter t of a tree t-spanner of a graph is always bounded by λ where λ is the diameter of the graph. The (, λ)- problem [6] is to find graphs with the maximal number of vertices with given constraints on the maximum degree and the diameter λ. A similar question arises in the context of minimum spanner. This problem is to find graphs with given constraints on the minimum spanner ζ(g) = λ or λ. We answer that the minimum spanner of a diametrically uniform graph is as large as twice of its diameter. In [8] we established sufficient conditions for diametrically uniform graphs to have the minimum spanner at least We identified several examples of diametrically uniform graphs and we studied the properties of those graphs. We also derived conditions under which the minimum spanner of diametrically uniform graphs is λ or λ. We devote the next section to recall the definitions and properties of the class of diametrically uniform graphs. We also list [8] a few important results on minimum spanner of diametrically uniform graphs.. Definitions and Properties of Diametrically Uniform Graphs Most of the well-known parallel architectures are diametrically uniform graphs. For example, hypercube, wrapped butterfly, torus and cycle are diametrically uniform graphs. An even Petersen graph P(n, ) is a diametrically uniform graph (Figure (a)) whereas an odd Petersen graph P(n+, ) is not diametrically uniform (Figure (b)).

3 (a) P(,) (b) P(,) Figure : Petersen Graphs Apart from these well-known graph families, one can construct any number of diametrically uniform graphs. See Figure. 6 6 such that (x*, y*) is an edge of G, then ζ(g) Theorem : Let G be a diametrically uniform graph with diameter λ >. If D(x) U D(y) is connected for every edge (x, y) of E(G), then ζ(g) Now we identify a few conditions under which the minimum spanner of a diametrically uniform graph is at most A subgraph H of a bipartite graph G would be a k-spanner of G if and only if it is a (k ) - spanner of G []. Thus we have the following result. Theorem : If G is a bipartite graph then ζ(g) is odd. In particular ζ(g) Theorem 6: Let G be a diametrically uniform graph. If there exists a vertex x of G and a bfs tree BFS(x) rooted at x such that all the vertices of D(x) are in a subtree rooted at some vertex y (y x) in BFS(x), then ζ(g) Figure : A Diametrically Uniform Graph We list some of the results proved in [8]. The following theorem provides a necessary condition for tree (λ ) - spanner admissible graphs. Theorem : Let λ be the diameter of a graph G. If ζ(g) λ, then G is diametrically uniform. We now state [8] a few sufficient conditions for ζ(g) Theorem : Let G be graph such that G has a chordless cycle of length k+. Then ζ(g) k. Theorem : Let G be a diametrically uniform graph with diameter λ >. Given an edge (x, y) in E(G), if for every vertex x* of D(x) there exists a vertex y* of D(y) The following corollaries are direct applications of Theorem 6. Corollary : Let G be a diametrically uniform graph. If for some vertex x of G, D(x) is an independent set, then ζ(g) Corollary : Let G be a diametrically uniform graph. If D(x) is a singleton for some vertex x of G, then ζ(g). Tree Spanner Problem for Butterfly Networks The set of nodes V of an r-dimensional butterfly correspond to pairs [w, i], where i is the dimension or level of a node (0 i r) and w is an r-bit binary number that denotes the row of the node. Two nodes < w, i > and < w, i > are linked by an edge if and only if i = i + and either:. w and w are identical, or

4 . w and w differ in precisely the i th bit. The edges in the network are undirected. An r-dimensional butterfly is denoted by BF(r).. Tree Spanner Problem for Benes Networks An r-dimensional Benes network has r+ levels, each level with r nodes. The level zero to level r vertices in the network form an r-dimensional butterfly. The middle level of the Benes network is shared by these butterflies [0]. As butterfly is known for FFT, Benes is known for permutation routing (normal network). An r-dimensional Benes is denoted by B(r). Figure : A -dimensional Butterfly Network The proofs of the following Propositions are straightforward. Proposition : The r-dimensional Butterfly BF(r) is diametrically uniform. Proposition : Let G be BF(). Then D(x) U D(y) is connected for every edge (x, y) in E(G). Proposition : Let G be BF(r). Then for every edge (x, y) in E(G), there exists a vertex x* of D(x) and a vertex y* of D(y) such that (x*, y*) is an edge of G. Theorem : Let G be BF(). Then ζ(g) This follows from Propositions, and Theorem. Theorem 8: Let G be BF(r). Then ζ(g) This follows from Propositions, and Theorem. Theorem : The minimum spanner problem for Butterfly networks is polynomially solvable. Figure : A -dimensional Benes Network Proposition : The r-dimensional Benes network B(r) is diametrically uniform. Proposition : Let G be B(). Then D(x) U D(y) is connected for every edge (x, y) in E(G). Proposition 6: Let G be B(r). Then for every edge (x, y) in E(G), there exists a vertex x* of D(x) and a vertex y* of D(y) such that (x*, y*) is an edge of G. Theorem 0: Let G be B(). Then ζ(g) This follows from Propositions, and Theorem. Theorem : Let G be B(r). Then ζ(g) This follows from Propositions, 6 and Theorem. Theorem : The minimum spanner problem for Benes networks is polynomially solvable.

5 . Conclusion Using the techniques developed in [8], we have solved the minimum tree spanner problem for Butterfly and Benes networks. The problem is worth considering for other architectures like Pancake and shuffle exchange graphs. References: [] L. Cai and D.G. Corneil Tree Spanners, SIAM J. Discrete Math., 8, (), pp. -8. [] L. Cai and D.G. Corneil, Isomorphic tree spanner problems, Algorithmica,, (), pp. 8-. [] S.P. Fekete and J. Kremer, Tree Spanners in Planar Graphs, th International Workshop on Graph-Theoretic Concepts in Computer Science (WG 8) Smolenice-Castle/Slovakia, June 8-0, 8. [] Fragopoulou, P. and S.G. Akl, Optimal communication algorithms on star graphs using spanning tree constructions, J. Parallel Distrib. Computing, Vol.,, pp.-. [] M.C. Heydemann, J.G. Peters and D. Sotteau, Spanners of hypercubederived networks, SIAM J. Discrete Math., (6), pp. -. [6] M.C. Heydemann, Cayley graphs and interconnection networks, In Graph Symmetry, eds. G. Hahn and G. Sabidussi, Kluwer Academic Publishers, The Netherlands, (), pp. 6-. [] M.S. Madanlal, G. Venkatesan and C. Pandu Rangan, Tree -spanners on interval, Permutation and regular bipartite graphs, Information Processing Letters, (6), pp. -0. [8] Paul Manuel, Bharati Rajan, Indra Rajasingh and Amutha Alaguvel, Tree Spanners, Cayley Graphs and Diametrically Uniform Graphs LNCS 880, (00), pp -. [] G. Venkatesan, U. Rotics, M.S.Madanlal, J.A. Makowski, C. Pandu Rangan, Restrictions of minimum spanner problem, Information and Computation, 6, (), pp. -6. [0] J. Xu, Topological Structure and Analysis of Interconnection Networks, Kluwer Academic Publishers, 00

A DISCUSSION ON SSP STRUCTURE OF PAN, HELM AND CROWN GRAPHS

A DISCUSSION ON SSP STRUCTURE OF PAN, HELM AND CROWN GRAPHS VOL. 10, NO. 9, MAY 015 ISSN 1819-6608 A DISCUSSION ON SSP STRUCTURE OF PAN, HELM AND CROWN GRAPHS R. Mary Jeya Jothi Department of Mathematics, Sathyabama University, Chennai, India E-Mail: jeyajothi31@gmail.com

More information

Finding a Tree 4-Spanner on Trapezoid Graphs

Finding a Tree 4-Spanner on Trapezoid Graphs Finding a Tree 4-Spanner on Trapezoid Graphs Hon-Chan Chen 1, Shin-Huei Wu 2, Chang-Biau Yang 2 1 Department of Information Management, National Chin-yi Institute of Technology, Taichung, Taiwan 2 Department

More information

Characterization of Super Strongly Perfect Graphs in Chordal and Strongly Chordal Graphs

Characterization of Super Strongly Perfect Graphs in Chordal and Strongly Chordal Graphs ISSN 0975-3303 Mapana J Sci, 11, 4(2012), 121-131 https://doi.org/10.12725/mjs.23.10 Characterization of Super Strongly Perfect Graphs in Chordal and Strongly Chordal Graphs R Mary Jeya Jothi * and A Amutha

More information

The optimal routing of augmented cubes.

The optimal routing of augmented cubes. The optimal routing of augmented cubes. Meirun Chen, Reza Naserasr To cite this version: Meirun Chen, Reza Naserasr. The optimal routing of augmented cubes.. Information Processing Letters, Elsevier, 28.

More information

Packing Chromatic Number of Cycle Related Graphs

Packing Chromatic Number of Cycle Related Graphs International Journal of Mathematics and Soft Computing Vol., No. (0), 7 -. ISSN Print : 9-8 ISSN Online: 9 - Packing Chromatic Number of Cycle Related Graphs Albert William, S. Roy Department of Mathematics,

More information

Proposition 1. The edges of an even graph can be split (partitioned) into cycles, no two of which have an edge in common.

Proposition 1. The edges of an even graph can be split (partitioned) into cycles, no two of which have an edge in common. Math 3116 Dr. Franz Rothe June 5, 2012 08SUM\3116_2012t1.tex Name: Use the back pages for extra space 1 Solution of Test 1.1 Eulerian graphs Proposition 1. The edges of an even graph can be split (partitioned)

More information

Vertex 3-colorability of claw-free graphs

Vertex 3-colorability of claw-free graphs Algorithmic Operations Research Vol.2 (27) 5 2 Vertex 3-colorability of claw-free graphs Marcin Kamiński a Vadim Lozin a a RUTCOR - Rutgers University Center for Operations Research, 64 Bartholomew Road,

More information

Topological Structure and Analysis of Interconnection Networks

Topological Structure and Analysis of Interconnection Networks Topological Structure and Analysis of Interconnection Networks Network Theory and Applications Volume 7 Managing Editors: Ding-Zhu Du, University of Minnesota, U.S.A. and Cauligi Raghavendra, University

More information

Sparse Hypercube 3-Spanners

Sparse Hypercube 3-Spanners Sparse Hypercube 3-Spanners W. Duckworth and M. Zito Department of Mathematics and Statistics, University of Melbourne, Parkville, Victoria 3052, Australia Department of Computer Science, University of

More information

Eccentric Coloring of a Graph

Eccentric Coloring of a Graph Eccentric Coloring of a Graph Medha Itagi Huilgol 1 & Syed Asif Ulla S. 1 Journal of Mathematics Research; Vol. 7, No. 1; 2015 ISSN 1916-9795 E-ISSN 1916-909 Published by Canadian Center of Science and

More information

Minimum 2-Edge Connected Spanning Subgraph of Certain Interconnection Networks

Minimum 2-Edge Connected Spanning Subgraph of Certain Interconnection Networks International Journal of Mathematics And Its Applications Vol.2 No.2(2014), pp.37-46 ISSN: 2347-1557(online) Minimum 2-Edge Connected Spanning Subgraph of Certain Interconnection Networks Albert William,

More information

The Restrained Edge Geodetic Number of a Graph

The Restrained Edge Geodetic Number of a Graph International Journal of Computational and Applied Mathematics. ISSN 0973-1768 Volume 11, Number 1 (2016), pp. 9 19 Research India Publications http://www.ripublication.com/ijcam.htm The Restrained Edge

More information

Explicit homomorphisms of hexagonal graphs to one vertex deleted Petersen graph

Explicit homomorphisms of hexagonal graphs to one vertex deleted Petersen graph MATHEMATICAL COMMUNICATIONS 391 Math. Commun., Vol. 14, No. 2, pp. 391-398 (2009) Explicit homomorphisms of hexagonal graphs to one vertex deleted Petersen graph Petra Šparl1 and Janez Žerovnik2, 1 Faculty

More information

Triple Connected Domination Number of a Graph

Triple Connected Domination Number of a Graph International J.Math. Combin. Vol.3(2012), 93-104 Triple Connected Domination Number of a Graph G.Mahadevan, Selvam Avadayappan, J.Paulraj Joseph and T.Subramanian Department of Mathematics Anna University:

More information

Chapter 4. Relations & Graphs. 4.1 Relations. Exercises For each of the relations specified below:

Chapter 4. Relations & Graphs. 4.1 Relations. Exercises For each of the relations specified below: Chapter 4 Relations & Graphs 4.1 Relations Definition: Let A and B be sets. A relation from A to B is a subset of A B. When we have a relation from A to A we often call it a relation on A. When we have

More information

Complexity Results on Graphs with Few Cliques

Complexity Results on Graphs with Few Cliques Discrete Mathematics and Theoretical Computer Science DMTCS vol. 9, 2007, 127 136 Complexity Results on Graphs with Few Cliques Bill Rosgen 1 and Lorna Stewart 2 1 Institute for Quantum Computing and School

More information

Discrete Mathematics

Discrete Mathematics Discrete Mathematics 310 (2010) 2769 2775 Contents lists available at ScienceDirect Discrete Mathematics journal homepage: www.elsevier.com/locate/disc Optimal acyclic edge colouring of grid like graphs

More information

Vertex Colorings without Rainbow or Monochromatic Subgraphs. 1 Introduction

Vertex Colorings without Rainbow or Monochromatic Subgraphs. 1 Introduction Vertex Colorings without Rainbow or Monochromatic Subgraphs Wayne Goddard and Honghai Xu Dept of Mathematical Sciences, Clemson University Clemson SC 29634 {goddard,honghax}@clemson.edu Abstract. This

More information

Triangle Graphs and Simple Trapezoid Graphs

Triangle Graphs and Simple Trapezoid Graphs JOURNAL OF INFORMATION SCIENCE AND ENGINEERING 18, 467-473 (2002) Short Paper Triangle Graphs and Simple Trapezoid Graphs Department of Computer Science and Information Management Providence University

More information

Part II. Graph Theory. Year

Part II. Graph Theory. Year Part II Year 2017 2016 2015 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 2017 53 Paper 3, Section II 15H Define the Ramsey numbers R(s, t) for integers s, t 2. Show that R(s, t) exists for all s,

More information

Algebraic Constructions of Ecient Broadcast Networks. Michael J. Dinneen and Michael R. Fellows. University of Victoria.

Algebraic Constructions of Ecient Broadcast Networks. Michael J. Dinneen and Michael R. Fellows. University of Victoria. Algebraic Constructions of Ecient Broadcast Networks Michael J. Dinneen and Michael R. Fellows Department of Computer Science University of Victoria Victoria, B.C. Canada V8W P6 Vance Faber Los Alamos

More information

Assignment 4 Solutions of graph problems

Assignment 4 Solutions of graph problems Assignment 4 Solutions of graph problems 1. Let us assume that G is not a cycle. Consider the maximal path in the graph. Let the end points of the path be denoted as v 1, v k respectively. If either of

More information

CHARACTERIZING SYMMETRIC DIAMETRICAL GRAPHS OF ORDER 12 AND DIAMETER 4

CHARACTERIZING SYMMETRIC DIAMETRICAL GRAPHS OF ORDER 12 AND DIAMETER 4 IJMMS 30:3 (2002) 145 149 PII. S0161171202012474 http://ijmms.hindawi.com Hindawi Publishing Corp. CHARACTERIZING SYMMETRIC DIAMETRICAL GRAPHS OF ORDER 12 AND DIAMETER 4 S. AL-ADDASI and H. Al-EZEH Received

More information

Minimum congestion spanning trees of grids and discrete toruses

Minimum congestion spanning trees of grids and discrete toruses Minimum congestion spanning trees of grids and discrete toruses A. Castejón Department of Applied Mathematics I Higher Technical School of Telecommunications Engineering (ETSIT) Universidad de Vigo Lagoas-Marcosende

More information

arxiv: v1 [math.co] 28 Nov 2016

arxiv: v1 [math.co] 28 Nov 2016 Trees with distinguishing number two arxiv:1611.09291v1 [math.co] 28 Nov 2016 Saeid Alikhani May 15, 2018 Samaneh Soltani Department of Mathematics, Yazd University, 89195-741, Yazd, Iran alikhani@yazd.ac.ir,

More information

Routing in Unidirectional (n, k)-star graphs

Routing in Unidirectional (n, k)-star graphs Routing in Unidirectional (n, k)-star graphs Eddie CHENG Department of Mathematics and Statistics, Oakland University, Rochester,Michigan USA 48309 and Serge KRUK Department of Mathematics and Statistics,

More information

ON THE CONDITIONAL EDGE CONNECTIVITY OF ENHANCED HYPERCUBE NETWORKS

ON THE CONDITIONAL EDGE CONNECTIVITY OF ENHANCED HYPERCUBE NETWORKS Ann. of Appl. Math. 34:3(2018), 319-330 ON THE CONDITIONAL EDGE CONNECTIVITY OF ENHANCED HYPERCUBE NETWORKS Yanjuan Zhang, Hongmei Liu, Dan Jin (College of Science China Three Gorges University, Yichang

More information

ON HARMONIOUS COLORINGS OF REGULAR DIGRAPHS 1

ON HARMONIOUS COLORINGS OF REGULAR DIGRAPHS 1 Volume 1 Issue 1 July 015 Discrete Applied Mathematics 180 (015) ON HARMONIOUS COLORINGS OF REGULAR DIGRAPHS 1 AUTHORS INFO S.M.Hegde * and Lolita Priya Castelino Department of Mathematical and Computational

More information

On Super and Restricted Connectivity of Some Interconnection Networks

On Super and Restricted Connectivity of Some Interconnection Networks On Super and Restricted Connectivity of Some Interconnection Networks Jun-Ming Xu Jian-Wei Wang Wei-Wei Wang Department of Mathematics University of Science and Technology of China Hefei, Anhui, 230026,

More information

Generalized Pebbling Number

Generalized Pebbling Number International Mathematical Forum, 5, 2010, no. 27, 1331-1337 Generalized Pebbling Number A. Lourdusamy Department of Mathematics St. Xavier s College (Autonomous) Palayamkottai - 627 002, India lourdugnanam@hotmail.com

More information

Hyper-Butterfly Network: A Scalable Optimally Fault Tolerant Architecture

Hyper-Butterfly Network: A Scalable Optimally Fault Tolerant Architecture Hyper-Butterfly Network: A Scalable Optimally Fault Tolerant Architecture Wei Shi and Pradip K Srimani Department of Computer Science Colorado State University Ft. Collins, CO 80523 Abstract Bounded degree

More information

Graceful and odd graceful labeling of graphs

Graceful and odd graceful labeling of graphs International Journal of Mathematics and Soft Computing Vol.6, No.2. (2016), 13-19. ISSN Print : 2249 3328 ISSN Online: 2319 5215 Graceful and odd graceful labeling of graphs Department of Mathematics

More information

λ -Harmonious Graph Colouring

λ -Harmonious Graph Colouring λ -Harmonious Graph Colouring Lauren DeDieu McMaster University Southwestern Ontario Graduate Mathematics Conference June 4th, 201 What is a graph? What is vertex colouring? 1 1 1 2 2 Figure : Proper Colouring.

More information

On Algebraic Expressions of Generalized Fibonacci Graphs

On Algebraic Expressions of Generalized Fibonacci Graphs On Algebraic Expressions of Generalized Fibonacci Graphs MARK KORENBLIT and VADIM E LEVIT Department of Computer Science Holon Academic Institute of Technology 5 Golomb Str, PO Box 305, Holon 580 ISRAEL

More information

New Large Graphs with Given Degree and Diameter

New Large Graphs with Given Degree and Diameter New Large Graphs with Given Degree and Diameter F.Comellas and J.Gómez Departament de Matemàtica Aplicada i Telemàtica Universitat Politècnica de Catalunya Abstract In this paper we give graphs with the

More information

Triple Connected Complementary Tree Domination Number Of A Graph V. Murugan et al.,

Triple Connected Complementary Tree Domination Number Of A Graph V. Murugan et al., International Journal of Power Control Signal and Computation (IJPCSC) Vol.5 No. 2,2013-Pp:48-57 gopalax journals,singapore ISSN:0976-268X Paper Received :04-03-2013 Paper Published:14-04-2013 Paper Reviewed

More information

arxiv: v1 [math.co] 27 Feb 2015

arxiv: v1 [math.co] 27 Feb 2015 Mode Poset Probability Polytopes Guido Montúfar 1 and Johannes Rauh 2 arxiv:1503.00572v1 [math.co] 27 Feb 2015 1 Max Planck Institute for Mathematics in the Sciences, Inselstraße 22, 04103 Leipzig, Germany,

More information

Math Summer 2012

Math Summer 2012 Math 481 - Summer 2012 Final Exam You have one hour and fifty minutes to complete this exam. You are not allowed to use any electronic device. Be sure to give reasonable justification to all your answers.

More information

A general position problem in graph theory

A general position problem in graph theory A general position problem in graph theory Paul Manuel a Sandi Klavžar b,c,d a Department of Information Science, College of Computing Science and Engineering, Kuwait University, Kuwait pauldmanuel@gmail.com

More information

Detour Distance Sequence of Grid and Grid Derived Networks

Detour Distance Sequence of Grid and Grid Derived Networks Detour Distance Sequence of Grid and Grid Derived Networks S. Prabhu 1*, Y. Sherlin Nisha 2, K.S. Sudhakhar 3 1 Assistant Professor, Department of Applied Mathematics Sri Venkateswara College of Engineering

More information

RAINBOW CONNECTION AND STRONG RAINBOW CONNECTION NUMBERS OF

RAINBOW CONNECTION AND STRONG RAINBOW CONNECTION NUMBERS OF RAINBOW CONNECTION AND STRONG RAINBOW CONNECTION NUMBERS OF Srava Chrisdes Antoro Fakultas Ilmu Komputer, Universitas Gunadarma srava_chrisdes@staffgunadarmaacid Abstract A rainbow path in an edge coloring

More information

FRITHJOF LUTSCHER, JENNY MCNULTY, JOY MORRIS, AND KAREN SEYFFARTH pattern given by the solid lines in Figure. Here, the images are stitched together r

FRITHJOF LUTSCHER, JENNY MCNULTY, JOY MORRIS, AND KAREN SEYFFARTH pattern given by the solid lines in Figure. Here, the images are stitched together r STITCHING IMAGES BACK TOGETHER FRITHJOF LUTSCHER, JENNY MCNULTY, JOY MORRIS, AND KAREN SEYFFARTH. Introduction When a large visual is scanned into a computer in pieces, or printed out across multiple sheets

More information

Some Topological Indices of Spider s Web Planar Graph

Some Topological Indices of Spider s Web Planar Graph Applied Mathematical Sciences, Vol. 6, 0, no. 63, 345-355 Some Topological Indices of Spider s Web Planar Graph Mohamed Essalih LRIT associated unit to CNRST (URAC 9), Faculty of Sciences, Mohammed V-Agdal

More information

Strong Rainbow Edge coloring of Necklace Graphs

Strong Rainbow Edge coloring of Necklace Graphs Volume 109 No. 10 2016, 191-199 ISSN: 1311-8080 (printed version); ISSN: 1314-3395 (on-line version) url: http://www.ijpam.eu ijpam.eu Strong Rainbow Edge coloring of Necklace Graphs G.Vidya 1 and Indra

More information

Binding Number of Some Special Classes of Trees

Binding Number of Some Special Classes of Trees International J.Math. Combin. Vol.(206), 76-8 Binding Number of Some Special Classes of Trees B.Chaluvaraju, H.S.Boregowda 2 and S.Kumbinarsaiah 3 Department of Mathematics, Bangalore University, Janana

More information

Two Characterizations of Hypercubes

Two Characterizations of Hypercubes Two Characterizations of Hypercubes Juhani Nieminen, Matti Peltola and Pasi Ruotsalainen Department of Mathematics, University of Oulu University of Oulu, Faculty of Technology, Mathematics Division, P.O.

More information

The Complexity of Minimizing Certain Cost Metrics for k-source Spanning Trees

The Complexity of Minimizing Certain Cost Metrics for k-source Spanning Trees The Complexity of Minimizing Certain Cost Metrics for ksource Spanning Trees Harold S Connamacher University of Oregon Andrzej Proskurowski University of Oregon May 9 2001 Abstract We investigate multisource

More information

Introduction to Graph Theory

Introduction to Graph Theory Introduction to Graph Theory Tandy Warnow January 20, 2017 Graphs Tandy Warnow Graphs A graph G = (V, E) is an object that contains a vertex set V and an edge set E. We also write V (G) to denote the vertex

More information

PLANAR GRAPH BIPARTIZATION IN LINEAR TIME

PLANAR GRAPH BIPARTIZATION IN LINEAR TIME PLANAR GRAPH BIPARTIZATION IN LINEAR TIME SAMUEL FIORINI, NADIA HARDY, BRUCE REED, AND ADRIAN VETTA Abstract. For each constant k, we present a linear time algorithm that, given a planar graph G, either

More information

Information Processing Letters

Information Processing Letters Information Processing Letters 110 (2010) 211 215 Contents lists available at ScienceDirect Information Processing Letters www.vier.com/locate/ipl Fully symmetric swapped networks based on bipartite cluster

More information

4. (a) Draw the Petersen graph. (b) Use Kuratowski s teorem to prove that the Petersen graph is non-planar.

4. (a) Draw the Petersen graph. (b) Use Kuratowski s teorem to prove that the Petersen graph is non-planar. UPPSALA UNIVERSITET Matematiska institutionen Anders Johansson Graph Theory Frist, KandMa, IT 010 10 1 Problem sheet 4 Exam questions Solve a subset of, say, four questions to the problem session on friday.

More information

Graphs (MTAT , 6 EAP) Lectures: Mon 14-16, hall 404 Exercises: Wed 14-16, hall 402

Graphs (MTAT , 6 EAP) Lectures: Mon 14-16, hall 404 Exercises: Wed 14-16, hall 402 Graphs (MTAT.05.080, 6 EAP) Lectures: Mon 14-16, hall 404 Exercises: Wed 14-16, hall 402 homepage: http://courses.cs.ut.ee/2012/graafid (contains slides) For grade: Homework + three tests (during or after

More information

The 3-Steiner Root Problem

The 3-Steiner Root Problem The 3-Steiner Root Problem Maw-Shang Chang 1 and Ming-Tat Ko 2 1 Department of Computer Science and Information Engineering National Chung Cheng University, Chiayi 621, Taiwan, R.O.C. mschang@cs.ccu.edu.tw

More information

T -COLORING ON SIERPINSKI NETWORK

T -COLORING ON SIERPINSKI NETWORK T -COLORING ON SIERPINSKI NETWORK Atchayaa Bhoopathy, Charles Robert Kenneth 2 Student, PG and Research Department of Mathematics, Loyola College, Chennai (India) 2 Assistant Professor,PG and Research

More information

On the Relationships between Zero Forcing Numbers and Certain Graph Coverings

On the Relationships between Zero Forcing Numbers and Certain Graph Coverings On the Relationships between Zero Forcing Numbers and Certain Graph Coverings Fatemeh Alinaghipour Taklimi, Shaun Fallat 1,, Karen Meagher 2 Department of Mathematics and Statistics, University of Regina,

More information

LOCAL CONNECTIVE CHROMATIC NUMBER OF CARTESIAN PRODUCT OF SOME GRAPHS

LOCAL CONNECTIVE CHROMATIC NUMBER OF CARTESIAN PRODUCT OF SOME GRAPHS LOCAL CONNECTIVE CHROMATIC NUMBER OF CARTESIAN PRODUCT OF SOME GRAPHS ROMANIAN JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE, 08, VOLUME 8, ISSUE, p-7 CANAN C IFTC I AND PINAR DU NDAR Abstract A local connective

More information

Tree Spanners of Simple Graphs

Tree Spanners of Simple Graphs Tree Spanners of Simple Graphs by Ioannis E. Papoutsakis A thesis submitted in conformity with the requirements for the degree of Doctor of Philosophy Graduate Department of Computer Science University

More information

Computer Science 280 Fall 2002 Homework 10 Solutions

Computer Science 280 Fall 2002 Homework 10 Solutions Computer Science 280 Fall 2002 Homework 10 Solutions Part A 1. How many nonisomorphic subgraphs does W 4 have? W 4 is the wheel graph obtained by adding a central vertex and 4 additional "spoke" edges

More information

Domination Number of Jump Graph

Domination Number of Jump Graph International Mathematical Forum, Vol. 8, 013, no. 16, 753-758 HIKARI Ltd, www.m-hikari.com Domination Number of Jump Graph Y. B. Maralabhavi Department of Mathematics Bangalore University Bangalore-560001,

More information

Bipartite Roots of Graphs

Bipartite Roots of Graphs Bipartite Roots of Graphs Lap Chi Lau Department of Computer Science University of Toronto Graph H is a root of graph G if there exists a positive integer k such that x and y are adjacent in G if and only

More information

Restricted edge connectivity and restricted connectivity of graphs

Restricted edge connectivity and restricted connectivity of graphs Restricted edge connectivity and restricted connectivity of graphs Litao Guo School of Applied Mathematics Xiamen University of Technology Xiamen Fujian 361024 P.R.China ltguo2012@126.com Xiaofeng Guo

More information

Average D-distance Between Edges of a Graph

Average D-distance Between Edges of a Graph Indian Journal of Science and Technology, Vol 8(), 5 56, January 05 ISSN (Print) : 0974-6846 ISSN (Online) : 0974-5645 OI : 07485/ijst/05/v8i/58066 Average -distance Between Edges of a Graph Reddy Babu

More information

Multicasting in the Hypercube, Chord and Binomial Graphs

Multicasting in the Hypercube, Chord and Binomial Graphs Multicasting in the Hypercube, Chord and Binomial Graphs Christopher C. Cipriano and Teofilo F. Gonzalez Department of Computer Science University of California, Santa Barbara, CA, 93106 E-mail: {ccc,teo}@cs.ucsb.edu

More information

Chapter 4. square sum graphs. 4.1 Introduction

Chapter 4. square sum graphs. 4.1 Introduction Chapter 4 square sum graphs In this Chapter we introduce a new type of labeling of graphs which is closely related to the Diophantine Equation x 2 + y 2 = n and report results of our preliminary investigations

More information

Eccentric domination in splitting graph of some graphs

Eccentric domination in splitting graph of some graphs Advances in Theoretical and Applied Mathematics ISSN 0973-4554 Volume 11, Number 2 (2016), pp. 179-188 Research India Publications http://www.ripublication.com Eccentric domination in splitting graph of

More information

On Acyclic Vertex Coloring of Grid like graphs

On Acyclic Vertex Coloring of Grid like graphs On Acyclic Vertex Coloring of Grid like graphs Bharat Joshi and Kishore Kothapalli {bharatj@research., kkishore@}iiit.ac.in Center for Security, Theory and Algorithmic Research International Institute

More information

FOUR EDGE-INDEPENDENT SPANNING TREES 1

FOUR EDGE-INDEPENDENT SPANNING TREES 1 FOUR EDGE-INDEPENDENT SPANNING TREES 1 Alexander Hoyer and Robin Thomas School of Mathematics Georgia Institute of Technology Atlanta, Georgia 30332-0160, USA ABSTRACT We prove an ear-decomposition theorem

More information

with Dana Richards December 1, 2017 George Mason University New Results On Routing Via Matchings Indranil Banerjee The Routing Model

with Dana Richards December 1, 2017 George Mason University New Results On Routing Via Matchings Indranil Banerjee The Routing Model New New with Dana Richards George Mason University richards@gmu.edu December 1, 2017 GMU December 1, 2017 1 / 40 New Definitions G(V, E) is an undirected graph. V = {1, 2, 3,..., n}. A pebble at vertex

More information

Adjacent: Two distinct vertices u, v are adjacent if there is an edge with ends u, v. In this case we let uv denote such an edge.

Adjacent: Two distinct vertices u, v are adjacent if there is an edge with ends u, v. In this case we let uv denote such an edge. 1 Graph Basics What is a graph? Graph: a graph G consists of a set of vertices, denoted V (G), a set of edges, denoted E(G), and a relation called incidence so that each edge is incident with either one

More information

REU 2006 Discrete Math Lecture 5

REU 2006 Discrete Math Lecture 5 REU 2006 Discrete Math Lecture 5 Instructor: László Babai Scribe: Megan Guichard Editors: Duru Türkoğlu and Megan Guichard June 30, 2006. Last updated July 3, 2006 at 11:30pm. 1 Review Recall the definitions

More information

DHANALAKSHMI COLLEGE OF ENGINEERING, CHENNAI

DHANALAKSHMI COLLEGE OF ENGINEERING, CHENNAI DHANALAKSHMI COLLEGE OF ENGINEERING, CHENNAI Department of Computer Science and Engineering CS6702 - GRAPH THEORY AND APPLICATIONS Anna University 2 & 16 Mark Questions & Answers Year / Semester: IV /

More information

arxiv: v1 [math.co] 13 Aug 2017

arxiv: v1 [math.co] 13 Aug 2017 Strong geodetic problem in grid like architectures arxiv:170803869v1 [mathco] 13 Aug 017 Sandi Klavžar a,b,c April 11, 018 Paul Manuel d a Faculty of Mathematics and Physics, University of Ljubljana, Slovenia

More information

Generating edge covers of path graphs

Generating edge covers of path graphs Generating edge covers of path graphs J. Raymundo Marcial-Romero, J. A. Hernández, Vianney Muñoz-Jiménez and Héctor A. Montes-Venegas Facultad de Ingeniería, Universidad Autónoma del Estado de México,

More information

Contracting Chordal Graphs and Bipartite Graphs to Paths and Trees

Contracting Chordal Graphs and Bipartite Graphs to Paths and Trees Contracting Chordal Graphs and Bipartite Graphs to Paths and Trees Pinar Heggernes Pim van t Hof Benjamin Léveque Christophe Paul Abstract We study the following two graph modification problems: given

More information

On Sequential Topogenic Graphs

On Sequential Topogenic Graphs Int. J. Contemp. Math. Sciences, Vol. 5, 2010, no. 36, 1799-1805 On Sequential Topogenic Graphs Bindhu K. Thomas, K. A. Germina and Jisha Elizabath Joy Research Center & PG Department of Mathematics Mary

More information

Network Dilation: A Strategy for Building Families of Parallel Processing Architectures Behrooz Parhami

Network Dilation: A Strategy for Building Families of Parallel Processing Architectures Behrooz Parhami Network Dilation: A Strategy for Building Families of Parallel Processing Architectures Behrooz Parhami Dept. Electrical & Computer Eng. Univ. of California, Santa Barbara Parallel Computer Architecture

More information

arxiv: v1 [math.co] 4 Apr 2018

arxiv: v1 [math.co] 4 Apr 2018 Derangement action digraphs and graphs arxiv:1804.01384v1 [math.co] 4 Apr 2018 Moharram N. Iradmusa a, Cheryl E. Praeger b a Department of Mathematical Sciences, Shahid Beheshti University, G.C. P.O. Box

More information

Bottleneck Steiner Tree with Bounded Number of Steiner Vertices

Bottleneck Steiner Tree with Bounded Number of Steiner Vertices Bottleneck Steiner Tree with Bounded Number of Steiner Vertices A. Karim Abu-Affash Paz Carmi Matthew J. Katz June 18, 2011 Abstract Given a complete graph G = (V, E), where each vertex is labeled either

More information

Embedding Complete Binary Trees into Star Networks *

Embedding Complete Binary Trees into Star Networks * Embedding Complete Binary Trees into Star Networks * A. Bouabdallah 1, M.C. Heydemann 2, J. Opatrny 3, D. Sotteau 2 1 LIVE, Univ. d'evry-val-d'essonne, Bid. des Coquibus, 91025 Evry, France 2 LRI, UA 410

More information

Some Remarks on the Geodetic Number of a Graph

Some Remarks on the Geodetic Number of a Graph Some Remarks on the Geodetic Number of a Graph Mitre C. Dourado 1, Fábio Protti 2, Dieter Rautenbach 3, and Jayme L. Szwarcfiter 4 1 ICE, Universidade Federal Rural do Rio de Janeiro and NCE - UFRJ, Brazil,

More information

THE REGULAR PERMUTATION SCHEDULING ON GRAPHS

THE REGULAR PERMUTATION SCHEDULING ON GRAPHS Journal of Information Control and Management Systems, Vol. 1, (2003) 15 THE REGULAR PERMUTATION SCHEDULING ON GRAPHS Peter CZIMMERMANN, Štefan PEŠKO Department of Mathematical Methods, Faculty of Management

More information

Strong geodetic problem in grid like architectures

Strong geodetic problem in grid like architectures Strong geodetic problem in grid like architectures Sandi Klavžar a,b,c Paul Manuel d January 9, 018 a Faculty of Mathematics and Physics, University of Ljubljana, Slovenia sandiklavzar@fmfuni-ljsi b Faculty

More information

Graph Theory Day Four

Graph Theory Day Four Graph Theory Day Four February 8, 018 1 Connected Recall from last class, we discussed methods for proving a graph was connected. Our two methods were 1) Based on the definition, given any u, v V(G), there

More information

On median graphs and median grid graphs

On median graphs and median grid graphs On median graphs and median grid graphs Sandi Klavžar 1 Department of Mathematics, PEF, University of Maribor, Koroška cesta 160, 2000 Maribor, Slovenia e-mail: sandi.klavzar@uni-lj.si Riste Škrekovski

More information

Ray shooting from convex ranges

Ray shooting from convex ranges Discrete Applied Mathematics 108 (2001) 259 267 Ray shooting from convex ranges Evangelos Kranakis a, Danny Krizanc b, Anil Maheshwari a;, Jorg-Rudiger Sack a, Jorge Urrutia c a School of Computer Science,

More information

All 0-1 Polytopes are. Abstract. We study the facial structure of two important permutation polytopes

All 0-1 Polytopes are. Abstract. We study the facial structure of two important permutation polytopes All 0-1 Polytopes are Traveling Salesman Polytopes L.J. Billera and A. Sarangarajan y Abstract We study the facial structure of two important permutation polytopes in R n2, the Birkho or assignment polytope

More information

On Universal Cycles of Labeled Graphs

On Universal Cycles of Labeled Graphs On Universal Cycles of Labeled Graphs Greg Brockman Harvard University Cambridge, MA 02138 United States brockman@hcs.harvard.edu Bill Kay University of South Carolina Columbia, SC 29208 United States

More information

Star-in-Coloring of Some New Class of Graphs

Star-in-Coloring of Some New Class of Graphs International Journal of Scientific Innovative Mathematical Research (IJSIMR) Volume 2, Issue 4, April 2014, PP 352-360 ISSN 2347-307X (Print) & ISSN 2347-3142 (Online) www.arcjournals.org Star-in-Coloring

More information

arxiv: v3 [cs.dm] 12 Jun 2014

arxiv: v3 [cs.dm] 12 Jun 2014 On Maximum Differential Coloring of Planar Graphs M. A. Bekos 1, M. Kaufmann 1, S. Kobourov, S. Veeramoni 1 Wilhelm-Schickard-Institut für Informatik - Universität Tübingen, Germany Department of Computer

More information

EDGE-COLOURED GRAPHS AND SWITCHING WITH S m, A m AND D m

EDGE-COLOURED GRAPHS AND SWITCHING WITH S m, A m AND D m EDGE-COLOURED GRAPHS AND SWITCHING WITH S m, A m AND D m GARY MACGILLIVRAY BEN TREMBLAY Abstract. We consider homomorphisms and vertex colourings of m-edge-coloured graphs that have a switching operation

More information

Isometric Diamond Subgraphs

Isometric Diamond Subgraphs Isometric Diamond Subgraphs David Eppstein Computer Science Department, University of California, Irvine eppstein@uci.edu Abstract. We test in polynomial time whether a graph embeds in a distancepreserving

More information

Monotone Paths in Geometric Triangulations

Monotone Paths in Geometric Triangulations Monotone Paths in Geometric Triangulations Adrian Dumitrescu Ritankar Mandal Csaba D. Tóth November 19, 2017 Abstract (I) We prove that the (maximum) number of monotone paths in a geometric triangulation

More information

The Edge Fixing Edge-To-Vertex Monophonic Number Of A Graph

The Edge Fixing Edge-To-Vertex Monophonic Number Of A Graph Applied Mathematics E-Notes, 15(2015), 261-275 c ISSN 1607-2510 Available free at mirror sites of http://www.math.nthu.edu.tw/ amen/ The Edge Fixing Edge-To-Vertex Monophonic Number Of A Graph KrishnaPillai

More information

Wayne State University PDCL PDCL. Parallel and Distributed Computing Laboratory

Wayne State University PDCL PDCL. Parallel and Distributed Computing Laboratory A comparative study of star graphs and rotator graphs Subburajan Ponnuswamy and Vipin Chaudhary TR-93-07-07 Wayne State University PDCL PDCL Parallel and Distributed Computing Laboratory Department of

More information

An Algorithm for k-pairwise Cluster-fault-tolerant Disjoint Paths in a Burnt Pancake Graph

An Algorithm for k-pairwise Cluster-fault-tolerant Disjoint Paths in a Burnt Pancake Graph 2015 International Conference on Computational Science and Computational Intelligence An Algorithm for k-pairwise Cluster-fault-tolerant Disjoint Paths in a Burnt Pancake Graph Masato Tokuda, Yuki Hirai,

More information

Bandwidth Approximation of Many-Caterpillars

Bandwidth Approximation of Many-Caterpillars Bandwidth Approximation of Many-Caterpillars Yuval Filmus September 1, 2009 Abstract Bandwidth is one of the canonical NPcomplete problems. It is NP-hard to approximate within any constant factor even

More information

Maximal Monochromatic Geodesics in an Antipodal Coloring of Hypercube

Maximal Monochromatic Geodesics in an Antipodal Coloring of Hypercube Maximal Monochromatic Geodesics in an Antipodal Coloring of Hypercube Kavish Gandhi April 4, 2015 Abstract A geodesic in the hypercube is the shortest possible path between two vertices. Leader and Long

More information

Almost self-centered median and chordal graphs

Almost self-centered median and chordal graphs Almost self-centered median and chordal graphs Kannan Balakrishnan Department of Computer Applications Cochin University of Science and Technology, Cochin-22, India bkannan@cusat.ac.in Boštjan Brešar Faculty

More information

Computing the K-terminal Reliability of Circle Graphs

Computing the K-terminal Reliability of Circle Graphs Computing the K-terminal Reliability of Circle Graphs Min-Sheng Lin *, Chien-Min Chen Department of Electrical Engineering National Taipei University of Technology Taipei, Taiwan Abstract Let G denote

More information

Constructions of hamiltonian graphs with bounded degree and diameter O(log n)

Constructions of hamiltonian graphs with bounded degree and diameter O(log n) Constructions of hamiltonian graphs with bounded degree and diameter O(log n) Aleksandar Ilić Faculty of Sciences and Mathematics, University of Niš, Serbia e-mail: aleksandari@gmail.com Dragan Stevanović

More information