Index construc-on. Friday, 8 April 16 1

Size: px
Start display at page:

Download "Index construc-on. Friday, 8 April 16 1"

Transcription

1 Index construc-on Informa)onal Retrieval By Dr. Qaiser Abbas Department of Computer Science & IT, University of Sargodha, Sargodha, 40100, Pakistan Friday, 8 April 16 1

2 4.1 Index construction How do we construct an index? What strategies can we use with limited main memory? Hardware Basics Many design decisions in information retrieval are based on the characteristics of hardware We begin by reviewing hardware basics 2

3 Hardware basics Access to data in memory is much faster than access to data on disk. Disk seeks: No data is transferred from disk while the disk head is being positioned. Therefore: Transferring one large chunk of data from disk to memory is faster than transferring many small chunks. Disk I/O is block-based: Reading and writing of entire blocks (as opposed to smaller chunks). Block sizes: 8KB to 256 KB. 3

4 Hardware basics Servers used in IR systems now typically have several GB of main memory, sometimes tens of GB. Available disk space is several (2 3)orders of magnitude larger. Fault tolerance is very expensive: It s much cheaper to use many regular machines rather than one fault tolerant machine. 4

5 Hardware basics 5

6 4.2 Recall Inverted Index Friday, 8 April 16 6

7 Earlier approach Pass through the collec)on and assemble all term docid pairs. Sort the pairs with the term as the dominant key and docid as the secondary key. Finally, organize the docids for each term into a pos)ngs list and compute sta)s)cs like term and document frequency. For small collec)ons, all this can be done in memory. However, we will describe methods for large collec)ons that require the use of secondary storage. To make index construc)on more efficient, we represent terms as termids (instead of strings as we did in Figure 1.4), as a unique serial number. Friday, 8 April 16 7

8 Reuters-RCV1 collec<on The corpus we ll use isn t really large enough, but it s publicly available and is at least a more plausible example. As an example for applying index construction algorithms, we will use the Reuters RCV1 collection (Approx. 1GB). This is one year of Reuters newswire (part of 1996 and 1997) 8

9 A Reuters RCV1 document 9

10 Reuters RCV1 statistics

11 Issue in Indexing Reuters-RCV1 has 100 million tokens. Collec)ng all termid docid pairs of the collec)on using 4 bytes each for termid and docid therefore requires 0.8 GB of storage. Typical collec)ons today are ozen one or two orders of magnitude larger than Reuters-RCV1. You can easily see how such collec)ons overwhelm (bury) even large computers if we try to sort their termid docid pairs in memory. If the size of the intermediate files during index construc)on is within a small factor of available memory, then the compression techniques introduced in Chapter 5 can help; however, the pos)ngs file of many large collec)ons cannot fit into memory even azer compression.

12 Issue in Indexing With main memory insufficient, we need to use an external sor+ng algorithm, that is, one that uses disk. For acceptable speed, the central requirement of such an algorithm is that it minimize the number of random disk seeks during sor)ng sequen)al disk reads are far faster than seeks as we explained in Sec)on 4.1. One solu)on is the blocked sort-based indexing algorithm or BSBI in Figure 4.2.

13 BSBI Algorithm

14 BSBI Algorithm The algorithm parses documents into termid docid pairs and accumulates the pairs in memory un)l a block of a fixed size is full (PARSENEXTBLOCK in Figure 4.2). We choose the block size to fit comfortably into memory to permit a fast in-memory sort. The block is then inverted and wrigen to disk. Inversion involves two steps. First, we sort the termid docid pairs. Next, we collect all termid docid pairs with the same termid into a pos)ngs list, where a pos+ng is simply a docid. The result, an inverted index for the block we have just read, is then wrigen to disk.

15 BSBI Algorithm Applying this to Reuters-RCV1 and assuming we can fit 10 million termid docid pairs into memory, we end up with ten blocks, each an inverted index of one part of the collec)on. In the final step, the algorithm simultaneously merges the ten blocks into one large merged index. An example with two blocks is shown in Figure 4.3. To do the merging, we open all block files simultaneously, and maintain small read buffers for the ten blocks we are reading and a write buffer for the final merged index we are wri)ng.

16 BSBI Algorithm

17 BSBI Algorithm Complexity How expensive is BSBI? Its )me complexity is Θ(T log T) because the step with the highest )me complexity is sor)ng and T is an upper bound for the number of items (i.e., the number of termid docid pairs).

18 Class Exercise Exercise 4.1 If we need T log T comparisons (where T is the number of termid docid pairs) and 2 two disk seeks for each comparison, how much )me would index construc)on for Reuters-RCV1 take if we used disk instead of memory for storage and an unop)mized sor)ng algorithm (i.e., not an external sor)ng algorithm)? Use the system parameters in Table 4.1.

19 Solu<on Disk seek )me = 5x10-3 s 2 x (5x10-3 ) seconds per comparison Transfer )me = 2 x 10-8 s per byte Low level opera)ons = 10-8 seconds How long would it take to make T(log₂T) comparisons with 2 disk seeks per comparison? T(log₂T) x 2(5x10-3 s)...consider transfer )me and any low level opera)ons

20 Class Exercise Exercise 4.2 [ ] How would you create the dic)onary in blocked sort-based indexing on the fly to avoid an extra pass through the data? Solu<on: If you skipped the ini)al step of sor)ng the termids and docids and created a pos)ngs list on the fly whenever you encountered a new termid then created new pos)ngs in that pos)ngs list for each new incidences of termids would you avoid an extra pass through the data and would it s)ll be blocked sort-based indexing?

Index construc-on. Friday, 8 April 16 1

Index construc-on. Friday, 8 April 16 1 Index construc-on Informa)onal Retrieval By Dr. Qaiser Abbas Department of Computer Science & IT, University of Sargodha, Sargodha, 40100, Pakistan qaiser.abbas@uos.edu.pk Friday, 8 April 16 1 4.3 Single-pass

More information

Introduc)on to. CS60092: Informa0on Retrieval

Introduc)on to. CS60092: Informa0on Retrieval Introduc)on to CS60092: Informa0on Retrieval Ch. 4 Index construc)on How do we construct an index? What strategies can we use with limited main memory? Sec. 4.1 Hardware basics Many design decisions in

More information

Informa(on Retrieval

Informa(on Retrieval Introduc*on to Informa(on Retrieval CS276: Informa*on Retrieval and Web Search Pandu Nayak and Prabhakar Raghavan Lecture 4: Index Construc*on Plan Last lecture: Dic*onary data structures Tolerant retrieval

More information

Information Retrieval and Organisation

Information Retrieval and Organisation Information Retrieval and Organisation Dell Zhang Birkbeck, University of London 2015/16 IR Chapter 04 Index Construction Hardware In this chapter we will look at how to construct an inverted index Many

More information

Information Retrieval

Information Retrieval Introduction to Information Retrieval Lecture 4: Index Construction Plan Last lecture: Dictionary data structures Tolerant retrieval Wildcards This time: Spell correction Soundex Index construction Index

More information

Information Retrieval

Information Retrieval Introduction to Information Retrieval Lecture 4: Index Construction 1 Plan Last lecture: Dictionary data structures Tolerant retrieval Wildcards Spell correction Soundex a-hu hy-m n-z $m mace madden mo

More information

Information Retrieval

Information Retrieval Information Retrieval Suan Lee - Information Retrieval - 04 Index Construction 1 04 Index Construction - Information Retrieval - 04 Index Construction 2 Plan Last lecture: Dictionary data structures Tolerant

More information

Index construction CE-324: Modern Information Retrieval Sharif University of Technology

Index construction CE-324: Modern Information Retrieval Sharif University of Technology Index construction CE-324: Modern Information Retrieval Sharif University of Technology M. Soleymani Fall 2014 Most slides have been adapted from: Profs. Manning, Nayak & Raghavan (CS-276, Stanford) Ch.

More information

3-2. Index construction. Most slides were adapted from Stanford CS 276 course and University of Munich IR course.

3-2. Index construction. Most slides were adapted from Stanford CS 276 course and University of Munich IR course. 3-2. Index construction Most slides were adapted from Stanford CS 276 course and University of Munich IR course. 1 Ch. 4 Index construction How do we construct an index? What strategies can we use with

More information

index construct Overview Overview Recap How to construct index? Introduction Index construction Introduction to Recap

index construct Overview Overview Recap How to construct index? Introduction Index construction Introduction to Recap to to Information Retrieval Index Construct Ruixuan Li Huazhong University of Science and Technology http://idc.hust.edu.cn/~rxli/ October, 2012 1 2 How to construct index? Computerese term document docid

More information

Index construction CE-324: Modern Information Retrieval Sharif University of Technology

Index construction CE-324: Modern Information Retrieval Sharif University of Technology Index construction CE-324: Modern Information Retrieval Sharif University of Technology M. Soleymani Fall 2016 Most slides have been adapted from: Profs. Manning, Nayak & Raghavan (CS-276, Stanford) Ch.

More information

Index Construction 1

Index Construction 1 Index Construction 1 October, 2009 1 Vorlage: Folien von M. Schütze 1 von 43 Index Construction Hardware basics Many design decisions in information retrieval are based on hardware constraints. We begin

More information

Index construction CE-324: Modern Information Retrieval Sharif University of Technology

Index construction CE-324: Modern Information Retrieval Sharif University of Technology Index construction CE-324: Modern Information Retrieval Sharif University of Technology M. Soleymani Fall 2017 Most slides have been adapted from: Profs. Manning, Nayak & Raghavan (CS-276, Stanford) Ch.

More information

Introduction to. CS276: Information Retrieval and Web Search Christopher Manning and Prabhakar Raghavan. Lecture 4: Index Construction

Introduction to. CS276: Information Retrieval and Web Search Christopher Manning and Prabhakar Raghavan. Lecture 4: Index Construction Introduction to Information Retrieval CS276: Information Retrieval and Web Search Christopher Manning and Prabhakar Raghavan Lecture 4: Index Construction 1 Plan Last lecture: Dictionary data structures

More information

Introduction to Information Retrieval

Introduction to Information Retrieval Introduction to Information Retrieval CS276: Information Retrieval and Web Search Pandu Nayak and Prabhakar Raghavan Hamid Rastegari Lecture 4: Index Construction Plan Last lecture: Dictionary data structures

More information

Information Retrieval

Information Retrieval Introduction to CS3245 Lecture 5: Index Construction 5 Last Time Dictionary data structures Tolerant retrieval Wildcards Spelling correction Soundex a-hu hy-m n-z $m mace madden mo among amortize on abandon

More information

Course work. Today. Last lecture index construc)on. Why compression (in general)? Why compression for inverted indexes?

Course work. Today. Last lecture index construc)on. Why compression (in general)? Why compression for inverted indexes? Course work Introduc)on to Informa(on Retrieval Problem set 1 due Thursday Programming exercise 1 will be handed out today CS276: Informa)on Retrieval and Web Search Pandu Nayak and Prabhakar Raghavan

More information

CS60092: Informa0on Retrieval

CS60092: Informa0on Retrieval Introduc)on to CS60092: Informa0on Retrieval Sourangshu Bha1acharya Last lecture index construc)on Sort- based indexing Naïve in- memory inversion Blocked Sort- Based Indexing Merge sort is effec)ve for

More information

Index Construction. Slides by Manning, Raghavan, Schutze

Index Construction. Slides by Manning, Raghavan, Schutze Introduction to Information Retrieval ΕΠΛ660 Ανάκτηση Πληροφοριών και Μηχανές Αναζήτησης ης Index Construction ti Introduction to Information Retrieval Plan Last lecture: Dictionary data structures Tolerant

More information

Information Retrieval

Information Retrieval Introduction to CS3245 Lecture 5: Index Construction 5 CS3245 Last Time Dictionary data structures Tolerant retrieval Wildcards Spelling correction Soundex a-hu hy-m n-z $m mace madden mo among amortize

More information

CSCI 5417 Information Retrieval Systems Jim Martin!

CSCI 5417 Information Retrieval Systems Jim Martin! CSCI 5417 Information Retrieval Systems Jim Martin! Lecture 4 9/1/2011 Today Finish up spelling correction Realistic indexing Block merge Single-pass in memory Distributed indexing Next HW details 1 Query

More information

Introduction to Information Retrieval (Manning, Raghavan, Schutze)

Introduction to Information Retrieval (Manning, Raghavan, Schutze) Introduction to Information Retrieval (Manning, Raghavan, Schutze) Chapter 3 Dictionaries and Tolerant retrieval Chapter 4 Index construction Chapter 5 Index compression Content Dictionary data structures

More information

INDEX CONSTRUCTION 1

INDEX CONSTRUCTION 1 1 INDEX CONSTRUCTION PLAN Last lecture: Dictionary data structures Tolerant retrieval Wildcards Spell correction Soundex a-hu hy-m n-z $m mace madden This time: mo among amortize Index construction on

More information

Index Construction Introduction to Information Retrieval INF 141 Donald J. Patterson

Index Construction Introduction to Information Retrieval INF 141 Donald J. Patterson Index Construction Introduction to Information Retrieval INF 141 Donald J. Patterson Content adapted from Hinrich Schütze http://www.informationretrieval.org Index Construction Overview Introduction Hardware

More information

CS6200 Informa.on Retrieval. David Smith College of Computer and Informa.on Science Northeastern University

CS6200 Informa.on Retrieval. David Smith College of Computer and Informa.on Science Northeastern University CS6200 Informa.on Retrieval David Smith College of Computer and Informa.on Science Northeastern University Indexing Process Indexes Indexes are data structures designed to make search faster Text search

More information

Introduction to Information Retrieval

Introduction to Information Retrieval Introduction to Information Retrieval http://informationretrieval.org IIR 4: Index Construction Hinrich Schütze Center for Information and Language Processing, University of Munich 2014-04-16 1/54 Overview

More information

Introduction to Information Retrieval

Introduction to Information Retrieval Introduction to Information Retrieval http://informationretrieval.org IIR 4: Index Construction Hinrich Schütze Center for Information and Language Processing, University of Munich 2014-04-16 Schütze:

More information

PV211: Introduction to Information Retrieval

PV211: Introduction to Information Retrieval PV211: Introduction to Information Retrieval http://www.fi.muni.cz/~sojka/pv211 IIR 4: Index construction Handout version Petr Sojka, Hinrich Schütze et al. Faculty of Informatics, Masaryk University,

More information

Introduction to Information Retrieval

Introduction to Information Retrieval Introduction to Information Retrieval http://informationretrieval.org IIR 4: Index Construction Hinrich Schütze, Christina Lioma Institute for Natural Language Processing, University of Stuttgart 2010-05-04

More information

Building an Inverted Index

Building an Inverted Index Building an Inverted Index Algorithms Memory-based Disk-based (Sort-Inversion) Sorting Merging (2-way; multi-way) 2 Memory-based Inverted Index Phase I (parse and read) For each document Identify distinct

More information

CSE 7/5337: Information Retrieval and Web Search Index construction (IIR 4)

CSE 7/5337: Information Retrieval and Web Search Index construction (IIR 4) CSE 7/5337: Information Retrieval and Web Search Index construction (IIR 4) Michael Hahsler Southern Methodist University These slides are largely based on the slides by Hinrich Schütze Institute for Natural

More information

Reuters collection example (approximate # s)

Reuters collection example (approximate # s) BSBI Reuters collection example (approximate # s) 800,000 documents from the Reuters news feed 200 terms per document 400,000 unique terms number of postings 100,000,000 BSBI Reuters collection example

More information

Informa(on Retrieval

Informa(on Retrieval Introduc)on to Informa)on Retrieval CS3245 Informa(on Retrieval Lecture 7: Scoring, Term Weigh9ng and the Vector Space Model 7 Last Time: Index Construc9on Sort- based indexing Blocked Sort- Based Indexing

More information

Index Construction Introduction to Information Retrieval INF 141/ CS 121 Donald J. Patterson

Index Construction Introduction to Information Retrieval INF 141/ CS 121 Donald J. Patterson Index Construction Introduction to Information Retrieval INF 141/ CS 121 Donald J. Patterson Content adapted from Hinrich Schütze http://www.informationretrieval.org Index Construction Overview Introduction

More information

Search Engines. Informa1on Retrieval in Prac1ce. Annotations by Michael L. Nelson

Search Engines. Informa1on Retrieval in Prac1ce. Annotations by Michael L. Nelson Search Engines Informa1on Retrieval in Prac1ce Annotations by Michael L. Nelson All slides Addison Wesley, 2008 Indexes Indexes are data structures designed to make search faster Text search has unique

More information

Index Construction. Dictionary, postings, scalable indexing, dynamic indexing. Web Search

Index Construction. Dictionary, postings, scalable indexing, dynamic indexing. Web Search Index Construction Dictionary, postings, scalable indexing, dynamic indexing Web Search 1 Overview Indexes Query Indexing Ranking Results Application Documents User Information analysis Query processing

More information

Information Retrieval

Information Retrieval Information Retrieval Suan Lee - Information Retrieval - 05 Index Compression 1 05 Index Compression - Information Retrieval - 05 Index Compression 2 Last lecture index construction Sort-based indexing

More information

Behrang Mohit : txt proc! Review. Bag of word view. Document Named

Behrang Mohit : txt proc! Review. Bag of word view. Document  Named Intro to Text Processing Lecture 9 Behrang Mohit Some ideas and slides in this presenta@on are borrowed from Chris Manning and Dan Jurafsky. Review Bag of word view Document classifica@on Informa@on Extrac@on

More information

Lecture 3 Index Construction and Compression. Many thanks to Prabhakar Raghavan for sharing most content from the following slides

Lecture 3 Index Construction and Compression. Many thanks to Prabhakar Raghavan for sharing most content from the following slides Lecture 3 Index Construction and Compression Many thanks to Prabhakar Raghavan for sharing most content from the following slides Recap of the previous lecture Tokenization Term equivalence Skip pointers

More information

Information Retrieval

Information Retrieval Introduction to Information Retrieval CS3245 Information Retrieval Lecture 6: Index Compression 6 Last Time: index construction Sort- based indexing Blocked Sort- Based Indexing Merge sort is effective

More information

Ges$one Avanzata dell Informazione Part A Full- Text Informa$on Management. Full- Text Indexing

Ges$one Avanzata dell Informazione Part A Full- Text Informa$on Management. Full- Text Indexing Ges$one Avanzata dell Informazione Part A Full- Text Informa$on Management Full- Text Indexing Contents } Introduction } Inverted Indices } Construction } Searching 2 GAvI - Full- Text Informa$on Management:

More information

Information Retrieval. Danushka Bollegala

Information Retrieval. Danushka Bollegala Information Retrieval Danushka Bollegala Anatomy of a Search Engine Document Indexing Query Processing Search Index Results Ranking 2 Document Processing Format detection Plain text, PDF, PPT, Text extraction

More information

Informa(on Retrieval

Informa(on Retrieval Introduc)on to Informa)on Retrieval CS3245 Informa(on Retrieval Lecture 7: Scoring, Term Weigh9ng and the Vector Space Model 7 Last Time: Index Compression Collec9on and vocabulary sta9s9cs: Heaps and

More information

Web Information Retrieval. Lecture 4 Dictionaries, Index Compression

Web Information Retrieval. Lecture 4 Dictionaries, Index Compression Web Information Retrieval Lecture 4 Dictionaries, Index Compression Recap: lecture 2,3 Stemming, tokenization etc. Faster postings merges Phrase queries Index construction This lecture Dictionary data

More information

Informa)on Retrieval and Map- Reduce Implementa)ons. Mohammad Amir Sharif PhD Student Center for Advanced Computer Studies

Informa)on Retrieval and Map- Reduce Implementa)ons. Mohammad Amir Sharif PhD Student Center for Advanced Computer Studies Informa)on Retrieval and Map- Reduce Implementa)ons Mohammad Amir Sharif PhD Student Center for Advanced Computer Studies mas4108@louisiana.edu Map-Reduce: Why? Need to process 100TB datasets On 1 node:

More information

Efficiency. Efficiency: Indexing. Indexing. Efficiency Techniques. Inverted Index. Inverted Index (COSC 488)

Efficiency. Efficiency: Indexing. Indexing. Efficiency Techniques. Inverted Index. Inverted Index (COSC 488) Efficiency Efficiency: Indexing (COSC 488) Nazli Goharian nazli@cs.georgetown.edu Difficult to analyze sequential IR algorithms: data and query dependency (query selectivity). O(q(cf max )) -- high estimate-

More information

Administrative. Distributed indexing. Index Compression! What I did last summer lunch talks today. Master. Tasks

Administrative. Distributed indexing. Index Compression! What I did last summer lunch talks today. Master. Tasks Administrative Index Compression! n Assignment 1? n Homework 2 out n What I did last summer lunch talks today David Kauchak cs458 Fall 2012 adapted from: http://www.stanford.edu/class/cs276/handouts/lecture5-indexcompression.ppt

More information

Introduc)on to Informa)on Retrieval. Index Construc.on. Slides by Manning, Raghavan, Schutze

Introduc)on to Informa)on Retrieval. Index Construc.on. Slides by Manning, Raghavan, Schutze Index Construc.on Slides by Manning, Raghavan, Schutze 1 Plan Last lecture: Dic.onary data structures Tolerant retrieval Wildcards Spell correc.on Soundex a-hu hy-m n-z $m mace madden mo among amortize

More information

Transistor: Digital Building Blocks

Transistor: Digital Building Blocks Final Exam Review Transistor: Digital Building Blocks Logically, each transistor acts as a switch Combined to implement logic functions (gates) AND, OR, NOT Combined to build higher-level structures Multiplexer,

More information

Main Points. File systems. Storage hardware characteris7cs. File system usage Useful abstrac7ons on top of physical devices

Main Points. File systems. Storage hardware characteris7cs. File system usage Useful abstrac7ons on top of physical devices Storage Systems Main Points File systems Useful abstrac7ons on top of physical devices Storage hardware characteris7cs Disks and flash memory File system usage pa@erns File System Abstrac7on File system

More information

Data-analysis and Retrieval Boolean retrieval, posting lists and dictionaries

Data-analysis and Retrieval Boolean retrieval, posting lists and dictionaries Data-analysis and Retrieval Boolean retrieval, posting lists and dictionaries Hans Philippi (based on the slides from the Stanford course on IR) April 25, 2018 Boolean retrieval, posting lists & dictionaries

More information

CS347. Lecture 2 April 9, Prabhakar Raghavan

CS347. Lecture 2 April 9, Prabhakar Raghavan CS347 Lecture 2 April 9, 2001 Prabhakar Raghavan Today s topics Inverted index storage Compressing dictionaries into memory Processing Boolean queries Optimizing term processing Skip list encoding Wild-card

More information

Today s topics CS347. Inverted index storage. Inverted index storage. Processing Boolean queries. Lecture 2 April 9, 2001 Prabhakar Raghavan

Today s topics CS347. Inverted index storage. Inverted index storage. Processing Boolean queries. Lecture 2 April 9, 2001 Prabhakar Raghavan Today s topics CS347 Lecture 2 April 9, 2001 Prabhakar Raghavan Inverted index storage Compressing dictionaries into memory Processing Boolean queries Optimizing term processing Skip list encoding Wild-card

More information

Recap: lecture 2 CS276A Information Retrieval

Recap: lecture 2 CS276A Information Retrieval Recap: lecture 2 CS276A Information Retrieval Stemming, tokenization etc. Faster postings merges Phrase queries Lecture 3 This lecture Index compression Space estimation Corpus size for estimates Consider

More information

Chapter 12: Query Processing

Chapter 12: Query Processing Chapter 12: Query Processing Database System Concepts, 6 th Ed. See www.db-book.com for conditions on re-use Basic Steps in Query Processing 1. Parsing and translation 2. Optimization 3. Evaluation 12.2

More information

Analyzing the performance of top-k retrieval algorithms. Marcus Fontoura Google, Inc

Analyzing the performance of top-k retrieval algorithms. Marcus Fontoura Google, Inc Analyzing the performance of top-k retrieval algorithms Marcus Fontoura Google, Inc This talk Largely based on the paper Evaluation Strategies for Top-k Queries over Memory-Resident Inverted Indices, VLDB

More information

Informa(on Retrieval. Administra*ve. Sta*s*cal MT Overview. Problems for Sta*s*cal MT

Informa(on Retrieval. Administra*ve. Sta*s*cal MT Overview. Problems for Sta*s*cal MT Administra*ve Introduc*on to Informa(on Retrieval CS457 Fall 2011! David Kauchak Projects Status 2 on Friday Paper next Friday work on the paper in parallel if you re not done with experiments by early

More information

Recall from Tuesday. Our solution to fragmentation is to split up a process s address space into smaller chunks. Physical Memory OS.

Recall from Tuesday. Our solution to fragmentation is to split up a process s address space into smaller chunks. Physical Memory OS. Paging 11/10/16 Recall from Tuesday Our solution to fragmentation is to split up a process s address space into smaller chunks. Physical Memory OS Process 3 Process 3 OS: Place Process 3 Process 1 Process

More information

Informa(on Retrieval

Informa(on Retrieval Introduc)on to Informa(on Retrieval cs160 Introduction David Kauchak adapted from: h6p://www.stanford.edu/class/cs276/handouts/lecture1 intro.ppt Introduc)ons Name/nickname Dept., college and year One

More information

ECE331: Hardware Organization and Design

ECE331: Hardware Organization and Design ECE331: Hardware Organization and Design Lecture 29: an Introduction to Virtual Memory Adapted from Computer Organization and Design, Patterson & Hennessy, UCB Overview Virtual memory used to protect applications

More information

Index Compression. David Kauchak cs160 Fall 2009 adapted from:

Index Compression. David Kauchak cs160 Fall 2009 adapted from: Index Compression David Kauchak cs160 Fall 2009 adapted from: http://www.stanford.edu/class/cs276/handouts/lecture5-indexcompression.ppt Administrative Homework 2 Assignment 1 Assignment 2 Pair programming?

More information

Part 2: Boolean Retrieval Francesco Ricci

Part 2: Boolean Retrieval Francesco Ricci Part 2: Boolean Retrieval Francesco Ricci Most of these slides comes from the course: Information Retrieval and Web Search, Christopher Manning and Prabhakar Raghavan Content p Term document matrix p Information

More information

Introduction to Information Retrieval

Introduction to Information Retrieval Introduction to Information Retrieval http://informationretrieval.org IIR 5: Index Compression Hinrich Schütze Center for Information and Language Processing, University of Munich 2014-04-17 1/59 Overview

More information

Developing MapReduce Programs

Developing MapReduce Programs Cloud Computing Developing MapReduce Programs Dell Zhang Birkbeck, University of London 2017/18 MapReduce Algorithm Design MapReduce: Recap Programmers must specify two functions: map (k, v) * Takes

More information

Algorithms Lecture 11. UC Davis, ECS20, Winter Discrete Mathematics for Computer Science

Algorithms Lecture 11. UC Davis, ECS20, Winter Discrete Mathematics for Computer Science UC Davis, ECS20, Winter 2017 Discrete Mathematics for Computer Science Prof. Raissa D Souza (slides adopted from Michael Frank and Haluk Bingöl) Lecture 11 Algorithms 3.1-3.2 Algorithms Member of the House

More information

Advanced Database Systems

Advanced Database Systems Lecture IV Query Processing Kyumars Sheykh Esmaili Basic Steps in Query Processing 2 Query Optimization Many equivalent execution plans Choosing the best one Based on Heuristics, Cost Will be discussed

More information

EECS 395/495 Lecture 3 Scalable Indexing, Searching, and Crawling

EECS 395/495 Lecture 3 Scalable Indexing, Searching, and Crawling EECS 395/495 Lecture 3 Scalable Indexing, Searching, and Crawling Doug Downey Based partially on slides by Christopher D. Manning, Prabhakar Raghavan, Hinrich Schütze Announcements Project progress report

More information

The Right Read Optimization is Actually Write Optimization. Leif Walsh

The Right Read Optimization is Actually Write Optimization. Leif Walsh The Right Read Optimization is Actually Write Optimization Leif Walsh leif@tokutek.com The Right Read Optimization is Write Optimization Situation: I have some data. I want to learn things about the world,

More information

Map-Reduce. Marco Mura 2010 March, 31th

Map-Reduce. Marco Mura 2010 March, 31th Map-Reduce Marco Mura (mura@di.unipi.it) 2010 March, 31th This paper is a note from the 2009-2010 course Strumenti di programmazione per sistemi paralleli e distribuiti and it s based by the lessons of

More information

Main Points. File systems. Storage hardware characteris7cs. File system usage Useful abstrac7ons on top of physical devices

Main Points. File systems. Storage hardware characteris7cs. File system usage Useful abstrac7ons on top of physical devices Storage Systems Main Points File systems Useful abstrac7ons on top of physical devices Storage hardware characteris7cs Disks and flash memory File system usage pa@erns File Systems Abstrac7on on top of

More information

Document Representation : Quiz

Document Representation : Quiz Document Representation : Quiz Q1. In-memory Index construction faces following problems:. (A) Scaling problem (B) The optimal use of Hardware resources for scaling (C) Easily keep entire data into main

More information

ECS 165B: Database System Implementa6on Lecture 3

ECS 165B: Database System Implementa6on Lecture 3 ECS 165B: Database System Implementa6on Lecture 3 UC Davis April 4, 2011 Acknowledgements: some slides based on earlier ones by Raghu Ramakrishnan, Johannes Gehrke, Jennifer Widom, Bertram Ludaescher,

More information

Query and Join Op/miza/on 11/5

Query and Join Op/miza/on 11/5 Query and Join Op/miza/on 11/5 Overview Recap of Merge Join Op/miza/on Logical Op/miza/on Histograms (How Es/mates Work. Big problem!) Physical Op/mizer (if we have /me) Recap on Merge Key (Simple) Idea

More information

Chapter 12: Query Processing. Chapter 12: Query Processing

Chapter 12: Query Processing. Chapter 12: Query Processing Chapter 12: Query Processing Database System Concepts, 6 th Ed. See www.db-book.com for conditions on re-use Chapter 12: Query Processing Overview Measures of Query Cost Selection Operation Sorting Join

More information

Why Sort? Data requested in sorted order. Sor,ng is first step in bulk loading B+ tree index. e.g., find students in increasing GPA order

Why Sort? Data requested in sorted order. Sor,ng is first step in bulk loading B+ tree index. e.g., find students in increasing GPA order External Sor,ng Outline Exam will be graded a5er everyone takes it There are two,mes to be fair on an exam, when it s wriaen and when it s graded you only need to trust that I ll be fair at one of them.

More information

CS 61C: Great Ideas in Computer Architecture Direct- Mapped Caches. Increasing distance from processor, decreasing speed.

CS 61C: Great Ideas in Computer Architecture Direct- Mapped Caches. Increasing distance from processor, decreasing speed. CS 6C: Great Ideas in Computer Architecture Direct- Mapped s 9/27/2 Instructors: Krste Asanovic, Randy H Katz hdp://insteecsberkeleyedu/~cs6c/fa2 Fall 2 - - Lecture #4 New- School Machine Structures (It

More information

NOTE: sorting using B-trees to be assigned for reading after we cover B-trees.

NOTE: sorting using B-trees to be assigned for reading after we cover B-trees. External Sorting Chapter 13 (Sec. 13-1-13.5): Ramakrishnan & Gehrke and Chapter 11 (Sec. 11.4-11.5): G-M et al. (R2) OR Chapter 2 (Sec. 2.4-2.5): Garcia-et Molina al. (R1) NOTE: sorting using B-trees to

More information

Lecture 8: Memory Management

Lecture 8: Memory Management Lecture 8: Memory Management CSE 120: Principles of Opera>ng Systems UC San Diego: Summer Session I, 2009 Frank Uyeda Announcements PeerWise ques>ons due tomorrow. Project 2 is due on Friday. Milestone

More information

Query Evaluation Strategies

Query Evaluation Strategies Introduction to Search Engine Technology Term-at-a-Time and Document-at-a-Time Evaluation Ronny Lempel Yahoo! Labs (Many of the following slides are courtesy of Aya Soffer and David Carmel, IBM Haifa Research

More information

Lecture 5: Information Retrieval using the Vector Space Model

Lecture 5: Information Retrieval using the Vector Space Model Lecture 5: Information Retrieval using the Vector Space Model Trevor Cohn (tcohn@unimelb.edu.au) Slide credits: William Webber COMP90042, 2015, Semester 1 What we ll learn today How to take a user query

More information

Informa/on Retrieval. Text Search. CISC437/637, Lecture #23 Ben CartereAe. Consider a database consis/ng of long textual informa/on fields

Informa/on Retrieval. Text Search. CISC437/637, Lecture #23 Ben CartereAe. Consider a database consis/ng of long textual informa/on fields Informa/on Retrieval CISC437/637, Lecture #23 Ben CartereAe Copyright Ben CartereAe 1 Text Search Consider a database consis/ng of long textual informa/on fields News ar/cles, patents, web pages, books,

More information

CMSC424: Database Design. Instructor: Amol Deshpande

CMSC424: Database Design. Instructor: Amol Deshpande CMSC424: Database Design Instructor: Amol Deshpande amol@cs.umd.edu Databases Data Models Conceptual representa1on of the data Data Retrieval How to ask ques1ons of the database How to answer those ques1ons

More information

CPSC 330 Computer Organization

CPSC 330 Computer Organization CPSC 33 Computer Organization Lecture 7c Memory Adapted from CS52, CS 6C and notes by Kevin Peterson and Morgan Kaufmann Publishers, Copyright 24. Improving cache performance Two ways of improving performance:

More information

Information Retrieval II

Information Retrieval II Information Retrieval II David Hawking 30 Sep 2010 Machine Learning Summer School, ANU Session Outline Ranking documents in response to a query Measuring the quality of such rankings Case Study: Tuning

More information

Information Retrieval

Information Retrieval Introduction to Information Retrieval Boolean retrieval Basic assumptions of Information Retrieval Collection: Fixed set of documents Goal: Retrieve documents with information that is relevant to the user

More information

CS6200 Information Retrieval. David Smith College of Computer and Information Science Northeastern University

CS6200 Information Retrieval. David Smith College of Computer and Information Science Northeastern University CS6200 Information Retrieval David Smith College of Computer and Information Science Northeastern University Indexing Process!2 Indexes Storing document information for faster queries Indexes Index Compression

More information

Text Analytics. Index-Structures for Information Retrieval. Ulf Leser

Text Analytics. Index-Structures for Information Retrieval. Ulf Leser Text Analytics Index-Structures for Information Retrieval Ulf Leser Content of this Lecture Inverted files Storage structures Phrase and proximity search Building and updating the index Using a RDBMS Ulf

More information

Computer Systems C S Cynthia Lee Today s materials adapted from Kevin Webb at Swarthmore College

Computer Systems C S Cynthia Lee Today s materials adapted from Kevin Webb at Swarthmore College Computer Systems C S 0 7 Cynthia Lee Today s materials adapted from Kevin Webb at Swarthmore College 2 Today s Topics TODAY S LECTURE: Caching ANNOUNCEMENTS: Assign6 & Assign7 due Friday! 6 & 7 NO late

More information

Distributed computing: index building and use

Distributed computing: index building and use Distributed computing: index building and use Distributed computing Goals Distributing computation across several machines to Do one computation faster - latency Do more computations in given time - throughput

More information

INFO 4300 / CS4300 Information Retrieval. slides adapted from Hinrich Schütze s, linked from

INFO 4300 / CS4300 Information Retrieval. slides adapted from Hinrich Schütze s, linked from INFO 4300 / CS4300 Information Retrieval slides adapted from Hinrich Schütze s, linked from http://informationretrieval.org/ IR 6: Index Compression Paul Ginsparg Cornell University, Ithaca, NY 15 Sep

More information

More on indexing CE-324: Modern Information Retrieval Sharif University of Technology

More on indexing CE-324: Modern Information Retrieval Sharif University of Technology More on indexing CE-324: Modern Information Retrieval Sharif University of Technology M. Soleymani Fall 2014 Most slides have been adapted from: Profs. Manning, Nayak & Raghavan (CS-276, Stanford) Plan

More information

Indexing. UCSB 290N. Mainly based on slides from the text books of Croft/Metzler/Strohman and Manning/Raghavan/Schutze

Indexing. UCSB 290N. Mainly based on slides from the text books of Croft/Metzler/Strohman and Manning/Raghavan/Schutze Indexing UCSB 290N. Mainly based on slides from the text books of Croft/Metzler/Strohman and Manning/Raghavan/Schutze All slides Addison Wesley, 2008 Table of Content Inverted index with positional information

More information

Introduction to Database Systems CSE 444, Winter 2011

Introduction to Database Systems CSE 444, Winter 2011 Version March 15, 2011 Introduction to Database Systems CSE 444, Winter 2011 Lecture 20: Operator Algorithms Where we are / and where we go 2 Why Learn About Operator Algorithms? Implemented in commercial

More information

Embedded Systems Dr. Santanu Chaudhury Department of Electrical Engineering Indian Institute of Technology, Delhi

Embedded Systems Dr. Santanu Chaudhury Department of Electrical Engineering Indian Institute of Technology, Delhi Embedded Systems Dr. Santanu Chaudhury Department of Electrical Engineering Indian Institute of Technology, Delhi Lecture - 13 Virtual memory and memory management unit In the last class, we had discussed

More information

Memory Management. Kevin Webb Swarthmore College February 27, 2018

Memory Management. Kevin Webb Swarthmore College February 27, 2018 Memory Management Kevin Webb Swarthmore College February 27, 2018 Today s Goals Shifting topics: different process resource memory Motivate virtual memory, including what it might look like without it

More information

CS160 - Assignment 2 Due: Friday Sept. 25, 6pm

CS160 - Assignment 2 Due: Friday Sept. 25, 6pm CS160 - Assignment 2 Due: Friday Sept. 25, 6pm For the next step in our IR system we re going to be adding functionality to do boolean queries. For our purposes a boolean query consists of an expression.

More information

Query Evaluation Strategies

Query Evaluation Strategies Introduction to Search Engine Technology Term-at-a-Time and Document-at-a-Time Evaluation Ronny Lempel Yahoo! Research (Many of the following slides are courtesy of Aya Soffer and David Carmel, IBM Haifa

More information

Mul$media Techniques in Android. Some of the informa$on in this sec$on is adapted from WiseAndroid.com

Mul$media Techniques in Android. Some of the informa$on in this sec$on is adapted from WiseAndroid.com Mul$media Techniques in Android Some of the informa$on in this sec$on is adapted from WiseAndroid.com Mul$media Support Android provides comprehensive mul$media func$onality: Audio: all standard formats

More information

Indexing. CS6200: Information Retrieval. Index Construction. Slides by: Jesse Anderton

Indexing. CS6200: Information Retrieval. Index Construction. Slides by: Jesse Anderton Indexing Index Construction CS6200: Information Retrieval Slides by: Jesse Anderton Motivation: Scale Corpus Terms Docs Entries A term incidence matrix with V terms and D documents has O(V x D) entries.

More information