High-Performance Key-Value Store on OpenSHMEM

Size: px
Start display at page:

Download "High-Performance Key-Value Store on OpenSHMEM"

Transcription

1 High-Performance Key-Value Store on OpenSHMEM Huansong Fu*, Manjunath Gorentla Venkata, Ahana Roy Choudhury*, Neena Imam, Weikuan Yu* *Florida State University Oak Ridge National Laboratory

2 Outline Background SHMEMCache Overview Challenges Design Experiments Conclusion S-2

3 Distributed In-memory Key-Value Store Caching popular key-value (KV) pairs in memory in a distributed manner for fast access (mainly reads). E.g. Memcached used by Facebook serves >1 billion request per second. Client-server architecture. Client and server communicate over TCP/IP. //Key-value Operations SET(key, value); GET(key); memory memory Servers Backend Database Client HDD fast memory slow S-3

4 Memcached Structure Two-stage hashing and KV pair locating 1 st stage to a server and 2 nd stage to a hash entry in that server. A hash entry contains pointers to locate KV pairs. Server chases chained pointers to find desired KV pair. Storage and eviction policy Memory storage is divided into KV blocks in various sizes. A KV pair is stored in the smallest possible KV block. Least Recent Used (LRU) for evicting KV pairs. Server Client 2 nd stage 1 st stage Server Chaining Hash entry KV block KV evicted S-4

5 PGAS and OpenSHMEM Partitioned Global Address Space (PGAS) enables a large memory address space for parallel programming. UPC, CAF, SHMEM. OpenSHMEM is a recent standardization effort of SHMEM. Participating processes are called Processing Elements (PE). A symmetric memory space that is globally-visible. Variables have same name and same address on different PE. Communication through one-sided operations. Put: write to symmetric memory. Get: read from symmetric memory. S-5

6 Our Objective There is a high suitability of leveraging OpenSHMEM s feature set for building a distributed in-memory key-value store. Similar memory-style addressing: client sees memory storage. One-sided communication relieves the server of participation in communication. Portability on both commodity servers and HPC systems. We propose SHMEMCache, a high-performance key-value store built on top of OpenSHMEM. S-6

7 Outline Background SHMEMCache Overview Challenges Design Experiments Conclusion S-7

8 Structure of SHMEMCache Server stores KV pairs in symmetric memory. Client performs two types of KV operations. Direct KV operation: client directly accessing KV pairs. Active KV operation: client informs server to conduct KV operations by writing messages. PE 0 (client) Pointer Directory Direct KV Operation SET/GET Active KV Operation OpenSHMEM one-sided communication hash table PE 1 (server) KV blocks message chunks Symmetric memory There are three major challenges in realizing this structure. S-8

9 Challenges #1 Concurrent reads/writes cause read-write & write-write races. Solution: read-friendly exclusive write. Client Server Communicate 1. Read-write & write-write races KV block S-9

10 Read-Friendly Exclusive Write Key issue: concurrent write can invalidate both read and write. Write must be conducted exclusively. Solving write-write race: use locks to write exclusively. Locks are expensive, so not for the much more frequent reads. Solving read-write race: a new optimistic concurrency control. Existing solutions are heavy-weight: checksum, cacheline versioning We propose an efficient head-tail versioning mechanism. Combining locking and versioning operations to minimize overheads. S-10

11 Read-Friendly Exclusive Write (cont.) Structure of KV block head version (e.g. v0) KV pair unused space tail version + tag + lock bit Write operations: (1) an atomic CAS for locking and writing tail version; (2) a Put for writing KV content and unlocking; (3) a Get for writing head version. Read operation: A Get for reading the whole KV block. Reader B read v0 read v1 read v0 read v1 read v1 read v1 Reader A Writer B Writer A lock & write v1 fail to lock Exclusive write unlock write v1 S-11 lock & write v2 Time

12 Challenges #2 Concurrent reads/writes cause read/write & write/write races. Remotely locating a KV pair incurs costly remote pointer chasing. Solution: set-associative hash table and pointer directory. 1. Read-write & write-write races Chaining Communicate Hash entry 2. Remote pointer chasing KV block S-12

13 Mitigating Remote Pointer Chasing Set-associative hash table Multiple pointers are fetched with one hash lookup. If pointer not found in a hash entry, only server chases pointers Main entry Hash Table K-V Store unused bits Tag Pointer sub-entry Pointer directory New pointer is stored after first read/write. Recency and count indicate how recent and frequent a KV pair has been accessed. They help decide which pointer to keep in the directory. S-13 Tag Pointer Recency Count Pointer directory

14 Challenges #3 Concurrent reads/writes cause read/write & write/write races. Remotely locating a KV pair incurs costly remote pointer chasing. Server/client is unaware of other s access/eviction actions. Solution: Coarse-grained cache management. 1. Read-write & write-write races 2. Remote pointer chasing Client Server KV block 3. Unawareness of access & eviction access unware eviction unware KV evicted S-14

15 Coarse-grained Cache Management Relaxed recency definition from time point to time range. Non-intrusive recency update When recency changes, client directly update it using atomic CAS. Batch eviction and lazy invalidation Server evicts KV pairs in batches with the oldest recency, and notifies client the new expiration bar. KV pair that has higher recency than the evicted batch will be updated. New KV pair will be inserted to the top. Client lazily invalidate pointers. Pointer directory Lazy invalidation Client non-intrusive update S-15 insert update expiration bar = 100 batch eviction Server

16 Outline Background SHMEMCache Overview Challenges Design Experiments Conclusion S-16

17 Experimental Setup Innovation An in-house cluster with 21 dual-socket server nodes, each featuring 10 Intel Xeon(R) cores and 64 GB memory. All nodes are connected through an FDR Infiniband interconnect with the ConnectX- 3 NIC. Titan supercomputer Titan is a hybrid-architecture Cray XK7 system, which consists of 18,688 nodes and each node is equipped with a 16-core AMD Opteron CPU and 32GB of DDR3 memory. Benchmarks: microbenchmark and YCSB. OpenSHMEM version In-house cluster: Open MPI v Titan: Cray SHMEM v7.4.0 S-17

18 Latency Innovation cluster SHMEMCache outperforms Memcached by 25x and 20x for SET and GET latencies. SHMEMCache outperforms HiBD by 128% and 16% for SET and GET latencies Memcached HiBD SHMEMCache 1000 Memcached HiBD SHMEMCache Time (µs) Time (µs) K 64K 512K K 64K 512K Value Size(Bytes) Value Size(Bytes) Fig. 1 SET latency. Fig. 2 GET latency. S-18

19 Latency (cont.) Titan supercomputer Direct KV operation is consistently faster. SHMEMCache s achieves comparable performance on Titan with the innovation cluster Active Direct 1000 Active Direct Time (µs) Time (µs) K 64K 512K Value Size(Bytes) Fig. 1 SET latency K 64K 512K Value Size(Bytes) Fig. 2 GET latency. S-19

20 Throughput Innovation cluster SHMEMCache outperforms Memcached by 19x and 33x for 32-Byte and 4-KB SET, and 14x and 30x for 32-Byte and 4-KB GET Throughput (Kops/S) Memcached (32 Byte) SHMEMCache (32 Byte) Memcached (4 KB) SHMEMCache (4 KB) Throughput (Kops/S) Memcached (32 Byte) SHMEMCache (32 Byte) Memcached (4 KB) SHMEMCache (4 KB) Number of Clients Number of Clients Fig. 1 SET throughput. Fig. 2 GET throughput. S-20

21 Throughput (cont.) Titan supercomputer SHMEMCache scales well on Titan supercomputer to up to 1024 machines Byte 4 KB Byte 4 KB Throughput (Kops/S) Throughput (Kops/S) Number of Clients Number of Clients Fig. 1 SET throughput. Fig. 2 GET throughput. S-21

22 Hit Ratio of Pointer Directory Varying YCSB workloads and number of entries in the pointer directory. Larger pointer directory helps increase hit ratio. The impact is getting smaller due to less popular KV pairs. No need to maximize its size at the cost of low space efficiency. Pointer Directory Hit Ratio % SET + 0% GET 128 entries 256 entries 512 entries 50% SET + 50% GET 5% SET + 95% GET 0% SET + 100% GET S-22

23 Conclusion SHMEMCache, a high-performance distributed in-memory KV store built on top of OpenSHMEM. Novel designs to tackle three major challenges. Read-friendly write for solving read-write and write-write races. Set-associative hash table and pointer directory for mitigating remote pointer chasing. Coarse-grained cache management for reducing high costs of informing server/client about access/eviction operations. Evaluation results showing that SHEMMCache achieves highperformance at scale of S-23

24 Acknowledgment S-24

25 Thank You and Questions? S-25

Portable SHMEMCache: A High-Performance Key-Value Store on OpenSHMEM and MPI

Portable SHMEMCache: A High-Performance Key-Value Store on OpenSHMEM and MPI Portable SHMEMCache: A High-Performance Key-Value Store on OpenSHMEM and MPI Huansong Fu*, Manjunath Gorentla Venkata, Neena Imam, Weikuan Yu* *Florida State University Oak Ridge National Laboratory Outline

More information

High-Performance Key-Value Store On OpenSHMEM

High-Performance Key-Value Store On OpenSHMEM High-Performance Key-Value Store On OpenSHMEM Huansong Fu Manjunath Gorentla Venkata Ahana Roy Choudhury Neena Imam Weikuan Yu Florida State University Oak Ridge National Laboratory {fu,roychou,yuw}@cs.fsu.edu

More information

DISP: Optimizations Towards Scalable MPI Startup

DISP: Optimizations Towards Scalable MPI Startup DISP: Optimizations Towards Scalable MPI Startup Huansong Fu, Swaroop Pophale*, Manjunath Gorentla Venkata*, Weikuan Yu Florida State University *Oak Ridge National Laboratory Outline Background and motivation

More information

MemC3: MemCache with CLOCK and Concurrent Cuckoo Hashing

MemC3: MemCache with CLOCK and Concurrent Cuckoo Hashing MemC3: MemCache with CLOCK and Concurrent Cuckoo Hashing Bin Fan (CMU), Dave Andersen (CMU), Michael Kaminsky (Intel Labs) NSDI 2013 http://www.pdl.cmu.edu/ 1 Goal: Improve Memcached 1. Reduce space overhead

More information

MemC3: Compact and Concurrent MemCache with Dumber Caching and Smarter Hashing

MemC3: Compact and Concurrent MemCache with Dumber Caching and Smarter Hashing To appear in Proceedings of the 1th USENIX Symposium on Networked Systems Design and Implementation (NSDI 13), Lombard, IL, April 213 MemC3: Compact and Concurrent MemCache with Dumber Caching and Smarter

More information

Big and Fast. Anti-Caching in OLTP Systems. Justin DeBrabant

Big and Fast. Anti-Caching in OLTP Systems. Justin DeBrabant Big and Fast Anti-Caching in OLTP Systems Justin DeBrabant Online Transaction Processing transaction-oriented small footprint write-intensive 2 A bit of history 3 OLTP Through the Years relational model

More information

Strata: A Cross Media File System. Youngjin Kwon, Henrique Fingler, Tyler Hunt, Simon Peter, Emmett Witchel, Thomas Anderson

Strata: A Cross Media File System. Youngjin Kwon, Henrique Fingler, Tyler Hunt, Simon Peter, Emmett Witchel, Thomas Anderson A Cross Media File System Youngjin Kwon, Henrique Fingler, Tyler Hunt, Simon Peter, Emmett Witchel, Thomas Anderson 1 Let s build a fast server NoSQL store, Database, File server, Mail server Requirements

More information

Goals. Facebook s Scaling Problem. Scaling Strategy. Facebook Three Layer Architecture. Workload. Memcache as a Service.

Goals. Facebook s Scaling Problem. Scaling Strategy. Facebook Three Layer Architecture. Workload. Memcache as a Service. Goals Memcache as a Service Tom Anderson Rapid application development - Speed of adding new features is paramount Scale Billions of users Every user on FB all the time Performance Low latency for every

More information

PebblesDB: Building Key-Value Stores using Fragmented Log Structured Merge Trees

PebblesDB: Building Key-Value Stores using Fragmented Log Structured Merge Trees PebblesDB: Building Key-Value Stores using Fragmented Log Structured Merge Trees Pandian Raju 1, Rohan Kadekodi 1, Vijay Chidambaram 1,2, Ittai Abraham 2 1 The University of Texas at Austin 2 VMware Research

More information

A Distributed Hash Table for Shared Memory

A Distributed Hash Table for Shared Memory A Distributed Hash Table for Shared Memory Wytse Oortwijn Formal Methods and Tools, University of Twente August 31, 2015 Wytse Oortwijn (Formal Methods and Tools, AUniversity Distributed of Twente) Hash

More information

Cascade Mapping: Optimizing Memory Efficiency for Flash-based Key-value Caching

Cascade Mapping: Optimizing Memory Efficiency for Flash-based Key-value Caching Cascade Mapping: Optimizing Memory Efficiency for Flash-based Key-value Caching Kefei Wang and Feng Chen Louisiana State University SoCC '18 Carlsbad, CA Key-value Systems in Internet Services Key-value

More information

Designing Shared Address Space MPI libraries in the Many-core Era

Designing Shared Address Space MPI libraries in the Many-core Era Designing Shared Address Space MPI libraries in the Many-core Era Jahanzeb Hashmi hashmi.29@osu.edu (NBCL) The Ohio State University Outline Introduction and Motivation Background Shared-memory Communication

More information

Closing the Performance Gap Between Volatile and Persistent K-V Stores

Closing the Performance Gap Between Volatile and Persistent K-V Stores Closing the Performance Gap Between Volatile and Persistent K-V Stores Yihe Huang, Harvard University Matej Pavlovic, EPFL Virendra Marathe, Oracle Labs Margo Seltzer, Oracle Labs Tim Harris, Oracle Labs

More information

Designing Next-Generation Data- Centers with Advanced Communication Protocols and Systems Services. Presented by: Jitong Chen

Designing Next-Generation Data- Centers with Advanced Communication Protocols and Systems Services. Presented by: Jitong Chen Designing Next-Generation Data- Centers with Advanced Communication Protocols and Systems Services Presented by: Jitong Chen Outline Architecture of Web-based Data Center Three-Stage framework to benefit

More information

S. Narravula, P. Balaji, K. Vaidyanathan, H.-W. Jin and D. K. Panda. The Ohio State University

S. Narravula, P. Balaji, K. Vaidyanathan, H.-W. Jin and D. K. Panda. The Ohio State University Architecture for Caching Responses with Multiple Dynamic Dependencies in Multi-Tier Data- Centers over InfiniBand S. Narravula, P. Balaji, K. Vaidyanathan, H.-W. Jin and D. K. Panda The Ohio State University

More information

CPHash: A Cache-Partitioned Hash Table Zviad Metreveli, Nickolai Zeldovich, and M. Frans Kaashoek

CPHash: A Cache-Partitioned Hash Table Zviad Metreveli, Nickolai Zeldovich, and M. Frans Kaashoek Computer Science and Artificial Intelligence Laboratory Technical Report MIT-CSAIL-TR-211-51 November 26, 211 : A Cache-Partitioned Hash Table Zviad Metreveli, Nickolai Zeldovich, and M. Frans Kaashoek

More information

LAMMPS-KOKKOS Performance Benchmark and Profiling. September 2015

LAMMPS-KOKKOS Performance Benchmark and Profiling. September 2015 LAMMPS-KOKKOS Performance Benchmark and Profiling September 2015 2 Note The following research was performed under the HPC Advisory Council activities Participating vendors: Intel, Dell, Mellanox, NVIDIA

More information

Be Fast, Cheap and in Control with SwitchKV. Xiaozhou Li

Be Fast, Cheap and in Control with SwitchKV. Xiaozhou Li Be Fast, Cheap and in Control with SwitchKV Xiaozhou Li Goal: fast and cost-efficient key-value store Store, retrieve, manage key-value objects Get(key)/Put(key,value)/Delete(key) Target: cluster-level

More information

Advanced RDMA-based Admission Control for Modern Data-Centers

Advanced RDMA-based Admission Control for Modern Data-Centers Advanced RDMA-based Admission Control for Modern Data-Centers Ping Lai Sundeep Narravula Karthikeyan Vaidyanathan Dhabaleswar. K. Panda Computer Science & Engineering Department Ohio State University Outline

More information

A Plugin-based Approach to Exploit RDMA Benefits for Apache and Enterprise HDFS

A Plugin-based Approach to Exploit RDMA Benefits for Apache and Enterprise HDFS A Plugin-based Approach to Exploit RDMA Benefits for Apache and Enterprise HDFS Adithya Bhat, Nusrat Islam, Xiaoyi Lu, Md. Wasi- ur- Rahman, Dip: Shankar, and Dhabaleswar K. (DK) Panda Network- Based Compu2ng

More information

High Performance Distributed Lock Management Services using Network-based Remote Atomic Operations

High Performance Distributed Lock Management Services using Network-based Remote Atomic Operations High Performance Distributed Lock Management Services using Network-based Remote Atomic Operations S. Narravula, A. Mamidala, A. Vishnu, K. Vaidyanathan, and D. K. Panda Presented by Lei Chai Network Based

More information

An Efficient Memory-Mapped Key-Value Store for Flash Storage

An Efficient Memory-Mapped Key-Value Store for Flash Storage An Efficient Memory-Mapped Key-Value Store for Flash Storage Anastasios Papagiannis, Giorgos Saloustros, Pilar González-Férez, and Angelos Bilas Institute of Computer Science (ICS) Foundation for Research

More information

Write-Optimized and High-Performance Hashing Index Scheme for Persistent Memory

Write-Optimized and High-Performance Hashing Index Scheme for Persistent Memory Write-Optimized and High-Performance Hashing Index Scheme for Persistent Memory Pengfei Zuo, Yu Hua, and Jie Wu, Huazhong University of Science and Technology https://www.usenix.org/conference/osdi18/presentation/zuo

More information

MULTIPROCESSORS AND THREAD-LEVEL. B649 Parallel Architectures and Programming

MULTIPROCESSORS AND THREAD-LEVEL. B649 Parallel Architectures and Programming MULTIPROCESSORS AND THREAD-LEVEL PARALLELISM B649 Parallel Architectures and Programming Motivation behind Multiprocessors Limitations of ILP (as already discussed) Growing interest in servers and server-performance

More information

Can Parallel Replication Benefit Hadoop Distributed File System for High Performance Interconnects?

Can Parallel Replication Benefit Hadoop Distributed File System for High Performance Interconnects? Can Parallel Replication Benefit Hadoop Distributed File System for High Performance Interconnects? N. S. Islam, X. Lu, M. W. Rahman, and D. K. Panda Network- Based Compu2ng Laboratory Department of Computer

More information

MULTIPROCESSORS AND THREAD-LEVEL PARALLELISM. B649 Parallel Architectures and Programming

MULTIPROCESSORS AND THREAD-LEVEL PARALLELISM. B649 Parallel Architectures and Programming MULTIPROCESSORS AND THREAD-LEVEL PARALLELISM B649 Parallel Architectures and Programming Motivation behind Multiprocessors Limitations of ILP (as already discussed) Growing interest in servers and server-performance

More information

Supporting Strong Cache Coherency for Active Caches in Multi-Tier Data-Centers over InfiniBand

Supporting Strong Cache Coherency for Active Caches in Multi-Tier Data-Centers over InfiniBand Supporting Strong Cache Coherency for Active Caches in Multi-Tier Data-Centers over InfiniBand S. Narravula, P. Balaji, K. Vaidyanathan, S. Krishnamoorthy, J. Wu and D. K. Panda The Ohio State University

More information

Introducing the Cray XMT. Petr Konecny May 4 th 2007

Introducing the Cray XMT. Petr Konecny May 4 th 2007 Introducing the Cray XMT Petr Konecny May 4 th 2007 Agenda Origins of the Cray XMT Cray XMT system architecture Cray XT infrastructure Cray Threadstorm processor Shared memory programming model Benefits/drawbacks/solutions

More information

Distributed Systems 16. Distributed File Systems II

Distributed Systems 16. Distributed File Systems II Distributed Systems 16. Distributed File Systems II Paul Krzyzanowski pxk@cs.rutgers.edu 1 Review NFS RPC-based access AFS Long-term caching CODA Read/write replication & disconnected operation DFS AFS

More information

High Performance Transactions in Deuteronomy

High Performance Transactions in Deuteronomy High Performance Transactions in Deuteronomy Justin Levandoski, David Lomet, Sudipta Sengupta, Ryan Stutsman, and Rui Wang Microsoft Research Overview Deuteronomy: componentized DB stack Separates transaction,

More information

MICA: A Holistic Approach to Fast In-Memory Key-Value Storage

MICA: A Holistic Approach to Fast In-Memory Key-Value Storage MICA: A Holistic Approach to Fast In-Memory Key-Value Storage Hyeontaek Lim, Carnegie Mellon University; Dongsu Han, Korea Advanced Institute of Science and Technology (KAIST); David G. Andersen, Carnegie

More information

Unified Runtime for PGAS and MPI over OFED

Unified Runtime for PGAS and MPI over OFED Unified Runtime for PGAS and MPI over OFED D. K. Panda and Sayantan Sur Network-Based Computing Laboratory Department of Computer Science and Engineering The Ohio State University, USA Outline Introduction

More information

Accelerating MPI Message Matching and Reduction Collectives For Multi-/Many-core Architectures Mohammadreza Bayatpour, Hari Subramoni, D. K.

Accelerating MPI Message Matching and Reduction Collectives For Multi-/Many-core Architectures Mohammadreza Bayatpour, Hari Subramoni, D. K. Accelerating MPI Message Matching and Reduction Collectives For Multi-/Many-core Architectures Mohammadreza Bayatpour, Hari Subramoni, D. K. Panda Department of Computer Science and Engineering The Ohio

More information

CSE 124: Networked Services Lecture-17

CSE 124: Networked Services Lecture-17 Fall 2010 CSE 124: Networked Services Lecture-17 Instructor: B. S. Manoj, Ph.D http://cseweb.ucsd.edu/classes/fa10/cse124 11/30/2010 CSE 124 Networked Services Fall 2010 1 Updates PlanetLab experiments

More information

Multiprocessor Cache Coherence. Chapter 5. Memory System is Coherent If... From ILP to TLP. Enforcing Cache Coherence. Multiprocessor Types

Multiprocessor Cache Coherence. Chapter 5. Memory System is Coherent If... From ILP to TLP. Enforcing Cache Coherence. Multiprocessor Types Chapter 5 Multiprocessor Cache Coherence Thread-Level Parallelism 1: read 2: read 3: write??? 1 4 From ILP to TLP Memory System is Coherent If... ILP became inefficient in terms of Power consumption Silicon

More information

MDHIM: A Parallel Key/Value Store Framework for HPC

MDHIM: A Parallel Key/Value Store Framework for HPC MDHIM: A Parallel Key/Value Store Framework for HPC Hugh Greenberg 7/6/2015 LA-UR-15-25039 HPC Clusters Managed by a job scheduler (e.g., Slurm, Moab) Designed for running user jobs Difficult to run system

More information

BCStore: Bandwidth-Efficient In-memory KV-Store with Batch Coding. Shenglong Li, Quanlu Zhang, Zhi Yang and Yafei Dai Peking University

BCStore: Bandwidth-Efficient In-memory KV-Store with Batch Coding. Shenglong Li, Quanlu Zhang, Zhi Yang and Yafei Dai Peking University BCStore: Bandwidth-Efficient In-memory KV-Store with Batch Coding Shenglong Li, Quanlu Zhang, Zhi Yang and Yafei Dai Peking University Outline Introduction and Motivation Our Design System and Implementation

More information

Homework 6. BTW, This is your last homework. Assigned today, Tuesday, April 10 Due time: 11:59PM on Monday, April 23. CSCI 402: Computer Architectures

Homework 6. BTW, This is your last homework. Assigned today, Tuesday, April 10 Due time: 11:59PM on Monday, April 23. CSCI 402: Computer Architectures Homework 6 BTW, This is your last homework 5.1.1-5.1.3 5.2.1-5.2.2 5.3.1-5.3.5 5.4.1-5.4.2 5.6.1-5.6.5 5.12.1 Assigned today, Tuesday, April 10 Due time: 11:59PM on Monday, April 23 1 CSCI 402: Computer

More information

Altair OptiStruct 13.0 Performance Benchmark and Profiling. May 2015

Altair OptiStruct 13.0 Performance Benchmark and Profiling. May 2015 Altair OptiStruct 13.0 Performance Benchmark and Profiling May 2015 Note The following research was performed under the HPC Advisory Council activities Participating vendors: Intel, Dell, Mellanox Compute

More information

Lecture 21: Transactional Memory. Topics: Hardware TM basics, different implementations

Lecture 21: Transactional Memory. Topics: Hardware TM basics, different implementations Lecture 21: Transactional Memory Topics: Hardware TM basics, different implementations 1 Transactions New paradigm to simplify programming instead of lock-unlock, use transaction begin-end locks are blocking,

More information

Optimizing LS-DYNA Productivity in Cluster Environments

Optimizing LS-DYNA Productivity in Cluster Environments 10 th International LS-DYNA Users Conference Computing Technology Optimizing LS-DYNA Productivity in Cluster Environments Gilad Shainer and Swati Kher Mellanox Technologies Abstract Increasing demand for

More information

UCX: An Open Source Framework for HPC Network APIs and Beyond

UCX: An Open Source Framework for HPC Network APIs and Beyond UCX: An Open Source Framework for HPC Network APIs and Beyond Presented by: Pavel Shamis / Pasha ORNL is managed by UT-Battelle for the US Department of Energy Co-Design Collaboration The Next Generation

More information

COSC 6385 Computer Architecture - Multi Processor Systems

COSC 6385 Computer Architecture - Multi Processor Systems COSC 6385 Computer Architecture - Multi Processor Systems Fall 2006 Classification of Parallel Architectures Flynn s Taxonomy SISD: Single instruction single data Classical von Neumann architecture SIMD:

More information

High Performance Computing

High Performance Computing High Performance Computing Dror Goldenberg, HPCAC Switzerland Conference March 2015 End-to-End Interconnect Solutions for All Platforms Highest Performance and Scalability for X86, Power, GPU, ARM and

More information

RAIDIX Data Storage Solution. Clustered Data Storage Based on the RAIDIX Software and GPFS File System

RAIDIX Data Storage Solution. Clustered Data Storage Based on the RAIDIX Software and GPFS File System RAIDIX Data Storage Solution Clustered Data Storage Based on the RAIDIX Software and GPFS File System 2017 Contents Synopsis... 2 Introduction... 3 Challenges and the Solution... 4 Solution Architecture...

More information

NAMD Performance Benchmark and Profiling. January 2015

NAMD Performance Benchmark and Profiling. January 2015 NAMD Performance Benchmark and Profiling January 2015 2 Note The following research was performed under the HPC Advisory Council activities Participating vendors: Intel, Dell, Mellanox Compute resource

More information

Big data, little time. Scale-out data serving. Scale-out data serving. Highly skewed key popularity

Big data, little time. Scale-out data serving. Scale-out data serving. Highly skewed key popularity /7/6 Big data, little time Goal is to keep (hot) data in memory Requires scale-out approach Each server responsible for one chunk Fast access to local data The Case for RackOut Scalable Data Serving Using

More information

RDMA for Memcached User Guide

RDMA for Memcached User Guide 0.9.5 User Guide HIGH-PERFORMANCE BIG DATA TEAM http://hibd.cse.ohio-state.edu NETWORK-BASED COMPUTING LABORATORY DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING THE OHIO STATE UNIVERSITY Copyright (c)

More information

Hash Table Design and Optimization for Software Virtual Switches

Hash Table Design and Optimization for Software Virtual Switches Hash Table Design and Optimization for Software Virtual Switches P R E S E N T E R : R E N WA N G Y I P E N G WA N G, S A M E H G O B R I E L, R E N WA N G, C H A R L I E TA I, C R I S T I A N D U M I

More information

Memory Performance and Cache Coherency Effects on an Intel Nehalem Multiprocessor System

Memory Performance and Cache Coherency Effects on an Intel Nehalem Multiprocessor System Center for Information ervices and High Performance Computing (ZIH) Memory Performance and Cache Coherency Effects on an Intel Nehalem Multiprocessor ystem Parallel Architectures and Compiler Technologies

More information

Memory Hierarchy. Jinkyu Jeong Computer Systems Laboratory Sungkyunkwan University

Memory Hierarchy. Jinkyu Jeong Computer Systems Laboratory Sungkyunkwan University Memory Hierarchy Jinkyu Jeong (jinkyu@skku.edu) Computer Systems Laboratory Sungkyunkwan University http://csl.skku.edu EEE3050: Theory on Computer Architectures, Spring 2017, Jinkyu Jeong (jinkyu@skku.edu)

More information

Efficient and Truly Passive MPI-3 RMA Synchronization Using InfiniBand Atomics

Efficient and Truly Passive MPI-3 RMA Synchronization Using InfiniBand Atomics 1 Efficient and Truly Passive MPI-3 RMA Synchronization Using InfiniBand Atomics Mingzhe Li Sreeram Potluri Khaled Hamidouche Jithin Jose Dhabaleswar K. Panda Network-Based Computing Laboratory Department

More information

MemcachedGPU: Scaling-up Scale-out Key-value Stores

MemcachedGPU: Scaling-up Scale-out Key-value Stores MemcachedGPU: Scaling-up Scale-out Key-value Stores Tayler H. Hetherington The University of British Columbia taylerh@ece.ubc.ca Mike O Connor NVIDIA & UT-Austin moconnor@nvidia.com Tor M. Aamodt The University

More information

Azor: Using Two-level Block Selection to Improve SSD-based I/O caches

Azor: Using Two-level Block Selection to Improve SSD-based I/O caches Azor: Using Two-level Block Selection to Improve SSD-based I/O caches Yannis Klonatos, Thanos Makatos, Manolis Marazakis, Michail D. Flouris, Angelos Bilas {klonatos, makatos, maraz, flouris, bilas}@ics.forth.gr

More information

@ Massachusetts Institute of Technology All rights reserved.

@ Massachusetts Institute of Technology All rights reserved. ..... CPHASH: A Cache-Partitioned Hash Table with LRU Eviction by Zviad Metreveli MASSACHUSETTS INSTITUTE OF TECHAC'LOGY JUN 2 1 2011 LIBRARIES Submitted to the Department of Electrical Engineering and

More information

FaSST: Fast, Scalable, and Simple Distributed Transactions with Two-Sided (RDMA) Datagram RPCs

FaSST: Fast, Scalable, and Simple Distributed Transactions with Two-Sided (RDMA) Datagram RPCs FaSST: Fast, Scalable, and Simple Distributed Transactions with Two-Sided (RDMA) Datagram RPCs Anuj Kalia (CMU), Michael Kaminsky (Intel Labs), David Andersen (CMU) RDMA RDMA is a network feature that

More information

ABySS Performance Benchmark and Profiling. May 2010

ABySS Performance Benchmark and Profiling. May 2010 ABySS Performance Benchmark and Profiling May 2010 Note The following research was performed under the HPC Advisory Council activities Participating vendors: AMD, Dell, Mellanox Compute resource - HPC

More information

Designing Power-Aware Collective Communication Algorithms for InfiniBand Clusters

Designing Power-Aware Collective Communication Algorithms for InfiniBand Clusters Designing Power-Aware Collective Communication Algorithms for InfiniBand Clusters Krishna Kandalla, Emilio P. Mancini, Sayantan Sur, and Dhabaleswar. K. Panda Department of Computer Science & Engineering,

More information

Memory Management. Dr. Yingwu Zhu

Memory Management. Dr. Yingwu Zhu Memory Management Dr. Yingwu Zhu Big picture Main memory is a resource A process/thread is being executing, the instructions & data must be in memory Assumption: Main memory is infinite Allocation of memory

More information

GD-Wheel: A Cost-Aware Replacement Policy for Key-Value Stores

GD-Wheel: A Cost-Aware Replacement Policy for Key-Value Stores GD-Wheel: A Cost-Aware Replacement Policy for Key-Value Stores Conglong Li Carnegie Mellon University conglonl@cs.cmu.edu Alan L. Cox Rice University alc@rice.edu Abstract Memory-based key-value stores,

More information

Chapter 8 Main Memory

Chapter 8 Main Memory COP 4610: Introduction to Operating Systems (Spring 2014) Chapter 8 Main Memory Zhi Wang Florida State University Contents Background Swapping Contiguous memory allocation Paging Segmentation OS examples

More information

Comparing One-Sided Communication with MPI, UPC and SHMEM

Comparing One-Sided Communication with MPI, UPC and SHMEM Comparing One-Sided Communication with MPI, UPC and SHMEM EPCC University of Edinburgh Dr Chris Maynard Application Consultant, EPCC c.maynard@ed.ac.uk +44 131 650 5077 The Future ain t what it used to

More information

The End of a Myth: Distributed Transactions Can Scale

The End of a Myth: Distributed Transactions Can Scale The End of a Myth: Distributed Transactions Can Scale Erfan Zamanian, Carsten Binnig, Tim Harris, and Tim Kraska Rafael Ketsetsides Why distributed transactions? 2 Cheaper for the same processing power

More information

Open MPI for Cray XE/XK Systems

Open MPI for Cray XE/XK Systems Open MPI for Cray XE/XK Systems Samuel K. Gutierrez LANL Nathan T. Hjelm LANL Manjunath Gorentla Venkata ORNL Richard L. Graham - Mellanox Cray User Group (CUG) 2012 May 2, 2012 U N C L A S S I F I E D

More information

MiAMI: Multi-Core Aware Processor Affinity for TCP/IP over Multiple Network Interfaces

MiAMI: Multi-Core Aware Processor Affinity for TCP/IP over Multiple Network Interfaces MiAMI: Multi-Core Aware Processor Affinity for TCP/IP over Multiple Network Interfaces Hye-Churn Jang Hyun-Wook (Jin) Jin Department of Computer Science and Engineering Konkuk University Seoul, Korea {comfact,

More information

LiMIC: Support for High-Performance MPI Intra-Node Communication on Linux Cluster

LiMIC: Support for High-Performance MPI Intra-Node Communication on Linux Cluster LiMIC: Support for High-Performance MPI Intra-Node Communication on Linux Cluster H. W. Jin, S. Sur, L. Chai, and D. K. Panda Network-Based Computing Laboratory Department of Computer Science and Engineering

More information

Paving the Road to Exascale

Paving the Road to Exascale Paving the Road to Exascale Gilad Shainer August 2015, MVAPICH User Group (MUG) Meeting The Ever Growing Demand for Performance Performance Terascale Petascale Exascale 1 st Roadrunner 2000 2005 2010 2015

More information

EC-Bench: Benchmarking Onload and Offload Erasure Coders on Modern Hardware Architectures

EC-Bench: Benchmarking Onload and Offload Erasure Coders on Modern Hardware Architectures EC-Bench: Benchmarking Onload and Offload Erasure Coders on Modern Hardware Architectures Haiyang Shi, Xiaoyi Lu, and Dhabaleswar K. (DK) Panda {shi.876, lu.932, panda.2}@osu.edu The Ohio State University

More information

Be Fast, Cheap and in Control with SwitchKV Xiaozhou Li

Be Fast, Cheap and in Control with SwitchKV Xiaozhou Li Be Fast, Cheap and in Control with SwitchKV Xiaozhou Li Raghav Sethi Michael Kaminsky David G. Andersen Michael J. Freedman Goal: fast and cost-effective key-value store Target: cluster-level storage for

More information

MemC3: Compact and Concurrent MemCache with Dumber Caching and Smarter Hashing

MemC3: Compact and Concurrent MemCache with Dumber Caching and Smarter Hashing MemC3: Compact and Concurrent MemCache with Dumber Caching and Smarter Hashing Bin Fan, David G. Andersen, Michael Kaminsky Carnegie Mellon University, Intel Labs CMU-PDL-12-116 November 2012 Parallel

More information

Virtual Memory 2. q Handling bigger address spaces q Speeding translation

Virtual Memory 2. q Handling bigger address spaces q Speeding translation Virtual Memory 2 q Handling bigger address spaces q Speeding translation Two considerations with page tables Mapping must be fast Done on every memory reference, at least 1 per instruction With large address

More information

SNAP Performance Benchmark and Profiling. April 2014

SNAP Performance Benchmark and Profiling. April 2014 SNAP Performance Benchmark and Profiling April 2014 Note The following research was performed under the HPC Advisory Council activities Participating vendors: HP, Mellanox For more information on the supporting

More information

Outlook. Background Swapping Contiguous Memory Allocation Paging Structure of the Page Table Segmentation Example: The Intel Pentium

Outlook. Background Swapping Contiguous Memory Allocation Paging Structure of the Page Table Segmentation Example: The Intel Pentium Main Memory Outlook Background Swapping Contiguous Memory Allocation Paging Structure of the Page Table Segmentation Example: The Intel Pentium 2 Backgound Background So far we considered how to share

More information

NetCache: Balancing Key-Value Stores with Fast In-Network Caching

NetCache: Balancing Key-Value Stores with Fast In-Network Caching NetCache: Balancing Key-Value Stores with Fast In-Network Caching Xin Jin, Xiaozhou Li, Haoyu Zhang, Robert Soulé Jeongkeun Lee, Nate Foster, Changhoon Kim, Ion Stoica NetCache is a rack-scale key-value

More information

NetCache: Balancing Key-Value Stores with Fast In-Network Caching

NetCache: Balancing Key-Value Stores with Fast In-Network Caching NetCache: Balancing Key-Value Stores with Fast In-Network Caching Xin Jin, Xiaozhou Li, Haoyu Zhang, Robert Soulé Jeongkeun Lee, Nate Foster, Changhoon Kim, Ion Stoica NetCache is a rack-scale key-value

More information

Shared Memory Multiprocessors. Symmetric Shared Memory Architecture (SMP) Cache Coherence. Cache Coherence Mechanism. Interconnection Network

Shared Memory Multiprocessors. Symmetric Shared Memory Architecture (SMP) Cache Coherence. Cache Coherence Mechanism. Interconnection Network Shared Memory Multis Processor Processor Processor i Processor n Symmetric Shared Memory Architecture (SMP) cache cache cache cache Interconnection Network Main Memory I/O System Cache Coherence Cache

More information

Deconstructing RDMA-enabled Distributed Transactions: Hybrid is Better!

Deconstructing RDMA-enabled Distributed Transactions: Hybrid is Better! Deconstructing RDMA-enabled Distributed Transactions: Hybrid is Better! Xingda Wei, Zhiyuan Dong, Rong Chen, Haibo Chen Institute of Parallel and Distributed Systems, Shanghai Jiao Tong University Contacts:

More information

Chapter 6 Objectives

Chapter 6 Objectives Chapter 6 Memory Chapter 6 Objectives Master the concepts of hierarchical memory organization. Understand how each level of memory contributes to system performance, and how the performance is measured.

More information

HYCOM Performance Benchmark and Profiling

HYCOM Performance Benchmark and Profiling HYCOM Performance Benchmark and Profiling Jan 2011 Acknowledgment: - The DoD High Performance Computing Modernization Program Note The following research was performed under the HPC Advisory Council activities

More information

Revealing Applications Access Pattern in Collective I/O for Cache Management

Revealing Applications Access Pattern in Collective I/O for Cache Management Revealing Applications Access Pattern in for Yin Lu 1, Yong Chen 1, Rob Latham 2 and Yu Zhuang 1 Presented by Philip Roth 3 1 Department of Computer Science Texas Tech University 2 Mathematics and Computer

More information

Lecture: Consistency Models, TM. Topics: consistency models, TM intro (Section 5.6)

Lecture: Consistency Models, TM. Topics: consistency models, TM intro (Section 5.6) Lecture: Consistency Models, TM Topics: consistency models, TM intro (Section 5.6) 1 Coherence Vs. Consistency Recall that coherence guarantees (i) that a write will eventually be seen by other processors,

More information

Anti-Caching: A New Approach to Database Management System Architecture. Guide: Helly Patel ( ) Dr. Sunnie Chung Kush Patel ( )

Anti-Caching: A New Approach to Database Management System Architecture. Guide: Helly Patel ( ) Dr. Sunnie Chung Kush Patel ( ) Anti-Caching: A New Approach to Database Management System Architecture Guide: Helly Patel (2655077) Dr. Sunnie Chung Kush Patel (2641883) Abstract Earlier DBMS blocks stored on disk, with a main memory

More information

Performance Analysis and Evaluation of Mellanox ConnectX InfiniBand Architecture with Multi-Core Platforms

Performance Analysis and Evaluation of Mellanox ConnectX InfiniBand Architecture with Multi-Core Platforms Performance Analysis and Evaluation of Mellanox ConnectX InfiniBand Architecture with Multi-Core Platforms Sayantan Sur, Matt Koop, Lei Chai Dhabaleswar K. Panda Network Based Computing Lab, The Ohio State

More information

Address Translation. Jinkyu Jeong Computer Systems Laboratory Sungkyunkwan University

Address Translation. Jinkyu Jeong Computer Systems Laboratory Sungkyunkwan University Address Translation Jinkyu Jeong (jinkyu@skku.edu) Computer Systems Laboratory Sungkyunkwan University http://csl.skku.edu Today s Topics How to reduce the size of page tables? How to reduce the time for

More information

Adapted from instructor s supplementary material from Computer. Patterson & Hennessy, 2008, MK]

Adapted from instructor s supplementary material from Computer. Patterson & Hennessy, 2008, MK] Lecture 17 Adapted from instructor s supplementary material from Computer Organization and Design, 4th Edition, Patterson & Hennessy, 2008, MK] SRAM / / Flash / RRAM / HDD SRAM / / Flash / RRAM/ HDD SRAM

More information

The Optimal CPU and Interconnect for an HPC Cluster

The Optimal CPU and Interconnect for an HPC Cluster 5. LS-DYNA Anwenderforum, Ulm 2006 Cluster / High Performance Computing I The Optimal CPU and Interconnect for an HPC Cluster Andreas Koch Transtec AG, Tübingen, Deutschland F - I - 15 Cluster / High Performance

More information

Lecture 10: Cache Coherence: Part I. Parallel Computer Architecture and Programming CMU , Spring 2013

Lecture 10: Cache Coherence: Part I. Parallel Computer Architecture and Programming CMU , Spring 2013 Lecture 10: Cache Coherence: Part I Parallel Computer Architecture and Programming Cache design review Let s say your code executes int x = 1; (Assume for simplicity x corresponds to the address 0x12345604

More information

Oncilla - a Managed GAS Runtime for Accelerating Data Warehousing Queries

Oncilla - a Managed GAS Runtime for Accelerating Data Warehousing Queries Oncilla - a Managed GAS Runtime for Accelerating Data Warehousing Queries Jeffrey Young, Alex Merritt, Se Hoon Shon Advisor: Sudhakar Yalamanchili 4/16/13 Sponsors: Intel, NVIDIA, NSF 2 The Problem Big

More information

Memory Scalability Evaluation of the Next-Generation Intel Bensley Platform with InfiniBand

Memory Scalability Evaluation of the Next-Generation Intel Bensley Platform with InfiniBand Memory Scalability Evaluation of the Next-Generation Intel Bensley Platform with InfiniBand Matthew Koop, Wei Huang, Ahbinav Vishnu, Dhabaleswar K. Panda Network-Based Computing Laboratory Department of

More information

EVCache: Lowering Costs for a Low Latency Cache with RocksDB. Scott Mansfield Vu Nguyen EVCache

EVCache: Lowering Costs for a Low Latency Cache with RocksDB. Scott Mansfield Vu Nguyen EVCache EVCache: Lowering Costs for a Low Latency Cache with RocksDB Scott Mansfield Vu Nguyen EVCache 90 seconds What do caches touch? Signing up* Logging in Choosing a profile Picking liked videos

More information

RDMA Read Based Rendezvous Protocol for MPI over InfiniBand: Design Alternatives and Benefits

RDMA Read Based Rendezvous Protocol for MPI over InfiniBand: Design Alternatives and Benefits RDMA Read Based Rendezvous Protocol for MPI over InfiniBand: Design Alternatives and Benefits Sayantan Sur Hyun-Wook Jin Lei Chai D. K. Panda Network Based Computing Lab, The Ohio State University Presentation

More information

A Study of High Performance Computing and the Cray SV1 Supercomputer. Michael Sullivan TJHSST Class of 2004

A Study of High Performance Computing and the Cray SV1 Supercomputer. Michael Sullivan TJHSST Class of 2004 A Study of High Performance Computing and the Cray SV1 Supercomputer Michael Sullivan TJHSST Class of 2004 June 2004 0.1 Introduction A supercomputer is a device for turning compute-bound problems into

More information

Towards scalable RDMA locking on a NIC

Towards scalable RDMA locking on a NIC TORSTEN HOEFLER spcl.inf.ethz.ch Towards scalable RDMA locking on a NIC with support of Patrick Schmid, Maciej Besta, Salvatore di Girolamo @ SPCL presented at HP Labs, Palo Alto, CA, USA NEED FOR EFFICIENT

More information

Tradeoff Evaluation. Comparison between CB-R and CB-A as they only differ for this aspect.

Tradeoff Evaluation. Comparison between CB-R and CB-A as they only differ for this aspect. Tradeoff Evaluation Comparison between C2PL and CB-A, as both: Allow intertransaction caching Don t use propagation Synchronously activate consistency actions Tradeoff Evaluation Comparison between CB-R

More information

Lecture 21: Transactional Memory. Topics: consistency model recap, introduction to transactional memory

Lecture 21: Transactional Memory. Topics: consistency model recap, introduction to transactional memory Lecture 21: Transactional Memory Topics: consistency model recap, introduction to transactional memory 1 Example Programs Initially, A = B = 0 P1 P2 A = 1 B = 1 if (B == 0) if (A == 0) critical section

More information

Computer Architecture Memory hierarchies and caches

Computer Architecture Memory hierarchies and caches Computer Architecture Memory hierarchies and caches S Coudert and R Pacalet January 23, 2019 Outline Introduction Localities principles Direct-mapped caches Increasing block size Set-associative caches

More information

Lecture: Consistency Models, TM

Lecture: Consistency Models, TM Lecture: Consistency Models, TM Topics: consistency models, TM intro (Section 5.6) No class on Monday (please watch TM videos) Wednesday: TM wrap-up, interconnection networks 1 Coherence Vs. Consistency

More information

IME (Infinite Memory Engine) Extreme Application Acceleration & Highly Efficient I/O Provisioning

IME (Infinite Memory Engine) Extreme Application Acceleration & Highly Efficient I/O Provisioning IME (Infinite Memory Engine) Extreme Application Acceleration & Highly Efficient I/O Provisioning September 22 nd 2015 Tommaso Cecchi 2 What is IME? This breakthrough, software defined storage application

More information

Dynamic Metadata Management for Petabyte-scale File Systems

Dynamic Metadata Management for Petabyte-scale File Systems Dynamic Metadata Management for Petabyte-scale File Systems Sage Weil Kristal T. Pollack, Scott A. Brandt, Ethan L. Miller UC Santa Cruz November 1, 2006 Presented by Jae Geuk, Kim System Overview Petabytes

More information

Optimizing Replication, Communication, and Capacity Allocation in CMPs

Optimizing Replication, Communication, and Capacity Allocation in CMPs Optimizing Replication, Communication, and Capacity Allocation in CMPs Zeshan Chishti, Michael D Powell, and T. N. Vijaykumar School of ECE Purdue University Motivation CMP becoming increasingly important

More information