UNIT-IV HDFS. Ms. Selva Mary. G

Size: px
Start display at page:

Download "UNIT-IV HDFS. Ms. Selva Mary. G"

Transcription

1 UNIT-IV HDFS

2 HDFS ARCHITECTURE Dataset partition across a number of separate machines Hadoop Distributed File system

3 The Design of HDFS HDFS is a file system designed for storing very large files with streaming data access patterns, running on clusters of commodity hardware. Very large files Very large means files that are hundreds of megabytes, gigabytes, or terabytes in size. There are Hadoop clusters running today that store petabytes of data.

4 Streaming data access most efficient data processing pattern is a write-once, read-many-times pattern. A dataset generated or copied from source, and then various analyses are performed on that dataset over time.

5 Commodity hardware Hadoop doesn t require expensive, highly reliable hardware. It s designed to run on clusters of commodity hardware (commonly available hardware that can be obtained from multiple vendors) for which the chance of node failure across the cluster is high, at least for large clusters.

6 Low-latency data access Applications that require low-latency access to data will not work well with HDFS. HDFS is optimized for delivering a high throughput of data, and this may be at the expense of latency. HBase is currently a better choice for lowlatency access.

7 Lots of small files Namenode holds file system the limit to the number of files in a file system is governed by the amount of memory on the namenode. As a rule of thumb, each file, directory, and block takes about 150 bytes.

8 Features of HDFS It is suitable for the distributed storage and processing. Hadoop provides a command interface to interact with HDFS. The built-in servers of namenode and datanode help users to easily check the status of cluster. HDFS provides file permissions and authentication.

9 Goals of HDFS Fault detection and recovery: Since HDFS includes a large number of commodity hardware, failure of components is frequent. Therefore HDFS should have mechanisms for quick and automatic fault detection and recovery. Huge datasets: HDFS should have hundreds of nodes per cluster Hardware at data: A requested task can be done efficiently, when the computation takes place near the data. Especially where huge datasets are involved, it reduces the network traffic and increases the throughput.

10 HDFS Architecture

11 Namenode The namenode is the commodity hardware that contains operating system and the namenode software. It is software that can be run on commodity hardware. The system having the namenode acts as the master server and it does the following tasks: Manages the file system Regulates client s access to files. It also executes file system operations such as renaming, closing, and opening files and directories.

12 Secondary Namenode HDFS is based on master/slave architecture. Simplifies the overall HDFS architecture. It also creates a single point of failure losing the NameNode effectively means losing HDFS. To somewhat alleviate this problem, Hadoop implements a Secondary NameNode.

13 The Secondary NameNode is not a backup NameNode. It cannot take over the primary NameNode s function. It serves as a checkpointing mechanism for the primary NameNode. In addition to storing the state of the HDFS NameNode, it maintains two on-disk data structures an image file and an edit log. The image file represents metadata state edit log is a transactional log of every filesystem metadata change since the image file was created.

14

15 Datanode The datanode is a commodity hardware having operating system and datanode software. For every node in a cluster, there will be a datanode. These nodes manage the data storage of their system. Datanodes perform read-write operations on the file systems, as per client request. They also perform operations such as block creation, deletion, and replication according to the instructions of the namenode.

16

17 Block A file will be divided into one or more segments and/or stored in individual data nodes. These file segments are called as blocks. In other words, the minimum amount of data that HDFS can read or write is called a Block. The default block size is 64MB, but it can be increased as per the need to change in HDFS configuration.

18 Block advantages First, a file can be larger than any single disk in the network Secondly, making the unit of abstraction a block rather than a file simplifies the storage subsystem (it is easy to calculate how many can be stored on a given disk) Furthermore, blocks fit well with replication for providing fault tolerance and availability. If a block becomes unavailable, a copy can be read from another location

19 HDFS FEDERATION

20 Namespace Consists of directories, files and blocks. It supports file system operations such as create, delete, modify and list files and directories. Block Storage Service, which has two parts: Block Management (performed in the Namenode) Provides Datanode cluster membership by handling registrations Processes block reports and maintains location of blocks. Supports block related operations create, delete and get block location Manages replica placement, block replication Storage - is provided by Datanodes by storing blocks on the local file system and allowing read/write access.

21 The prior HDFS architecture allows only a single namespace for the entire cluster. a single Namenode manages the namespace. HDFS Federation addresses this limitation by adding support for multiple Namenodes/namespaces to HDFS.

22 Multiple Namenodes/Namespaces Federation uses multiple independent Namenodes/ namespaces. The Namenodes are federated; Namenodes are independent and do not require coordination with each other. The Datanodes are used as common storage for blocks Each Datanode registers with all the Namenodes in the cluster. Datanodes send periodic heartbeats and block reports. They also handle commands from the Namenodes.

23

24 Block Pool A Block Pool is a set of blocks that belong to a single namespace. Datanodes store blocks for all the block pools in the cluster. Each Block Pool is managed independently. A Namenode failure does not prevent the Datanode from serving other Namenodes in the cluster. A Namespace and its block pool together are called Namespace Volume. It is a self-contained unit of management. When a Namenode/namespace is deleted, the corresponding block pool at the Datanodes is deleted.

25 ClusterID A ClusterID identifier is used to identify all the nodes in the cluster.

26 Key Benefits Namespace Scalability - allowing more Namenodes to be added to the cluster. Performance - Adding more Namenodes to the cluster scales the file system read/write throughput. Isolation - A single Namenode offers no isolation in a multi user environment. By using multiple Namenodes, different categories of applications and users can be isolated to different namespaces.

27 Hadoop - HDFS Operations Starting HDFS Initially you have to format the configured HDFS file system, open namenode (HDFS server), and execute the following command. $ hadoop namenode -format After formatting the HDFS, start the distributed file system. The following command will start the namenode as well as the data nodes as cluster. $ start-dfs.sh

28 Listing Files in HDFS After loading the information in the server, we can find the list of files in a directory, status of a file, using ls. Given below is the syntax of ls that you can pass to a directory or a filename as an argument. $ $HADOOP_HOME/bin/hadoop fs -ls <args>

29 Inserting Data into HDFS Assume we have data in the file called file.txt in the local system which is ought to be saved in the hdfs file system. Follow the steps given below to insert the required file in the Hadoop file system. Step 1 You have to create an input directory. $ $HADOOP_HOME/bin/hadoop fs -mkdir /user/input Step 2 Transfer and store a data file from local systems to the Hadoop file system using the put command. $ $HADOOP_HOME/bin/hadoop fs -put /home/file.txt /user/input Step 3 You can verify the file using ls command. $ $HADOOP_HOME/bin/hadoop fs -ls /user/input

30 Retrieving Data from HDFS Assume we have a file in HDFS called outfile. Given below is a simple demonstration for retrieving the required file from the Hadoop file system. Step 1 Initially, view the data from HDFS using cat command. $ $HADOOP_HOME/bin/hadoop fs -cat /user/output/outfile Step 2 Get the file from HDFS to the local file system using get command. $ $HADOOP_HOME/bin/hadoop fs -get /user/output/ /home/hadoop_tp/

31 Shutting Down the HDFS You can shut down the HDFS by using the following command. $ stop-dfs.sh

32 Other basic commands Running./bin/hadoop dfs with no additional arguments will list all the commands that can be run with the FsShell system. Furthermore, $HADOOP_HOME/bin/hadoop fs -help commandname will display a short usage summary for the operation in question, if you are stuck.

33 Sr.No Command and description 1. ls <path> Lists the contents of the directory specified by path, showing the names, permissions, owner, size and modification date for each entry. 2. lsr <path> Behaves like -ls, but recursively displays entries in all subdirectories of path. 3. du <path> Shows disk usage, in bytes, for all the files which match path 4. dus <path> Like -du, but prints a summary of disk usage of all files/directories in the path. 5. mv <src><dest> Moves the file or directory indicated by src to dest, within HDFS.

34 Sr.No Command and description 6. cp <src> <dest> Copies the file or directory identified by src to dest, within HDFS. 7. rm <path> Removes the file or empty directory identified by path. 8. rmr <path> Removes the file or directory identified by path. Recursively deletes any child entries (i.e., files or subdirectories of path). 9. put<localsrc> <dest> Copies the file or directory from the local file system identified by localsrc to dest within the DFS. 10. copyfromlocal <localsrc> <dest> Identical to put

35 Sr.No Command and description 11. movefromlocal <localsrc> <dest> Copies the file or directory from the local file system identified by localsrc to dest within HDFS, and then deletes the local copy on success. 12. get [-crc] <src> <localdest> Copies the file or directory in HDFS identified by src to the local file system path identified by localdest. 13. getmerge <src> <localdest> Retrieves all files that match the path src in HDFS, and copies them to a single, merged file in the local file system identified by localdest. 14. cat <filen-ame> Displays the contents of filename on stdout. 15. copytolocal <src> <localdest> Identical to get

36 Sr.No Command and description 16. movetolocal <src> <localdest> Works like -get, but deletes the HDFS copy on success. 17. mkdir <path> Creates a directory named path in HDFS. Creates any parent directories in path that are missing (e.g., mkdir -p in Linux). 18. test -[ezd] <path> Returns 1 if path exists; has zero length; or is a directory or 0 otherwise. 19. stat [format] <path> Prints information about path. Format is a string which accepts file size in blocks (%b), filename (%n), block size (%o), replication (%r), and modification date (%y, %Y). 20. help <cmd-name> Returns usage information for one of the commands listed above. You must omit the leading '-' character in cmd.

37 DATA FLOW - ANATOMY OF A FILE READ

38 Step 1: open() Step 2: DistributedFile system calls the namenode using RPCs determine the locations of the first few blocks in the file. For each block, the namenode returns the addresses of the datanodes that have a copy of that block. Step 3: The DistributedFile system returns an FSDataInputStream The client then calls read() on the stream. Step 4: DFSInputStream has stored the datanode addresses for the first few blocks in the file Connects to the first (closest) datanode for the first block in the file. calls read() repeatedly on the stream.

39 Step 5: End of the block, close the connection to the datanode find the best datanode for the next block. Blocks are read in order Step 6: close(). If error try the next closest one for that block. Remember datanodes that have failed Verifies checksums for the data transferred to it from the datanode. If a corrupted block, attempts to read a replica of the block from another datanode; Reports the corrupted block to the namenode.

40 Finding nearest data node and block

41 distance(/d1/r1/n1, /d1/r1/n1)

42 distance(/d1/r1/n1, /d1/r1/n1) = 0 (processes on the same node) distance(/d1/r1/n1, /d1/r1/n2)

43 distance(/d1/r1/n1, /d1/r1/n1) = 0 (processes on the same node) distance(/d1/r1/n1, /d1/r1/n2) = 2 (different nodes on the same rack)

44 distance(/d1/r1/n1, /d1/r1/n1) = 0 (processes on the same node) distance(/d1/r1/n1, /d1/r1/n2) = 2 (different nodes on the same rack) distance(/d1/r1/n1, /d1/r2/n3)

45 distance(/d1/r1/n1, /d1/r1/n1) = 0 (processes on the same node) distance(/d1/r1/n1, /d1/r1/n2) = 2 (different nodes on the same rack) distance(/d1/r1/n1, /d1/r2/n3) = 4 (nodes on different racks in the same data center)

46 distance(/d1/r1/n1, /d1/r1/n1) = 0 (processes on the same node) distance(/d1/r1/n1, /d1/r1/n2) = 2 (different nodes on the same rack) distance(/d1/r1/n1, /d1/r2/n3) = 4 (nodes on different racks in the same data center) distance(/d1/r1/n1, /d2/r3/n4)

47 distance(/d1/r1/n1, /d1/r1/n1) = 0 (processes on the same node) distance(/d1/r1/n1, /d1/r1/n2) = 2 (different nodes on the same rack) distance(/d1/r1/n1, /d1/r2/n3) = 4 (nodes on different racks in the same data center) distance(/d1/r1/n1, /d2/r3/n4) = 6 (nodes in different data centers)

48 ANATOMY OF A FILE WRITE

49 We re going to consider the case of creating a new file, writing data to it, then closing the file Step 1: create() on DistributedFile system Step 2: RPC call to the namenode to create a new file in the file system s namespace, The namenode performs various checks to make sure the file doesn t already exist the namenode makes a record of the new file; otherwise, file creation fails and the client is thrown an IOException. Step 3: The DistributedFile system returns an FSDataOutputStream for the client to start writing data to. FSDataOutputStream handles communication with the datanodes and namenode. the DFSOutputStream splits it into packets, which it writes to an internal queue called the data queue. The list of datanodes forms a pipeline, assume the replication level is three, so there are three nodes in the pipeline.

50 Step 4: The DataStreamer streams the packets to the first datanode in the pipeline stores each packet and forwards it to the second datanode in the pipeline. the second datanode stores the packet and forwards it to the third (and last) datanode in the pipeline. Step 5: The DFSOutputStream maintains an internal queue of packets that are waiting to be acknowledged by datanodes, called the ack queue. A packet is removed from the ack queue only when it has been acknowledged by all the datanodes in the pipeline. Step 6: When the client has finished writing data, it calls close() on the stream. Step 7: flushes all the remaining packets to the datanode pipeline and waits for acknowledgments before contacting the namenode to signal that the file is complete. The namenode already knows which blocks the file is made up of (because Data Streamer asks for block allocations), so it only has to wait for blocks to be minimally replicated before returning successfully.

51 Replica pipeline

52 Hadoop s default strategy to place the first replica on the same node as the client The second replica is placed on a different rack from the first (off-rack), chosen at random. The third replica is placed on the same rack as the second, but on a different node chosen at random. system tries to avoid placing too many replicas on the same rack. Once the replica locations have been chosen, a pipeline is built. Overall, this strategy gives a good balance among reliability write bandwidth, read performance and block distribution across the cluster (clients only write a single block on the local rack).

53 End of Unit IV

Cloud Computing and Hadoop Distributed File System. UCSB CS170, Spring 2018

Cloud Computing and Hadoop Distributed File System. UCSB CS170, Spring 2018 Cloud Computing and Hadoop Distributed File System UCSB CS70, Spring 08 Cluster Computing Motivations Large-scale data processing on clusters Scan 000 TB on node @ 00 MB/s = days Scan on 000-node cluster

More information

Hadoop and HDFS Overview. Madhu Ankam

Hadoop and HDFS Overview. Madhu Ankam Hadoop and HDFS Overview Madhu Ankam Why Hadoop We are gathering more data than ever Examples of data : Server logs Web logs Financial transactions Analytics Emails and text messages Social media like

More information

The Google File System. Alexandru Costan

The Google File System. Alexandru Costan 1 The Google File System Alexandru Costan Actions on Big Data 2 Storage Analysis Acquisition Handling the data stream Data structured unstructured semi-structured Results Transactions Outline File systems

More information

CS60021: Scalable Data Mining. Sourangshu Bhattacharya

CS60021: Scalable Data Mining. Sourangshu Bhattacharya CS60021: Scalable Data Mining Sourangshu Bhattacharya In this Lecture: Outline: HDFS Motivation HDFS User commands HDFS System architecture HDFS Implementation details Sourangshu Bhattacharya Computer

More information

Hadoop File System S L I D E S M O D I F I E D F R O M P R E S E N T A T I O N B Y B. R A M A M U R T H Y 11/15/2017

Hadoop File System S L I D E S M O D I F I E D F R O M P R E S E N T A T I O N B Y B. R A M A M U R T H Y 11/15/2017 Hadoop File System 1 S L I D E S M O D I F I E D F R O M P R E S E N T A T I O N B Y B. R A M A M U R T H Y Moving Computation is Cheaper than Moving Data Motivation: Big Data! What is BigData? - Google

More information

Distributed Filesystem

Distributed Filesystem Distributed Filesystem 1 How do we get data to the workers? NAS Compute Nodes SAN 2 Distributing Code! Don t move data to workers move workers to the data! - Store data on the local disks of nodes in the

More information

HDFS Architecture. Gregory Kesden, CSE-291 (Storage Systems) Fall 2017

HDFS Architecture. Gregory Kesden, CSE-291 (Storage Systems) Fall 2017 HDFS Architecture Gregory Kesden, CSE-291 (Storage Systems) Fall 2017 Based Upon: http://hadoop.apache.org/docs/r3.0.0-alpha1/hadoopproject-dist/hadoop-hdfs/hdfsdesign.html Assumptions At scale, hardware

More information

HDFS Access Options, Applications

HDFS Access Options, Applications Hadoop Distributed File System (HDFS) access, APIs, applications HDFS Access Options, Applications Able to access/use HDFS via command line Know about available application programming interfaces Example

More information

Distributed Systems 16. Distributed File Systems II

Distributed Systems 16. Distributed File Systems II Distributed Systems 16. Distributed File Systems II Paul Krzyzanowski pxk@cs.rutgers.edu 1 Review NFS RPC-based access AFS Long-term caching CODA Read/write replication & disconnected operation DFS AFS

More information

CS455: Introduction to Distributed Systems [Spring 2018] Dept. Of Computer Science, Colorado State University

CS455: Introduction to Distributed Systems [Spring 2018] Dept. Of Computer Science, Colorado State University CS 455: INTRODUCTION TO DISTRIBUTED SYSTEMS [HDFS] Circumventing The Perils of Doing Too Much Protect the namenode, you must, from failure What s not an option? Playing it by ear Given the volumes, be

More information

HDFS Architecture Guide

HDFS Architecture Guide by Dhruba Borthakur Table of contents 1 Introduction...3 2 Assumptions and Goals...3 2.1 Hardware Failure... 3 2.2 Streaming Data Access...3 2.3 Large Data Sets...3 2.4 Simple Coherency Model... 4 2.5

More information

Dept. Of Computer Science, Colorado State University

Dept. Of Computer Science, Colorado State University CS 455: INTRODUCTION TO DISTRIBUTED SYSTEMS [HDFS] Circumventing The Perils of Doing Too Much Protect the namenode, you must, from failure What s not an option? Playing it by ear Given the volumes, be

More information

Service and Cloud Computing Lecture 10: DFS2 Prof. George Baciu PQ838

Service and Cloud Computing Lecture 10: DFS2   Prof. George Baciu PQ838 COMP4442 Service and Cloud Computing Lecture 10: DFS2 www.comp.polyu.edu.hk/~csgeorge/comp4442 Prof. George Baciu PQ838 csgeorge@comp.polyu.edu.hk 1 Preamble 2 Recall the Cloud Stack Model A B Application

More information

Hadoop Distributed File System(HDFS)

Hadoop Distributed File System(HDFS) Hadoop Distributed File System(HDFS) Bu eğitim sunumları İstanbul Kalkınma Ajansı nın 2016 yılı Yenilikçi ve Yaratıcı İstanbul Mali Destek Programı kapsamında yürütülmekte olan TR10/16/YNY/0036 no lu İstanbul

More information

Konstantin Shvachko, Hairong Kuang, Sanjay Radia, Robert Chansler Yahoo! Sunnyvale, California USA {Shv, Hairong, SRadia,

Konstantin Shvachko, Hairong Kuang, Sanjay Radia, Robert Chansler Yahoo! Sunnyvale, California USA {Shv, Hairong, SRadia, Konstantin Shvachko, Hairong Kuang, Sanjay Radia, Robert Chansler Yahoo! Sunnyvale, California USA {Shv, Hairong, SRadia, Chansler}@Yahoo-Inc.com Presenter: Alex Hu } Introduction } Architecture } File

More information

A BigData Tour HDFS, Ceph and MapReduce

A BigData Tour HDFS, Ceph and MapReduce A BigData Tour HDFS, Ceph and MapReduce These slides are possible thanks to these sources Jonathan Drusi - SCInet Toronto Hadoop Tutorial, Amir Payberah - Course in Data Intensive Computing SICS; Yahoo!

More information

CLOUD-SCALE FILE SYSTEMS

CLOUD-SCALE FILE SYSTEMS Data Management in the Cloud CLOUD-SCALE FILE SYSTEMS 92 Google File System (GFS) Designing a file system for the Cloud design assumptions design choices Architecture GFS Master GFS Chunkservers GFS Clients

More information

Google File System (GFS) and Hadoop Distributed File System (HDFS)

Google File System (GFS) and Hadoop Distributed File System (HDFS) Google File System (GFS) and Hadoop Distributed File System (HDFS) 1 Hadoop: Architectural Design Principles Linear scalability More nodes can do more work within the same time Linear on data size, linear

More information

Distributed File Systems II

Distributed File Systems II Distributed File Systems II To do q Very-large scale: Google FS, Hadoop FS, BigTable q Next time: Naming things GFS A radically new environment NFS, etc. Independence Small Scale Variety of workloads Cooperation

More information

COSC 6397 Big Data Analytics. Distributed File Systems (II) Edgar Gabriel Spring HDFS Basics

COSC 6397 Big Data Analytics. Distributed File Systems (II) Edgar Gabriel Spring HDFS Basics COSC 6397 Big Data Analytics Distributed File Systems (II) Edgar Gabriel Spring 2017 HDFS Basics An open-source implementation of Google File System Assume that node failure rate is high Assumes a small

More information

COSC 6397 Big Data Analytics. Distributed File Systems (II) Edgar Gabriel Fall HDFS Basics

COSC 6397 Big Data Analytics. Distributed File Systems (II) Edgar Gabriel Fall HDFS Basics COSC 6397 Big Data Analytics Distributed File Systems (II) Edgar Gabriel Fall 2018 HDFS Basics An open-source implementation of Google File System Assume that node failure rate is high Assumes a small

More information

Map-Reduce. Marco Mura 2010 March, 31th

Map-Reduce. Marco Mura 2010 March, 31th Map-Reduce Marco Mura (mura@di.unipi.it) 2010 March, 31th This paper is a note from the 2009-2010 course Strumenti di programmazione per sistemi paralleli e distribuiti and it s based by the lessons of

More information

Dept. Of Computer Science, Colorado State University

Dept. Of Computer Science, Colorado State University CS 455: INTRODUCTION TO DISTRIBUTED SYSTEMS [HADOOP/HDFS] Trying to have your cake and eat it too Each phase pines for tasks with locality and their numbers on a tether Alas within a phase, you get one,

More information

MapReduce. U of Toronto, 2014

MapReduce. U of Toronto, 2014 MapReduce U of Toronto, 2014 http://www.google.org/flutrends/ca/ (2012) Average Searches Per Day: 5,134,000,000 2 Motivation Process lots of data Google processed about 24 petabytes of data per day in

More information

Distributed Systems. 15. Distributed File Systems. Paul Krzyzanowski. Rutgers University. Fall 2017

Distributed Systems. 15. Distributed File Systems. Paul Krzyzanowski. Rutgers University. Fall 2017 Distributed Systems 15. Distributed File Systems Paul Krzyzanowski Rutgers University Fall 2017 1 Google Chubby ( Apache Zookeeper) 2 Chubby Distributed lock service + simple fault-tolerant file system

More information

CS /30/17. Paul Krzyzanowski 1. Google Chubby ( Apache Zookeeper) Distributed Systems. Chubby. Chubby Deployment.

CS /30/17. Paul Krzyzanowski 1. Google Chubby ( Apache Zookeeper) Distributed Systems. Chubby. Chubby Deployment. Distributed Systems 15. Distributed File Systems Google ( Apache Zookeeper) Paul Krzyzanowski Rutgers University Fall 2017 1 2 Distributed lock service + simple fault-tolerant file system Deployment Client

More information

Distributed Systems. 15. Distributed File Systems. Paul Krzyzanowski. Rutgers University. Fall 2016

Distributed Systems. 15. Distributed File Systems. Paul Krzyzanowski. Rutgers University. Fall 2016 Distributed Systems 15. Distributed File Systems Paul Krzyzanowski Rutgers University Fall 2016 1 Google Chubby 2 Chubby Distributed lock service + simple fault-tolerant file system Interfaces File access

More information

7680: Distributed Systems

7680: Distributed Systems Cristina Nita-Rotaru 7680: Distributed Systems GFS. HDFS Required Reading } Google File System. S, Ghemawat, H. Gobioff and S.-T. Leung. SOSP 2003. } http://hadoop.apache.org } A Novel Approach to Improving

More information

CA485 Ray Walshe Google File System

CA485 Ray Walshe Google File System Google File System Overview Google File System is scalable, distributed file system on inexpensive commodity hardware that provides: Fault Tolerance File system runs on hundreds or thousands of storage

More information

CS November 2017

CS November 2017 Distributed Systems 09r. Map-Reduce Programming on AWS/EMR (Part I) Setting Up AWS/EMR Paul Krzyzanowski TA: Long Zhao Rutgers University Fall 2017 November 21, 2017 2017 Paul Krzyzanowski 1 November 21,

More information

Distributed Systems. 09r. Map-Reduce Programming on AWS/EMR (Part I) 2017 Paul Krzyzanowski. TA: Long Zhao Rutgers University Fall 2017

Distributed Systems. 09r. Map-Reduce Programming on AWS/EMR (Part I) 2017 Paul Krzyzanowski. TA: Long Zhao Rutgers University Fall 2017 Distributed Systems 09r. Map-Reduce Programming on AWS/EMR (Part I) Paul Krzyzanowski TA: Long Zhao Rutgers University Fall 2017 November 21, 2017 2017 Paul Krzyzanowski 1 Setting Up AWS/EMR November 21,

More information

Hadoop Lab 2 Exploring the Hadoop Environment

Hadoop Lab 2 Exploring the Hadoop Environment Programming for Big Data Hadoop Lab 2 Exploring the Hadoop Environment Video A short video guide for some of what is covered in this lab. Link for this video is on my module webpage 1 Open a Terminal window

More information

BigData and Map Reduce VITMAC03

BigData and Map Reduce VITMAC03 BigData and Map Reduce VITMAC03 1 Motivation Process lots of data Google processed about 24 petabytes of data per day in 2009. A single machine cannot serve all the data You need a distributed system to

More information

The Google File System

The Google File System October 13, 2010 Based on: S. Ghemawat, H. Gobioff, and S.-T. Leung: The Google file system, in Proceedings ACM SOSP 2003, Lake George, NY, USA, October 2003. 1 Assumptions Interface Architecture Single

More information

CPSC 426/526. Cloud Computing. Ennan Zhai. Computer Science Department Yale University

CPSC 426/526. Cloud Computing. Ennan Zhai. Computer Science Department Yale University CPSC 426/526 Cloud Computing Ennan Zhai Computer Science Department Yale University Recall: Lec-7 In the lec-7, I talked about: - P2P vs Enterprise control - Firewall - NATs - Software defined network

More information

ECE 7650 Scalable and Secure Internet Services and Architecture ---- A Systems Perspective

ECE 7650 Scalable and Secure Internet Services and Architecture ---- A Systems Perspective ECE 7650 Scalable and Secure Internet Services and Architecture ---- A Systems Perspective Part II: Data Center Software Architecture: Topic 1: Distributed File Systems GFS (The Google File System) 1 Filesystems

More information

Georgia Institute of Technology ECE6102 4/20/2009 David Colvin, Jimmy Vuong

Georgia Institute of Technology ECE6102 4/20/2009 David Colvin, Jimmy Vuong Georgia Institute of Technology ECE6102 4/20/2009 David Colvin, Jimmy Vuong Relatively recent; still applicable today GFS: Google s storage platform for the generation and processing of data used by services

More information

CS370 Operating Systems

CS370 Operating Systems CS370 Operating Systems Colorado State University Yashwant K Malaiya Spring 2018 Lecture 24 Mass Storage, HDFS/Hadoop Slides based on Text by Silberschatz, Galvin, Gagne Various sources 1 1 FAQ What 2

More information

Authors : Sanjay Ghemawat, Howard Gobioff, Shun-Tak Leung Presentation by: Vijay Kumar Chalasani

Authors : Sanjay Ghemawat, Howard Gobioff, Shun-Tak Leung Presentation by: Vijay Kumar Chalasani The Authors : Sanjay Ghemawat, Howard Gobioff, Shun-Tak Leung Presentation by: Vijay Kumar Chalasani CS5204 Operating Systems 1 Introduction GFS is a scalable distributed file system for large data intensive

More information

CS370 Operating Systems

CS370 Operating Systems CS370 Operating Systems Colorado State University Yashwant K Malaiya Fall 2017 Lecture 26 File Systems Slides based on Text by Silberschatz, Galvin, Gagne Various sources 1 1 FAQ Cylinders: all the platters?

More information

Cloud Computing CS

Cloud Computing CS Cloud Computing CS 15-319 Distributed File Systems and Cloud Storage Part II Lecture 13, Feb 27, 2012 Majd F. Sakr, Mohammad Hammoud and Suhail Rehman 1 Today Last session Distributed File Systems and

More information

CS435 Introduction to Big Data FALL 2018 Colorado State University. 11/7/2018 Week 12-B Sangmi Lee Pallickara. FAQs

CS435 Introduction to Big Data FALL 2018 Colorado State University. 11/7/2018 Week 12-B Sangmi Lee Pallickara. FAQs 11/7/2018 CS435 Introduction to Big Data - FALL 2018 W12.B.0.0 CS435 Introduction to Big Data 11/7/2018 CS435 Introduction to Big Data - FALL 2018 W12.B.1 FAQs Deadline of the Programming Assignment 3

More information

GFS: The Google File System. Dr. Yingwu Zhu

GFS: The Google File System. Dr. Yingwu Zhu GFS: The Google File System Dr. Yingwu Zhu Motivating Application: Google Crawl the whole web Store it all on one big disk Process users searches on one big CPU More storage, CPU required than one PC can

More information

CSE 124: Networked Services Fall 2009 Lecture-19

CSE 124: Networked Services Fall 2009 Lecture-19 CSE 124: Networked Services Fall 2009 Lecture-19 Instructor: B. S. Manoj, Ph.D http://cseweb.ucsd.edu/classes/fa09/cse124 Some of these slides are adapted from various sources/individuals including but

More information

The Google File System (GFS)

The Google File System (GFS) 1 The Google File System (GFS) CS60002: Distributed Systems Antonio Bruto da Costa Ph.D. Student, Formal Methods Lab, Dept. of Computer Sc. & Engg., Indian Institute of Technology Kharagpur 2 Design constraints

More information

Introduction to Cloud Computing

Introduction to Cloud Computing Introduction to Cloud Computing Distributed File Systems 15 319, spring 2010 12 th Lecture, Feb 18 th Majd F. Sakr Lecture Motivation Quick Refresher on Files and File Systems Understand the importance

More information

Google File System. Arun Sundaram Operating Systems

Google File System. Arun Sundaram Operating Systems Arun Sundaram Operating Systems 1 Assumptions GFS built with commodity hardware GFS stores a modest number of large files A few million files, each typically 100MB or larger (Multi-GB files are common)

More information

TITLE: PRE-REQUISITE THEORY. 1. Introduction to Hadoop. 2. Cluster. Implement sort algorithm and run it using HADOOP

TITLE: PRE-REQUISITE THEORY. 1. Introduction to Hadoop. 2. Cluster. Implement sort algorithm and run it using HADOOP TITLE: Implement sort algorithm and run it using HADOOP PRE-REQUISITE Preliminary knowledge of clusters and overview of Hadoop and its basic functionality. THEORY 1. Introduction to Hadoop The Apache Hadoop

More information

CSE 124: Networked Services Lecture-16

CSE 124: Networked Services Lecture-16 Fall 2010 CSE 124: Networked Services Lecture-16 Instructor: B. S. Manoj, Ph.D http://cseweb.ucsd.edu/classes/fa10/cse124 11/23/2010 CSE 124 Networked Services Fall 2010 1 Updates PlanetLab experiments

More information

A brief history on Hadoop

A brief history on Hadoop Hadoop Basics A brief history on Hadoop 2003 - Google launches project Nutch to handle billions of searches and indexing millions of web pages. Oct 2003 - Google releases papers with GFS (Google File System)

More information

Introduction to Map/Reduce. Kostas Solomos Computer Science Department University of Crete, Greece

Introduction to Map/Reduce. Kostas Solomos Computer Science Department University of Crete, Greece Introduction to Map/Reduce Kostas Solomos Computer Science Department University of Crete, Greece What we will cover What is MapReduce? How does it work? A simple word count example (the Hello World! of

More information

The Google File System

The Google File System The Google File System Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung Google* 정학수, 최주영 1 Outline Introduction Design Overview System Interactions Master Operation Fault Tolerance and Diagnosis Conclusions

More information

Cloudera Exam CCA-410 Cloudera Certified Administrator for Apache Hadoop (CCAH) Version: 7.5 [ Total Questions: 97 ]

Cloudera Exam CCA-410 Cloudera Certified Administrator for Apache Hadoop (CCAH) Version: 7.5 [ Total Questions: 97 ] s@lm@n Cloudera Exam CCA-410 Cloudera Certified Administrator for Apache Hadoop (CCAH) Version: 7.5 [ Total Questions: 97 ] Question No : 1 Which two updates occur when a client application opens a stream

More information

Cloud Computing. Hwajung Lee. Key Reference: Prof. Jong-Moon Chung s Lecture Notes at Yonsei University

Cloud Computing. Hwajung Lee. Key Reference: Prof. Jong-Moon Chung s Lecture Notes at Yonsei University Cloud Computing Hwajung Lee Key Reference: Prof. Jong-Moon Chung s Lecture Notes at Yonsei University Cloud Computing Cloud Introduction Cloud Service Model Big Data Hadoop MapReduce HDFS (Hadoop Distributed

More information

Lecture 12 DATA ANALYTICS ON WEB SCALE

Lecture 12 DATA ANALYTICS ON WEB SCALE Lecture 12 DATA ANALYTICS ON WEB SCALE Source: The Economist, February 25, 2010 The Data Deluge EIGHTEEN months ago, Li & Fung, a firm that manages supply chains for retailers, saw 100 gigabytes of information

More information

4/9/2018 Week 13-A Sangmi Lee Pallickara. CS435 Introduction to Big Data Spring 2018 Colorado State University. FAQs. Architecture of GFS

4/9/2018 Week 13-A Sangmi Lee Pallickara. CS435 Introduction to Big Data Spring 2018 Colorado State University. FAQs. Architecture of GFS W13.A.0.0 CS435 Introduction to Big Data W13.A.1 FAQs Programming Assignment 3 has been posted PART 2. LARGE SCALE DATA STORAGE SYSTEMS DISTRIBUTED FILE SYSTEMS Recitations Apache Spark tutorial 1 and

More information

Google File System. By Dinesh Amatya

Google File System. By Dinesh Amatya Google File System By Dinesh Amatya Google File System (GFS) Sanjay Ghemawat, Howard Gobioff, Shun-Tak Leung designed and implemented to meet rapidly growing demand of Google's data processing need a scalable

More information

GFS: The Google File System

GFS: The Google File System GFS: The Google File System Brad Karp UCL Computer Science CS GZ03 / M030 24 th October 2014 Motivating Application: Google Crawl the whole web Store it all on one big disk Process users searches on one

More information

HDFS Federation. Sanjay Radia Founder and Hortonworks. Page 1

HDFS Federation. Sanjay Radia Founder and Hortonworks. Page 1 HDFS Federation Sanjay Radia Founder and Architect @ Hortonworks Page 1 About Me Apache Hadoop Committer and Member of Hadoop PMC Architect of core-hadoop @ Yahoo - Focusing on HDFS, MapReduce scheduler,

More information

The Google File System

The Google File System The Google File System Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung SOSP 2003 presented by Kun Suo Outline GFS Background, Concepts and Key words Example of GFS Operations Some optimizations in

More information

The Google File System

The Google File System The Google File System Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung December 2003 ACM symposium on Operating systems principles Publisher: ACM Nov. 26, 2008 OUTLINE INTRODUCTION DESIGN OVERVIEW

More information

MI-PDB, MIE-PDB: Advanced Database Systems

MI-PDB, MIE-PDB: Advanced Database Systems MI-PDB, MIE-PDB: Advanced Database Systems http://www.ksi.mff.cuni.cz/~svoboda/courses/2015-2-mie-pdb/ Lecture 10: MapReduce, Hadoop 26. 4. 2016 Lecturer: Martin Svoboda svoboda@ksi.mff.cuni.cz Author:

More information

Distributed System. Gang Wu. Spring,2018

Distributed System. Gang Wu. Spring,2018 Distributed System Gang Wu Spring,2018 Lecture7:DFS What is DFS? A method of storing and accessing files base in a client/server architecture. A distributed file system is a client/server-based application

More information

HADOOP FRAMEWORK FOR BIG DATA

HADOOP FRAMEWORK FOR BIG DATA HADOOP FRAMEWORK FOR BIG DATA Mr K. Srinivas Babu 1,Dr K. Rameshwaraiah 2 1 Research Scholar S V University, Tirupathi 2 Professor and Head NNRESGI, Hyderabad Abstract - Data has to be stored for further

More information

Introduction to Hadoop. Owen O Malley Yahoo!, Grid Team

Introduction to Hadoop. Owen O Malley Yahoo!, Grid Team Introduction to Hadoop Owen O Malley Yahoo!, Grid Team owen@yahoo-inc.com Who Am I? Yahoo! Architect on Hadoop Map/Reduce Design, review, and implement features in Hadoop Working on Hadoop full time since

More information

Hadoop Distributed File System (HDFS) 10/05/2018 1

Hadoop Distributed File System (HDFS) 10/05/2018 1 Hadoop Distributed File System (HDFS) 1 HDFS Overview A distributed file system uilt on the architecture of Google File System (GS) Shares a similar architecture to many other common distributed storage

More information

GFS Overview. Design goals/priorities Design for big-data workloads Huge files, mostly appends, concurrency, huge bandwidth Design for failures

GFS Overview. Design goals/priorities Design for big-data workloads Huge files, mostly appends, concurrency, huge bandwidth Design for failures GFS Overview Design goals/priorities Design for big-data workloads Huge files, mostly appends, concurrency, huge bandwidth Design for failures Interface: non-posix New op: record appends (atomicity matters,

More information

CS 345A Data Mining. MapReduce

CS 345A Data Mining. MapReduce CS 345A Data Mining MapReduce Single-node architecture CPU Machine Learning, Statistics Memory Classical Data Mining Disk Commodity Clusters Web data sets can be very large Tens to hundreds of terabytes

More information

Distributed Systems. GFS / HDFS / Spanner

Distributed Systems. GFS / HDFS / Spanner 15-440 Distributed Systems GFS / HDFS / Spanner Agenda Google File System (GFS) Hadoop Distributed File System (HDFS) Distributed File Systems Replication Spanner Distributed Database System Paxos Replication

More information

! Design constraints. " Component failures are the norm. " Files are huge by traditional standards. ! POSIX-like

! Design constraints.  Component failures are the norm.  Files are huge by traditional standards. ! POSIX-like Cloud background Google File System! Warehouse scale systems " 10K-100K nodes " 50MW (1 MW = 1,000 houses) " Power efficient! Located near cheap power! Passive cooling! Power Usage Effectiveness = Total

More information

The Google File System

The Google File System The Google File System By Ghemawat, Gobioff and Leung Outline Overview Assumption Design of GFS System Interactions Master Operations Fault Tolerance Measurements Overview GFS: Scalable distributed file

More information

Lecture 11 Hadoop & Spark

Lecture 11 Hadoop & Spark Lecture 11 Hadoop & Spark Dr. Wilson Rivera ICOM 6025: High Performance Computing Electrical and Computer Engineering Department University of Puerto Rico Outline Distributed File Systems Hadoop Ecosystem

More information

HDFS: Hadoop Distributed File System. Sector: Distributed Storage System

HDFS: Hadoop Distributed File System. Sector: Distributed Storage System GFS: Google File System Google C/C++ HDFS: Hadoop Distributed File System Yahoo Java, Open Source Sector: Distributed Storage System University of Illinois at Chicago C++, Open Source 2 System that permanently

More information

Hadoop. copyright 2011 Trainologic LTD

Hadoop. copyright 2011 Trainologic LTD Hadoop Hadoop is a framework for processing large amounts of data in a distributed manner. It can scale up to thousands of machines. It provides high-availability. Provides map-reduce functionality. Hides

More information

18-hdfs-gfs.txt Thu Oct 27 10:05: Notes on Parallel File Systems: HDFS & GFS , Fall 2011 Carnegie Mellon University Randal E.

18-hdfs-gfs.txt Thu Oct 27 10:05: Notes on Parallel File Systems: HDFS & GFS , Fall 2011 Carnegie Mellon University Randal E. 18-hdfs-gfs.txt Thu Oct 27 10:05:07 2011 1 Notes on Parallel File Systems: HDFS & GFS 15-440, Fall 2011 Carnegie Mellon University Randal E. Bryant References: Ghemawat, Gobioff, Leung, "The Google File

More information

The Google File System

The Google File System The Google File System Sanjay Ghemawat, Howard Gobioff and Shun Tak Leung Google* Shivesh Kumar Sharma fl4164@wayne.edu Fall 2015 004395771 Overview Google file system is a scalable distributed file system

More information

50 Must Read Hadoop Interview Questions & Answers

50 Must Read Hadoop Interview Questions & Answers 50 Must Read Hadoop Interview Questions & Answers Whizlabs Dec 29th, 2017 Big Data Are you planning to land a job with big data and data analytics? Are you worried about cracking the Hadoop job interview?

More information

Google File System. Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung Google fall DIP Heerak lim, Donghun Koo

Google File System. Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung Google fall DIP Heerak lim, Donghun Koo Google File System Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung Google 2017 fall DIP Heerak lim, Donghun Koo 1 Agenda Introduction Design overview Systems interactions Master operation Fault tolerance

More information

Systems Infrastructure for Data Science. Web Science Group Uni Freiburg WS 2013/14

Systems Infrastructure for Data Science. Web Science Group Uni Freiburg WS 2013/14 Systems Infrastructure for Data Science Web Science Group Uni Freiburg WS 2013/14 MapReduce & Hadoop The new world of Big Data (programming model) Overview of this Lecture Module Background Cluster File

More information

Google File System 2

Google File System 2 Google File System 2 goals monitoring, fault tolerance, auto-recovery (thousands of low-cost machines) focus on multi-gb files handle appends efficiently (no random writes & sequential reads) co-design

More information

The Evolving Apache Hadoop Ecosystem What it means for Storage Industry

The Evolving Apache Hadoop Ecosystem What it means for Storage Industry The Evolving Apache Hadoop Ecosystem What it means for Storage Industry Sanjay Radia Architect/Founder, Hortonworks Inc. All Rights Reserved Page 1 Outline Hadoop (HDFS) and Storage Data platform drivers

More information

A Distributed Namespace for a Distributed File System

A Distributed Namespace for a Distributed File System A Distributed Namespace for a Distributed File System Wasif Riaz Malik wasif@kth.se Master of Science Thesis Examiner: Dr. Jim Dowling, KTH/SICS Berlin, Aug 7, 2012 TRITA-ICT-EX-2012:173 Abstract Due

More information

CS 138: Google. CS 138 XVI 1 Copyright 2017 Thomas W. Doeppner. All rights reserved.

CS 138: Google. CS 138 XVI 1 Copyright 2017 Thomas W. Doeppner. All rights reserved. CS 138: Google CS 138 XVI 1 Copyright 2017 Thomas W. Doeppner. All rights reserved. Google Environment Lots (tens of thousands) of computers all more-or-less equal - processor, disk, memory, network interface

More information

Introduction to MapReduce. Instructor: Dr. Weikuan Yu Computer Sci. & Software Eng.

Introduction to MapReduce. Instructor: Dr. Weikuan Yu Computer Sci. & Software Eng. Introduction to MapReduce Instructor: Dr. Weikuan Yu Computer Sci. & Software Eng. Before MapReduce Large scale data processing was difficult! Managing hundreds or thousands of processors Managing parallelization

More information

Google File System, Replication. Amin Vahdat CSE 123b May 23, 2006

Google File System, Replication. Amin Vahdat CSE 123b May 23, 2006 Google File System, Replication Amin Vahdat CSE 123b May 23, 2006 Annoucements Third assignment available today Due date June 9, 5 pm Final exam, June 14, 11:30-2:30 Google File System (thanks to Mahesh

More information

Yves Goeleven. Solution Architect - Particular Software. Shipping software since Azure MVP since Co-founder & board member AZUG

Yves Goeleven. Solution Architect - Particular Software. Shipping software since Azure MVP since Co-founder & board member AZUG Storage Services Yves Goeleven Solution Architect - Particular Software Shipping software since 2001 Azure MVP since 2010 Co-founder & board member AZUG NServiceBus & MessageHandler Used azure storage?

More information

Introduction to Hadoop and MapReduce

Introduction to Hadoop and MapReduce Introduction to Hadoop and MapReduce Antonino Virgillito THE CONTRACTOR IS ACTING UNDER A FRAMEWORK CONTRACT CONCLUDED WITH THE COMMISSION Large-scale Computation Traditional solutions for computing large

More information

NPTEL Course Jan K. Gopinath Indian Institute of Science

NPTEL Course Jan K. Gopinath Indian Institute of Science Storage Systems NPTEL Course Jan 2012 (Lecture 39) K. Gopinath Indian Institute of Science Google File System Non-Posix scalable distr file system for large distr dataintensive applications performance,

More information

Hadoop/MapReduce Computing Paradigm

Hadoop/MapReduce Computing Paradigm Hadoop/Reduce Computing Paradigm 1 Large-Scale Data Analytics Reduce computing paradigm (E.g., Hadoop) vs. Traditional database systems vs. Database Many enterprises are turning to Hadoop Especially applications

More information

Hadoop MapReduce for Mobile Clouds

Hadoop MapReduce for Mobile Clouds Calhoun: The NPS Institutional Archive Faculty and Researcher Publications Faculty and Researcher Publications Collection 2016 Hadoop MapReduce for Mobile Clouds George, Johnu http://hdl.handle.net/10945/52393

More information

Ceph: A Scalable, High-Performance Distributed File System

Ceph: A Scalable, High-Performance Distributed File System Ceph: A Scalable, High-Performance Distributed File System S. A. Weil, S. A. Brandt, E. L. Miller, D. D. E. Long Presented by Philip Snowberger Department of Computer Science and Engineering University

More information

The Google File System

The Google File System The Google File System Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung Google SOSP 03, October 19 22, 2003, New York, USA Hyeon-Gyu Lee, and Yeong-Jae Woo Memory & Storage Architecture Lab. School

More information

Enhanced Hadoop with Search and MapReduce Concurrency Optimization

Enhanced Hadoop with Search and MapReduce Concurrency Optimization Volume 114 No. 12 2017, 323-331 ISSN: 1311-8080 (printed version); ISSN: 1314-3395 (on-line version) url: http://www.ijpam.eu ijpam.eu Enhanced Hadoop with Search and MapReduce Concurrency Optimization

More information

NPTEL Course Jan K. Gopinath Indian Institute of Science

NPTEL Course Jan K. Gopinath Indian Institute of Science Storage Systems NPTEL Course Jan 2012 (Lecture 41) K. Gopinath Indian Institute of Science Lease Mgmt designed to minimize mgmt overhead at master a lease initially times out at 60 secs. primary can request

More information

Performance Enhancement of Data Processing using Multiple Intelligent Cache in Hadoop

Performance Enhancement of Data Processing using Multiple Intelligent Cache in Hadoop Performance Enhancement of Data Processing using Multiple Intelligent Cache in Hadoop K. Senthilkumar PG Scholar Department of Computer Science and Engineering SRM University, Chennai, Tamilnadu, India

More information

11/5/2018 Week 12-A Sangmi Lee Pallickara. CS435 Introduction to Big Data FALL 2018 Colorado State University

11/5/2018 Week 12-A Sangmi Lee Pallickara. CS435 Introduction to Big Data FALL 2018 Colorado State University 11/5/2018 CS435 Introduction to Big Data - FALL 2018 W12.A.0.0 CS435 Introduction to Big Data 11/5/2018 CS435 Introduction to Big Data - FALL 2018 W12.A.1 Consider a Graduate Degree in Computer Science

More information

Introduction to MapReduce

Introduction to MapReduce Basics of Cloud Computing Lecture 4 Introduction to MapReduce Satish Srirama Some material adapted from slides by Jimmy Lin, Christophe Bisciglia, Aaron Kimball, & Sierra Michels-Slettvet, Google Distributed

More information

Abstract. 1. Introduction. 2. Design and Implementation Master Chunkserver

Abstract. 1. Introduction. 2. Design and Implementation Master Chunkserver Abstract GFS from Scratch Ge Bian, Niket Agarwal, Wenli Looi https://github.com/looi/cs244b Dec 2017 GFS from Scratch is our partial re-implementation of GFS, the Google File System. Like GFS, our system

More information

Hadoop An Overview. - Socrates CCDH

Hadoop An Overview. - Socrates CCDH Hadoop An Overview - Socrates CCDH What is Big Data? Volume Not Gigabyte. Terabyte, Petabyte, Exabyte, Zettabyte - Due to handheld gadgets,and HD format images and videos - In total data, 90% of them collected

More information

Big Data Analytics. Izabela Moise, Evangelos Pournaras, Dirk Helbing

Big Data Analytics. Izabela Moise, Evangelos Pournaras, Dirk Helbing Big Data Analytics Izabela Moise, Evangelos Pournaras, Dirk Helbing Izabela Moise, Evangelos Pournaras, Dirk Helbing 1 Big Data "The world is crazy. But at least it s getting regular analysis." Izabela

More information