Final review. From threads to file systems

Size: px
Start display at page:

Download "Final review. From threads to file systems"

Transcription

1 Final review q From threads to file systems

2 Disclaimer Not guaranteed to be everything you need to know, just an overview of second half of the course 2

3 What s covered by the exam? Lectures from Threads to File systems Readings Slides Extra reading for extra credit 1. H. Levy et al., Virtual Memory Management in the VAX/VMS Operating System, IEEE Computer, Mar T. Anderson et al., Scheduler activations: effective kernel support for the user-level management of parallelism, ACM TOCS, 10(1):53-79, Feb B. Lampson et al., Experiences with Processes and Monitors in Mesa, CACM, Feb M, Rosenblum et al., Design and implementation of the logstructured file system, SOSP,

4 Major topics User and kernel-level threads Critical sections, locks and synchronization variables Race conditions, synchronization problems deadlocks I/O File systems 4

5 Threads Threads motivation and concept Threads and processes User, kernel-level and hybrid threads Complications with threads Q: In class we listed the register set as a per-thread rather than per-process item. Why? After all, the machine has only one set of registers. Q: Can the priority inversion problem discussed in class happen with user-level threads? Why or why not? 5

6 Synchronization Race conditions and critical sections Requirements for a solution Locks and their implementation Disabling interrupts and TSL Busy waiting, priority inversion and sleeping Basic lock-based data structures Q: Can two threads in the same process synchronize using a kernel semaphore if the threads are implemented by the kernel? What if they are implemented in user space? Assume that no threads in any other processes have access to the semaphores. Q: Why does disabling interrupts work for implementing locks in a single processor, and why is it not used outside the kernel? 6

7 Synchronization II Condition variables Semaphores, issues with semaphores and monitors Bounded buffer problem Reader-writers problem Q: Synchronization within monitors uses condition variables and two special operations wait and signal. A more general form of synchronization would be to have a single primitive, waituntil, that had an arbitrary Boolean predicate as parameter. Thus, one could say, for instance waituntil ((x < 0) ((y + z) < n)) The signal primitive would no longer be needed, of course. This scheme is clearly more flexible than then one discussed, but it is not used. Why not? Hint: Think about the implementation. 7

8 Monitor for an alarm clock Q: This is a snippet of the producer/consumer void *producer(void *arg) { int i; for (i = 0; i < loops; i++) { sem_wait(&empty); sem_wait(&mutex); put(i); sem_post(&mutex); sem_post(&full); } } void *consumer(void *arg) { int i; for (i = 0; i < loops; i++) { sem_wait(&full); sem_wait(&mutex); int tmp = get(); sem_post(&mutex); sem_post(&empty); } } Looking at the producer, why do you need the "mutex" semaphore if you have "empty"? Same in the consumer with "full"... Wouldn t those be enough? 8

9 Deadlocks Deadlock definition Condition for deadlocks Deadlock detection and recovery Dynamic deadlock avoidance Deadlock prevention Q: A system has two processes and three identical resources. Each process needs a maximum of two resources. Is deadlock possible? Explain your answer. 9

10 I/O Principles of I/O hardware Ways I/O can be done Disks Disk scheduling RAID Q: A computer manufacturer decides to redesign the partition table of a Pentium hard disk to provide more than four partitions. What are some consequences of this change? 10

11 File systems interface File system abstractions files and directories Implementing files Implementing directories Protection Q: A key issue when designing a FS is deciding how to keep track of which disk block goes with which file. Of the approaches discussed, which one would you choose to maximize efficiency in terms of speed of access, use of storage space, and ease of updating (adding, deleting, modifying) when the data is: a. Updated very infrequently and accessed frequently in random order. b. Updated frequently and accessed in its entirety relatively frequently. c. Updated frequently and accessed frequently in random order. 11

12 File systems implementation Early FS examples FFS Fsck and journaling Log file system Q: How many disk operations are needed to fetch the i-node for the file /home/fabianb/courses/eecs343/final10.tex? Assume that the i-node for the root directory is in memory, but nothing else along the path is in memory. Also, assume that all directories fit in one disk block. Q: How would you keep track of free blocks in a FAT file system? How would you find a free block then? 12

13 Notes on the final from those grading Write only your netid and on the first page It will help us grade anonymously Handwriting must be legible We weren't able to grade some midterm s responses Make it *very clear* what your final answer is Multiple answers will make you loose credit 13

Synchronization II. Today. ! Condition Variables! Semaphores! Monitors! and some classical problems Next time. ! Deadlocks

Synchronization II. Today. ! Condition Variables! Semaphores! Monitors! and some classical problems Next time. ! Deadlocks Synchronization II Today Condition Variables Semaphores Monitors and some classical problems Next time Deadlocks Condition variables Many times a thread wants to check whether a condition is true before

More information

Synchronization II. q Condition Variables q Semaphores and monitors q Some classical problems q Next time: Deadlocks

Synchronization II. q Condition Variables q Semaphores and monitors q Some classical problems q Next time: Deadlocks Synchronization II q Condition Variables q Semaphores and monitors q Some classical problems q Next time: Deadlocks Condition variables Locks are not enough to build concurrent programs Many times a thread

More information

W4118 Operating Systems. Instructor: Junfeng Yang

W4118 Operating Systems. Instructor: Junfeng Yang W4118 Operating Systems Instructor: Junfeng Yang Outline Semaphores Producer-consumer problem Monitors and condition variables 2 Semaphore motivation Problem with lock: mutual exclusion, but no ordering

More information

Synchroniza+on II COMS W4118

Synchroniza+on II COMS W4118 Synchroniza+on II COMS W4118 References: Opera+ng Systems Concepts (9e), Linux Kernel Development, previous W4118s Copyright no2ce: care has been taken to use only those web images deemed by the instructor

More information

Semaphores Semaphores: A Definition

Semaphores Semaphores: A Definition 23 Semaphores As we know now, one needs both locks and condition variables to solve a broad range of relevant and interesting concurrency problems. The first person who realized this years ago was Edsger

More information

Condition Variables CS 241. Prof. Brighten Godfrey. March 16, University of Illinois

Condition Variables CS 241. Prof. Brighten Godfrey. March 16, University of Illinois Condition Variables CS 241 Prof. Brighten Godfrey March 16, 2012 University of Illinois 1 Synchronization primitives Mutex locks Used for exclusive access to a shared resource (critical section) Operations:

More information

C09: Process Synchronization

C09: Process Synchronization CISC 7310X C09: Process Synchronization Hui Chen Department of Computer & Information Science CUNY Brooklyn College 3/29/2018 CUNY Brooklyn College 1 Outline Race condition and critical regions The bounded

More information

[537] Concurrency Bugs. Tyler Harter

[537] Concurrency Bugs. Tyler Harter [537] Concurrency Bugs Tyler Harter Review Semaphores CV s vs. Semaphores CV rules of thumb: - Keep state in addition to CV s - Always do wait/signal with lock held - Whenever you acquire a lock, recheck

More information

Midterm Exam. October 20th, Thursday NSC

Midterm Exam. October 20th, Thursday NSC CSE 421/521 - Operating Systems Fall 2011 Lecture - XIV Midterm Review Tevfik Koşar University at Buffalo October 18 th, 2011 1 Midterm Exam October 20th, Thursday 9:30am-10:50am @215 NSC Chapters included

More information

Semaphores. Jinkyu Jeong Computer Systems Laboratory Sungkyunkwan University

Semaphores. Jinkyu Jeong Computer Systems Laboratory Sungkyunkwan University Semaphores Jinkyu Jeong (jinkyu@skku.edu) Computer Systems Laboratory Sungkyunkwan University http://csl.skku.edu EEE3052: Introduction to Operating Systems, Fall 2017, Jinkyu Jeong (jinkyu@skku.edu) Synchronization

More information

CS-537: Midterm Exam (Fall 2013) Professor McFlub

CS-537: Midterm Exam (Fall 2013) Professor McFlub CS-537: Midterm Exam (Fall 2013) Professor McFlub Please Read All Questions Carefully! There are fourteen (14) total numbered pages. Please put your NAME (mandatory) on THIS page, and this page only. Name:

More information

Operating Systems. Lecture 4 - Concurrency and Synchronization. Master of Computer Science PUF - Hồ Chí Minh 2016/2017

Operating Systems. Lecture 4 - Concurrency and Synchronization. Master of Computer Science PUF - Hồ Chí Minh 2016/2017 Operating Systems Lecture 4 - Concurrency and Synchronization Adrien Krähenbühl Master of Computer Science PUF - Hồ Chí Minh 2016/2017 Mutual exclusion Hardware solutions Semaphores IPC: Message passing

More information

Operating Systems. Thread Synchronization Primitives. Thomas Ropars.

Operating Systems. Thread Synchronization Primitives. Thomas Ropars. 1 Operating Systems Thread Synchronization Primitives Thomas Ropars thomas.ropars@univ-grenoble-alpes.fr 2017 2 Agenda Week 42/43: Synchronization primitives Week 44: Vacation Week 45: Synchronization

More information

Main Points of the Computer Organization and System Software Module

Main Points of the Computer Organization and System Software Module Main Points of the Computer Organization and System Software Module You can find below the topics we have covered during the COSS module. Reading the relevant parts of the textbooks is essential for a

More information

Architectural Support. Processes. OS Structure. Threads. Scheduling. CSE 451: Operating Systems Spring Module 28 Course Review

Architectural Support. Processes. OS Structure. Threads. Scheduling. CSE 451: Operating Systems Spring Module 28 Course Review Architectural Support CSE 451: Operating Systems Spring 2012 Module 28 Course Review Ed Lazowska lazowska@cs.washington.edu Allen Center 570 Privileged instructions what are they? how does the CPU know

More information

Introduction to Operating Systems

Introduction to Operating Systems Introduction to Operating Systems Lecture 4: Process Synchronization MING GAO SE@ecnu (for course related communications) mgao@sei.ecnu.edu.cn Mar. 18, 2015 Outline 1 The synchronization problem 2 A roadmap

More information

CS-537: Midterm Exam (Spring 2001)

CS-537: Midterm Exam (Spring 2001) CS-537: Midterm Exam (Spring 2001) Please Read All Questions Carefully! There are seven (7) total numbered pages Name: 1 Grading Page Points Total Possible Part I: Short Answers (12 5) 60 Part II: Long

More information

CS 4410 Operating Systems. Review 1. Summer 2016 Cornell University

CS 4410 Operating Systems. Review 1. Summer 2016 Cornell University CS 4410 Operating Systems Review 1 Summer 2016 Cornell University 1 A modern computer system keyboard disks mouse printer monitor CPU Disk controller USB controller Graphics adapter memory OS device driver

More information

Condition Variables. parent: begin child parent: end

Condition Variables. parent: begin child parent: end 22 Condition Variables Thus far we have developed the notion of a lock and seen how one can be properly built with the right combination of hardware and OS support. Unfortunately, locks are not the only

More information

Using Semaphores CS 241. March 14, University of Illinois

Using Semaphores CS 241. March 14, University of Illinois Using Semaphores CS 241 March 14, 2012 University of Illinois Slides adapted in part from material accompanying Bryant & O Hallaron, Computer Systems: A Programmer's Perspective, 2/E 1 Announcements MP6

More information

Lecture 9: Midterm Review

Lecture 9: Midterm Review Project 1 Due at Midnight Lecture 9: Midterm Review CSE 120: Principles of Operating Systems Alex C. Snoeren Midterm Everything we ve covered is fair game Readings, lectures, homework, and Nachos Yes,

More information

Semaphores. attention to the previous chapters. And even remembering a few things. You have, right?!

Semaphores. attention to the previous chapters. And even remembering a few things. You have, right?! 30 Semaphores As we know now 1, one needs both locks and condition variables to solve a broad range of relevant and interesting concurrency problems. One of the first people to realize this years ago was

More information

CSI3131 Final Exam Review

CSI3131 Final Exam Review CSI3131 Final Exam Review Final Exam: When: April 24, 2015 2:00 PM Where: SMD 425 File Systems I/O Hard Drive Virtual Memory Swap Memory Storage and I/O Introduction CSI3131 Topics Process Computing Systems

More information

To Everyone... iii To Educators... v To Students... vi Acknowledgments... vii Final Words... ix References... x. 1 ADialogueontheBook 1

To Everyone... iii To Educators... v To Students... vi Acknowledgments... vii Final Words... ix References... x. 1 ADialogueontheBook 1 Contents To Everyone.............................. iii To Educators.............................. v To Students............................... vi Acknowledgments........................... vii Final Words..............................

More information

CSE Traditional Operating Systems deal with typical system software designed to be:

CSE Traditional Operating Systems deal with typical system software designed to be: CSE 6431 Traditional Operating Systems deal with typical system software designed to be: general purpose running on single processor machines Advanced Operating Systems are designed for either a special

More information

Synchronization. CSE 2431: Introduction to Operating Systems Reading: Chapter 5, [OSC] (except Section 5.10)

Synchronization. CSE 2431: Introduction to Operating Systems Reading: Chapter 5, [OSC] (except Section 5.10) Synchronization CSE 2431: Introduction to Operating Systems Reading: Chapter 5, [OSC] (except Section 5.10) 1 Outline Critical region and mutual exclusion Mutual exclusion using busy waiting Sleep and

More information

CS4411 Intro. to Operating Systems Final Fall points 12 pages

CS4411 Intro. to Operating Systems Final Fall points 12 pages CS44 Intro. to Operating Systems Final Exam Fall 5 CS44 Intro. to Operating Systems Final Fall 5 points pages Name: Most of the following questions only require very short answers. Usually a few sentences

More information

Operating Systems EDA092, DIT 400 Exam

Operating Systems EDA092, DIT 400 Exam Chalmers University of Technology and Gothenburg University Operating Systems EDA092, DIT 400 Exam 2015-04-14 Date, Time, Place: Tuesday 2015/04/14, 14:00 18:00, Väg och vatten -salar Course Responsible:

More information

148 PROCESSES CHAP. 2

148 PROCESSES CHAP. 2 148 PROCESSES CHAP. 2 Interprocess communication primitives can be used to solve such problems as the producer-consumer, dining philosophers, reader-writer, and sleeping barber. Even with these primitives,

More information

b. How many bits are there in the physical address?

b. How many bits are there in the physical address? Memory Management 1) Consider a logical address space of 64 (or 26) pages of 1,024 (or 210) bytes each, mapped onto a physical memory of 32 (or 25) frames. a. How many bits are there in the logical address?

More information

Chapter 6: Process Synchronization

Chapter 6: Process Synchronization Chapter 6: Process Synchronization Objectives Introduce Concept of Critical-Section Problem Hardware and Software Solutions of Critical-Section Problem Concept of Atomic Transaction Operating Systems CS

More information

Timers 1 / 46. Jiffies. Potent and Evil Magic

Timers 1 / 46. Jiffies. Potent and Evil Magic Timers 1 / 46 Jiffies Each timer tick, a variable called jiffies is incremented It is thus (roughly) the number of HZ since system boot A 32-bit counter incremented at 1000 Hz wraps around in about 50

More information

Threads. Concurrency. What it is. Lecture Notes Week 2. Figure 1: Multi-Threading. Figure 2: Multi-Threading

Threads. Concurrency. What it is. Lecture Notes Week 2. Figure 1: Multi-Threading. Figure 2: Multi-Threading Threads Figure 1: Multi-Threading Figure 2: Multi-Threading Concurrency What it is 1. Two or more threads of control access a shared resource. Scheduler operation must be taken into account fetch-decode-execute-check

More information

Caching and reliability

Caching and reliability Caching and reliability Block cache Vs. Latency ~10 ns 1~ ms Access unit Byte (word) Sector Capacity Gigabytes Terabytes Price Expensive Cheap Caching disk contents in RAM Hit ratio h : probability of

More information

Page 1. Goals for Today" Atomic Read-Modify-Write instructions" Examples of Read-Modify-Write "

Page 1. Goals for Today Atomic Read-Modify-Write instructions Examples of Read-Modify-Write Goals for Today" CS162 Operating Systems and Systems Programming Lecture 5 Semaphores, Conditional Variables" Atomic instruction sequence Continue with Synchronization Abstractions Semaphores, Monitors

More information

Synchronization Principles I

Synchronization Principles I CSC 256/456: Operating Systems Synchronization Principles I John Criswell University of Rochester 1 Synchronization Principles Background Concurrent access to shared data may result in data inconsistency.

More information

Mid-term Roll no: Scheduler Activations: Effective Kernel Support for the User-Level Management of Parallelism

Mid-term Roll no: Scheduler Activations: Effective Kernel Support for the User-Level Management of Parallelism Advanced Operating Systems Spring 2013 Mid-term Roll no: Instructions. The exam consists of 30 multiple choice questions, each worth one mark. You have 2 hours and 30 minutes to solve this. If you think

More information

[537] Semaphores. Tyler Harter

[537] Semaphores. Tyler Harter [537] Semaphores Tyler Harter Producer/Consumer Problem Producers generate data (like pipe writers). Consumers grab data and process it (like pipe readers). Producer/consumer problems are frequent in systems.

More information

CSE 4/521 Introduction to Operating Systems

CSE 4/521 Introduction to Operating Systems CSE 4/521 Introduction to Operating Systems Lecture 7 Process Synchronization II (Classic Problems of Synchronization, Synchronization Examples) Summer 2018 Overview Objective: 1. To examine several classical

More information

Concurrent & Distributed Systems Supervision Exercises

Concurrent & Distributed Systems Supervision Exercises Concurrent & Distributed Systems Supervision Exercises Stephen Kell Stephen.Kell@cl.cam.ac.uk November 9, 2009 These exercises are intended to cover all the main points of understanding in the lecture

More information

Module 6: Process Synchronization

Module 6: Process Synchronization Module 6: Process Synchronization Background The Critical-Section Problem Peterson s Solution Synchronization Hardware Semaphores Classic Problems of Synchronization Monitors Synchronization Examples Atomic

More information

Suggested Solutions (Midterm Exam October 27, 2005)

Suggested Solutions (Midterm Exam October 27, 2005) Suggested Solutions (Midterm Exam October 27, 2005) 1 Short Questions (4 points) Answer the following questions (True or False). Use exactly one sentence to describe why you choose your answer. Without

More information

Chapter 6: Process Synchronization. Operating System Concepts 8 th Edition,

Chapter 6: Process Synchronization. Operating System Concepts 8 th Edition, Chapter 6: Process Synchronization, Silberschatz, Galvin and Gagne 2009 Module 6: Process Synchronization Background The Critical-Section Problem Peterson s Solution Synchronization Hardware Semaphores

More information

Multiprocessor Systems. Chapter 8, 8.1

Multiprocessor Systems. Chapter 8, 8.1 Multiprocessor Systems Chapter 8, 8.1 1 Learning Outcomes An understanding of the structure and limits of multiprocessor hardware. An appreciation of approaches to operating system support for multiprocessor

More information

Process Synchronization

Process Synchronization CSC 4103 - Operating Systems Spring 2007 Lecture - VI Process Synchronization Tevfik Koşar Louisiana State University February 6 th, 2007 1 Roadmap Process Synchronization The Critical-Section Problem

More information

CS 162 Operating Systems and Systems Programming Professor: Anthony D. Joseph Spring Lecture 8: Semaphores, Monitors, & Condition Variables

CS 162 Operating Systems and Systems Programming Professor: Anthony D. Joseph Spring Lecture 8: Semaphores, Monitors, & Condition Variables CS 162 Operating Systems and Systems Programming Professor: Anthony D. Joseph Spring 2004 Lecture 8: Semaphores, Monitors, & Condition Variables 8.0 Main Points: Definition of semaphores Example of use

More information

Process Synchronization: Semaphores. CSSE 332 Operating Systems Rose-Hulman Institute of Technology

Process Synchronization: Semaphores. CSSE 332 Operating Systems Rose-Hulman Institute of Technology Process Synchronization: Semaphores CSSE 332 Operating Systems Rose-Hulman Institute of Technology Critical-section problem solution 1. Mutual Exclusion - If process Pi is executing in its critical section,

More information

Threads. Threads The Thread Model (1) CSCE 351: Operating System Kernels Witawas Srisa-an Chapter 4-5

Threads. Threads The Thread Model (1) CSCE 351: Operating System Kernels Witawas Srisa-an Chapter 4-5 Threads CSCE 351: Operating System Kernels Witawas Srisa-an Chapter 4-5 1 Threads The Thread Model (1) (a) Three processes each with one thread (b) One process with three threads 2 1 The Thread Model (2)

More information

Semaphores Semaphores: A Definition

Semaphores Semaphores: A Definition 31 Semaphores As we know now, one needs both locks and condition variables to solve a broad range of relevant and interesting concurrency problems. One of the first people to realize this years ago was

More information

CSE 451: Operating Systems Winter Lecture 7 Synchronization. Hank Levy 412 Sieg Hall

CSE 451: Operating Systems Winter Lecture 7 Synchronization. Hank Levy 412 Sieg Hall CSE 451: Operating Systems Winter 2003 Lecture 7 Synchronization Hank Levy Levy@cs.washington.edu 412 Sieg Hall Synchronization Threads cooperate in multithreaded programs to share resources, access shared

More information

CS370 Operating Systems

CS370 Operating Systems CS370 Operating Systems Colorado State University Yashwant K Malaiya Fall 2017 Lecture 11 Slides based on Text by Silberschatz, Galvin, Gagne Various sources 1 1 FAQ Multilevel Feedback Queue: Q0, Q1,

More information

Note: The following (with modifications) is adapted from Silberschatz (our course textbook), Project: Producer-Consumer Problem.

Note: The following (with modifications) is adapted from Silberschatz (our course textbook), Project: Producer-Consumer Problem. CSCI-375 Operating Systems Lab #5 Semaphores, Producer/Consumer Problem October 19, 2016 Note: The following (with modifications) is adapted from Silberschatz (our course textbook), Project: Producer-Consumer

More information

Page 1. Goals for Today" Atomic Read-Modify-Write instructions" Examples of Read-Modify-Write "

Page 1. Goals for Today Atomic Read-Modify-Write instructions Examples of Read-Modify-Write Goals for Today" CS162 Operating Systems and Systems Programming Lecture 5 Semaphores, Conditional Variables" Atomic instruction sequence Continue with Synchronization Abstractions Semaphores, Monitors

More information

Concurrency. Chapter 5

Concurrency. Chapter 5 Concurrency 1 Chapter 5 2 Concurrency Is a fundamental concept in operating system design Processes execute interleaved in time on a single processor Creates the illusion of simultaneous execution Benefits

More information

CS Operating Systems

CS Operating Systems CS 4500 - Operating Systems Module 4: The Producer-Consumer Problem and Solution Methods Stanley Wileman Department of Computer Science University of Nebraska at Omaha Omaha, NE 68182-0500, USA June 3,

More information

CS Operating Systems

CS Operating Systems CS 4500 - Operating Systems Module 4: The Producer-Consumer Problem and Solution Methods Stanley Wileman Department of Computer Science University of Nebraska at Omaha Omaha, NE 68182-0500, USA June 3,

More information

CS-537: Midterm Exam (Fall 2013) Professor McFlub: The Solutions Edition

CS-537: Midterm Exam (Fall 2013) Professor McFlub: The Solutions Edition CS-537: Midterm Exam (Fall 2013) Professor McFlub: The Solutions Edition Please Read All Questions Carefully! There are fourteen (14) total numbered pages. Please put your NAME (mandatory) on THIS page,

More information

EECE.4810/EECE.5730: Operating Systems Spring Midterm Exam March 8, Name: Section: EECE.4810 (undergraduate) EECE.

EECE.4810/EECE.5730: Operating Systems Spring Midterm Exam March 8, Name: Section: EECE.4810 (undergraduate) EECE. EECE.4810/EECE.5730: Operating Systems Spring 2017 Midterm Exam March 8, 2017 Name: Section: EECE.4810 (undergraduate) EECE.5730 (graduate) For this exam, you may use two 8.5 x 11 double-sided page of

More information

Operating Systems. Designed and Presented by Dr. Ayman Elshenawy Elsefy

Operating Systems. Designed and Presented by Dr. Ayman Elshenawy Elsefy Operating Systems Designed and Presented by Dr. Ayman Elshenawy Elsefy Dept. of Systems & Computer Eng.. AL-AZHAR University Website : eaymanelshenawy.wordpress.com Email : eaymanelshenawy@yahoo.com Reference

More information

Synchronization. Disclaimer: some slides are adopted from the book authors slides 1

Synchronization. Disclaimer: some slides are adopted from the book authors slides 1 Synchronization Disclaimer: some slides are adopted from the book authors slides 1 Recap Synchronization instructions test&set, compare&swap All or nothing Spinlock Spin on wait Good for short critical

More information

SYNCHRONIZATION M O D E R N O P E R A T I N G S Y S T E M S R E A D 2. 3 E X C E P T A N D S P R I N G 2018

SYNCHRONIZATION M O D E R N O P E R A T I N G S Y S T E M S R E A D 2. 3 E X C E P T A N D S P R I N G 2018 SYNCHRONIZATION M O D E R N O P E R A T I N G S Y S T E M S R E A D 2. 3 E X C E P T 2. 3. 8 A N D 2. 3. 1 0 S P R I N G 2018 INTER-PROCESS COMMUNICATION 1. How a process pass information to another process

More information

Sistemas Operacionais I. Valeria Menezes Bastos

Sistemas Operacionais I. Valeria Menezes Bastos Sistemas Operacionais I Valeria Menezes Bastos Operating Systems: Internals and Design Principles Chapter 1 Computer System Overview Eighth Edition By William Stallings Summary Basic Elements Evolution

More information

CHAPTER 6: PROCESS SYNCHRONIZATION

CHAPTER 6: PROCESS SYNCHRONIZATION CHAPTER 6: PROCESS SYNCHRONIZATION The slides do not contain all the information and cannot be treated as a study material for Operating System. Please refer the text book for exams. TOPICS Background

More information

Semaphore. Originally called P() and V() wait (S) { while S <= 0 ; // no-op S--; } signal (S) { S++; }

Semaphore. Originally called P() and V() wait (S) { while S <= 0 ; // no-op S--; } signal (S) { S++; } Semaphore Semaphore S integer variable Two standard operations modify S: wait() and signal() Originally called P() and V() Can only be accessed via two indivisible (atomic) operations wait (S) { while

More information

STUDENT NAME: STUDENT ID: Problem 1 Problem 2 Problem 3 Problem 4 Problem 5 Total

STUDENT NAME: STUDENT ID: Problem 1 Problem 2 Problem 3 Problem 4 Problem 5 Total University of Minnesota Department of Computer Science & Engineering CSci 5103 - Fall 2018 (Instructor: Tripathi) Midterm Exam 1 Date: October 18, 2018 (1:00 2:15 pm) (Time: 75 minutes) Total Points 100

More information

Page 1. Goals for Today. Atomic Read-Modify-Write instructions. Examples of Read-Modify-Write

Page 1. Goals for Today. Atomic Read-Modify-Write instructions. Examples of Read-Modify-Write Goals for Today CS162 Operating Systems and Systems Programming Lecture 5 Atomic instruction sequence Continue with Synchronization Abstractions Semaphores, Monitors and condition variables Semaphores,

More information

Concurrency. On multiprocessors, several threads can execute simultaneously, one on each processor.

Concurrency. On multiprocessors, several threads can execute simultaneously, one on each processor. Synchronization 1 Concurrency On multiprocessors, several threads can execute simultaneously, one on each processor. On uniprocessors, only one thread executes at a time. However, because of preemption

More information

Comp 310 Computer Systems and Organization

Comp 310 Computer Systems and Organization Comp 310 Computer Systems and Organization Lecture #10 Process Management (CPU Scheduling & Synchronization) 1 Prof. Joseph Vybihal Announcements Oct 16 Midterm exam (in class) In class review Oct 14 (½

More information

Monitors; Software Transactional Memory

Monitors; Software Transactional Memory Monitors; Software Transactional Memory Parallel and Distributed Computing Department of Computer Science and Engineering (DEI) Instituto Superior Técnico March 17, 2016 CPD (DEI / IST) Parallel and Distributed

More information

PROCESS SYNCHRONIZATION

PROCESS SYNCHRONIZATION PROCESS SYNCHRONIZATION Process Synchronization Background The Critical-Section Problem Peterson s Solution Synchronization Hardware Semaphores Classic Problems of Synchronization Monitors Synchronization

More information

7: Interprocess Communication

7: Interprocess Communication 7: Interprocess Communication Mark Handley Interprocess Communication Processes frequently need to communicate to perform tasks. Shared memory. Shared files. Message passing. Whenever processes communicate,

More information

COMP 3361: Operating Systems 1 Final Exam Winter 2009

COMP 3361: Operating Systems 1 Final Exam Winter 2009 COMP 3361: Operating Systems 1 Final Exam Winter 2009 Name: Instructions This is an open book exam. The exam is worth 100 points, and each question indicates how many points it is worth. Read the exam

More information

1 Process Coordination

1 Process Coordination COMP 730 (242) Class Notes Section 5: Process Coordination 1 Process Coordination Process coordination consists of synchronization and mutual exclusion, which were discussed earlier. We will now study

More information

Final Exam Preparation Questions

Final Exam Preparation Questions EECS 678 Spring 2013 Final Exam Preparation Questions 1 Chapter 6 1. What is a critical section? What are the three conditions to be ensured by any solution to the critical section problem? 2. The following

More information

CSE 451: Operating Systems Winter Lecture 7 Synchronization. Steve Gribble. Synchronization. Threads cooperate in multithreaded programs

CSE 451: Operating Systems Winter Lecture 7 Synchronization. Steve Gribble. Synchronization. Threads cooperate in multithreaded programs CSE 451: Operating Systems Winter 2005 Lecture 7 Synchronization Steve Gribble Synchronization Threads cooperate in multithreaded programs to share resources, access shared data structures e.g., threads

More information

Lecture. DM510 - Operating Systems, Weekly Notes, Week 11/12, 2018

Lecture. DM510 - Operating Systems, Weekly Notes, Week 11/12, 2018 Lecture In the lecture on March 13 we will mainly discuss Chapter 6 (Process Scheduling). Examples will be be shown for the simulation of the Dining Philosopher problem, a solution with monitors will also

More information

Background. The Critical-Section Problem Synchronisation Hardware Inefficient Spinning Semaphores Semaphore Examples Scheduling.

Background. The Critical-Section Problem Synchronisation Hardware Inefficient Spinning Semaphores Semaphore Examples Scheduling. Background The Critical-Section Problem Background Race Conditions Solution Criteria to Critical-Section Problem Peterson s (Software) Solution Concurrent access to shared data may result in data inconsistency

More information

Synchronization. Disclaimer: some slides are adopted from the book authors slides 1

Synchronization. Disclaimer: some slides are adopted from the book authors slides 1 Synchronization Disclaimer: some slides are adopted from the book authors slides 1 Recap Synchronization instructions test&set, compare&swap All or nothing Spinlock Spin on wait Good for short critical

More information

Concurrency. On multiprocessors, several threads can execute simultaneously, one on each processor.

Concurrency. On multiprocessors, several threads can execute simultaneously, one on each processor. Synchronization 1 Concurrency On multiprocessors, several threads can execute simultaneously, one on each processor. On uniprocessors, only one thread executes at a time. However, because of preemption

More information

Multiprocessor System. Multiprocessor Systems. Bus Based UMA. Types of Multiprocessors (MPs) Cache Consistency. Bus Based UMA. Chapter 8, 8.

Multiprocessor System. Multiprocessor Systems. Bus Based UMA. Types of Multiprocessors (MPs) Cache Consistency. Bus Based UMA. Chapter 8, 8. Multiprocessor System Multiprocessor Systems Chapter 8, 8.1 We will look at shared-memory multiprocessors More than one processor sharing the same memory A single CPU can only go so fast Use more than

More information

Synchronization for Concurrent Tasks

Synchronization for Concurrent Tasks Synchronization for Concurrent Tasks Minsoo Ryu Department of Computer Science and Engineering 2 1 Race Condition and Critical Section Page X 2 Algorithmic Approaches Page X 3 Hardware Support Page X 4

More information

CSC Operating Systems Spring Lecture - XII Midterm Review. Tevfik Ko!ar. Louisiana State University. March 4 th, 2008.

CSC Operating Systems Spring Lecture - XII Midterm Review. Tevfik Ko!ar. Louisiana State University. March 4 th, 2008. CSC 4103 - Operating Systems Spring 2008 Lecture - XII Midterm Review Tevfik Ko!ar Louisiana State University March 4 th, 2008 1 I/O Structure After I/O starts, control returns to user program only upon

More information

Dealing with Issues for Interprocess Communication

Dealing with Issues for Interprocess Communication Dealing with Issues for Interprocess Communication Ref Section 2.3 Tanenbaum 7.1 Overview Processes frequently need to communicate with other processes. In a shell pipe the o/p of one process is passed

More information

CPS 110 Midterm. Spring 2011

CPS 110 Midterm. Spring 2011 CPS 110 Midterm Spring 2011 Ola! Greetings from Puerto Rico, where the air is warm and salty and the mojitos are cold and sweet. Please answer all questions for a total of 200 points. Keep it clear and

More information

Multiprocessor Systems. COMP s1

Multiprocessor Systems. COMP s1 Multiprocessor Systems 1 Multiprocessor System We will look at shared-memory multiprocessors More than one processor sharing the same memory A single CPU can only go so fast Use more than one CPU to improve

More information

Introduction to Operating Systems Prof. Chester Rebeiro Department of Computer Science and Engineering Indian Institute of Technology, Madras

Introduction to Operating Systems Prof. Chester Rebeiro Department of Computer Science and Engineering Indian Institute of Technology, Madras Introduction to Operating Systems Prof. Chester Rebeiro Department of Computer Science and Engineering Indian Institute of Technology, Madras Week 06 Lecture 29 Semaphores Hello. In this video, we will

More information

Condition Variables. Dongkun Shin, SKKU

Condition Variables. Dongkun Shin, SKKU Condition Variables 1 Why Condition? cases where a thread wishes to check whether a condition is true before continuing its execution 1 void *child(void *arg) { 2 printf("child\n"); 3 // XXX how to indicate

More information

Announcements. Class feedback for mid-course evaluations Receive about survey to fill out until this Friday

Announcements. Class feedback for mid-course evaluations Receive  about survey to fill out until this Friday Announcements Project 2: Part 2a will be graded this week Part 2b take longer since we compare all graphs Project 3: Shared memory segments Linux: use shmget and shmat across server + client processes

More information

CS 537: Introduction to Operating Systems Fall 2015: Midterm Exam #2 SOLUTIONS

CS 537: Introduction to Operating Systems Fall 2015: Midterm Exam #2 SOLUTIONS CS 537: Introduction to Operating Systems Fall 2015: Midterm Exam #2 SOLUTIONS This exam is closed book, closed notes. All cell phones must be turned off. No calculators may be used. You have two hours

More information

Concept of a process

Concept of a process Concept of a process In the context of this course a process is a program whose execution is in progress States of a process: running, ready, blocked Submit Ready Running Completion Blocked Concurrent

More information

University of Waterloo Midterm Examination Model Solution CS350 Operating Systems

University of Waterloo Midterm Examination Model Solution CS350 Operating Systems University of Waterloo Midterm Examination Model Solution CS350 Operating Systems Fall, 2003 1. (10 total marks) Suppose that two processes, a and b, are running in a uniprocessor system. a has three threads.

More information

Synchronization. Heechul Yun. Disclaimer: some slides are adopted from the book authors and Dr. Kulkani

Synchronization. Heechul Yun. Disclaimer: some slides are adopted from the book authors and Dr. Kulkani Synchronization Heechul Yun Disclaimer: some slides are adopted from the book authors and Dr. Kulkani 1 Synchronization Spinlock Recap Implement using h/w instructions (e.g., test-and-set) Mutex Sleep

More information

Operating Systems. Operating Systems Summer 2017 Sina Meraji U of T

Operating Systems. Operating Systems Summer 2017 Sina Meraji U of T Operating Systems Operating Systems Summer 2017 Sina Meraji U of T More Special Instructions Swap (or Exchange) instruction Operates on two words atomically Can also be used to solve critical section problem

More information

CSE 153 Design of Operating Systems

CSE 153 Design of Operating Systems CSE 153 Design of Operating Systems Winter 2018 Lecture 10: Monitors Monitors A monitor is a programming language construct that controls access to shared data Synchronization code added by compiler, enforced

More information

Semaphores and Monitors: High-level Synchronization Constructs

Semaphores and Monitors: High-level Synchronization Constructs 1 Synchronization Constructs Synchronization Coordinating execution of multiple threads that share data structures Semaphores and Monitors High-level Synchronization Constructs A Historical Perspective

More information

HY345 - Operating Systems

HY345 - Operating Systems HY345 - Operating Systems Recitation 1 - Process Management and Synchronization Solutions Dimitris Deyannis deyannis@csd.uoc.gr Problem 3 On all current computers, at least part of the interrupt handlers

More information

CS-537: Midterm Exam (Spring 2009) The Future of Processors, Operating Systems, and You

CS-537: Midterm Exam (Spring 2009) The Future of Processors, Operating Systems, and You CS-537: Midterm Exam (Spring 2009) The Future of Processors, Operating Systems, and You Please Read All Questions Carefully! There are 15 total numbered pages. Please put your NAME and student ID on THIS

More information

Process Synchronization

Process Synchronization Chapter 7 Process Synchronization 1 Chapter s Content Background The Critical-Section Problem Synchronization Hardware Semaphores Classical Problems of Synchronization Critical Regions Monitors 2 Background

More information

Sections 01 (11:30), 02 (16:00), 03 (8:30) Ashraf Aboulnaga & Borzoo Bonakdarpour

Sections 01 (11:30), 02 (16:00), 03 (8:30) Ashraf Aboulnaga & Borzoo Bonakdarpour Course CS350 - Operating Systems Sections 01 (11:30), 02 (16:00), 03 (8:30) Instructor Ashraf Aboulnaga & Borzoo Bonakdarpour Date of Exam October 25, 2011 Time Period 19:00-21:00 Duration of Exam Number

More information

Lecture Topics. Announcements. Today: Concurrency (Stallings, chapter , 5.7) Next: Exam #1. Self-Study Exercise #5. Project #3 (due 9/28)

Lecture Topics. Announcements. Today: Concurrency (Stallings, chapter , 5.7) Next: Exam #1. Self-Study Exercise #5. Project #3 (due 9/28) Lecture Topics Today: Concurrency (Stallings, chapter 5.1-5.4, 5.7) Next: Exam #1 1 Announcements Self-Study Exercise #5 Project #3 (due 9/28) Project #4 (due 10/12) 2 Exam #1 Tuesday, 10/3 during lecture

More information