Mastering The Behavior of Multi-Core Systems to Match Avionics Requirements

Size: px
Start display at page:

Download "Mastering The Behavior of Multi-Core Systems to Match Avionics Requirements"

Transcription

1 Mastering The Behavior of Multi-Core Systems to Match Avionics Requirements Hicham AGROU, Marc GATTI, Pascal SAINRAT, Patrice TOILLON {hicham.agrou,marc-j.gatti,

2 Summary Introduction

3 Summary Introduction Multi-Core Architectures State of Art Academic Processor, COTS Architecture,

4 Summary Introduction Multi-Core Architectures State of Art Academic Processor, COTS Architecture, Evaluation of QorIQ Platform (P4080) from Freescale Procedures Results

5 Summary Introduction Multi-Core Architectures State of Art Academic Processor, COTS Architecture, Evaluation of QorIQ Platform (P4080) from Freescale Procedures Results THALES Avionics AMISIS Concept First performance Results

6 INTRODUCTION

7 Evolution of Avionic Embedded Computers

8 Pre-IMA Generation Evolution of Avionic Embedded Computers

9 Evolution of Avionic Embedded Computers 90 s A330/A340 1 unit = 1 function Intel, DSP 80 s A300/A320/B737 1 unit = 1 function Intel, Pre-IMA Generation 70 s Concorde 1 unit = 1 function Analog only

10 IMA Generation Evolution of Avionic Embedded Computers

11 Evolution of Avionic Embedded Computers 2000/2010 0/2010 A380/B to 5 functions/unit PowerPC, A653+RTOS Generalization of IMA PowerPC ISA s Legacy IMA Generation ~1995 B777 2 to 3 functions/unit AMD st Generation of IMA

12 Evolution of Avionic Embedded Computers Next generation: IMA on Multicore? 10 or more functions/unit IMA Generation

13 Current Avionics requirements Safety Certification Determinism Level Failure Condition Failure Rate A Catastrophic <1 in 10 9 hours of flight B Hazardous <1 in 10 7 hours of flight C Major <1 in 10 5 hours of flight D Minor <1 in 10 3 hours of flight No Effect E Partitioning Spatial Time & Space isolation Temporal Application #1 Application #2 Application Application #N Application Programing Interface (ARINC 653) Communication, synchronisation services Time, fault, and task management Operating System Layer (ARINC 653) Partition scheduling Package Driver Processor Hardware

14 Future Avionics Requirements Increase Performance Host more functions per unit Improvement ratio Performance / Watts Reduce Environmental Footprint Less energy consumption Reduce number of units

15 Future Avionics Requirements Increase Performance Host more functions per unit Improvement ratio Performance / Watts Reduce Environmental Footprint Less energy consumption Reduce number of units Smaller Modules More embedded functions per chip MULTI-CORE seems to be the solution

16 Academic & COTS Architectures MULTI-CORE ARCHITECTURES STATE OF ART

17 Multi-Core Architectures State of The Art Academic Predictable Multi-core Processor: MERASA & PRET processors COTS architecture: IBM Cell, Freescale s MPC8641D & QorIQ Platform Local memories (scratchpads & caches): Best cache policy (for analyzability), Cache Analysis (optimization to reduce cache pollution), Shared Cache Strategy to reduce interferences Interconnect Element: Shared Bus (bounding access time), Ring protocols, CoreNet, & Data Path Accelerator Architecture Hicham Agrou, Marc Gatti, Pascal Sainrat, Patrice Toillon. A Design Approach for Predictable and Efficient Multi-Core for Avionics. In: Digital Avionics Systems Conference (DASC 2011), Seattle, 16/10/ /10/2011, Vol. 7D3, IEEE, p. 1-11; October 2011.

18 Multi-Core Architectures State of The Art Academic Predictable Multi-core Processor: MERASA & PRET processors COTS architecture: IBM Cell, Freescale s MPC8641D & QorIQ Platform Local memories (scratchpads & caches): Best cache policy (for analyzability), Cache Analysis (optimization to reduce cache pollution), Shared Cache Strategy to reduce interferences Interconnect Element: Shared Bus (bounding access time), Ring protocols, CoreNet, & Data Path Accelerator Architecture Lack of studies for multicore architecture in avionics Focus on core level & local memory evolutions At interconnect level, no partitioning warranty is given

19 Multi-Core Architectures State of The Art Academic Predictable Multi-core Processor: MERASA & PRET processors COTS architecture: IBM Cell, Freescale s MPC8641D & QorIQ Platform Local memories (scratchpads & caches): Best cache policy (for analyzability), Cache Analysis (optimization to reduce cache pollution), Shared Cache Strategy to reduce interferences Interconnect Element: Shared Bus (bounding access time), Ring protocols, CoreNet, & Data Path Accelerator Architecture Our approach is to focus on a smart interconnect to manage all transactions in a multi-core system Lack of studies for multicore architecture in avionics Focus on core level & local memory evolutions At interconnect level, no partitioning warranty is given

20 Procedure & Results EVALUATION OF A QORIQ PLATFORM (P4080)

21 Evaluation of a QorIQ Platform (P4080) from Freescale Objective Definition of usage profiles compatible with temporal aspects of avionics constraints Procedure To find thresholds of transaction density beyond which CoreNet TM introduces low-performance or/and an abnormal behavior A(0,1) A(x,n) Our Procedure A(0) A(n) OS(0) OS(x) OS OR Hypervisor (s) Stress Application HW HW HW SMP Configuration AMP or AMP+SMP Configuration Bare-metal Configuration

22 P4080 Processor : test perimeter P4080 DS Cores : 1,2 GHz DDR3 # 1 :1200 MHz P4080 CoreNet : 600 MHz

23 Procedure This core performs a transaction and measures its duration

24 Procedure > The Implemented Transaction Initiators DMA Controllers Flooding Cores Each measure is in AREA 1 of DDR 3

25 Test Perimeter > The Implemented Memories

26 Procedure

27 Procedure > Platform s Initialisation 1

28 Procedure > Transactions of Flooding Cores Flooding Core 2

29 Procedure > Direct Memory Accesses 3 2

30 Procedure > Transaction of the Witness 3 2 4

31 Procedure > Storage of the Transaction Duration 5 If 0 Flooding Core in step 2

32 Procedure > Storage of the Transaction Duration 5 If 1 Flooding Core in step 2

33 Procedure > Storage of the Transaction Duration 5 If 2 Flooding Cores in step 2

34 Procedure > Storage of the Transaction Duration 5 If 3 Flooding Cores in step 2

35 Procedure > Storage of the Transaction Duration 5 If 4 Flooding Cores in step 2

36 Procedure > Storage of the Transaction Duration 5 If 5 Flooding Cores in step 2

37 Procedure > Storage of the Transaction Duration 5 If 6 Flooding Cores in step 2

38 Procedure > Storage of the Transaction Duration 5 If 7 Flooding Cores in step 2

39 Scenario 1

40 Scenario 1 Similar results when testing With no/1/2 DMA controller(s) 1 to 8 active cores Parameters 512 sizes of transaction (witness core) have been tested ~ 16 hours of test for each scenario Each test is repeated ~ times

41 Scenario 1

42 Scenario 2

43 Scenario 1 & 2 > Results Scenario 1 Scenario 2

44 Scenario 1 & 2 > Results Scenario 1 Scenario 2 These results show that DMAs in DDR3 (memory controller 1) can increase transaction latency of the witness core in CPC 1

45 Scenario 3 DMA Load & Store transactions

46 Scenario 3 > Results

47 Scenario 3 > Results Several transaction durations of 7-core configuration are not saved

48 Scenario 4 All transaction initiators perform their transactions in DDR3 (AREA 2)

49 Scenario 4 > Results

50 Scenario 4 > Results All transaction durations are saved in DDR 3 (memory controller 1) and their values increase

51 Scenario 5 All transaction initiators perform their transactions in DDR3 s AREA 1

52 Scenario 5 > Results

53 Scenario 5 > Results Several transaction durations are not saved in DDR3 and their value have globally decreased

54 Scenario 6

55 Scenario 6

56 Scenario 6 : Delaying the backup of each measure 0 µs 3,3 µs 4,3 µs 5 µs

57 Scenario 6 : Delaying the measure storage 0 µs 3,3 µs 4,3 µs 5 µs Delaying the measure storage into AREA 1 (DDR3 of memory controller 1) makes the phenomenon disappear

58 Concept, Features & First Performance Results THALES AVIONICS AMISIS

59 AMISIS Architecture Avionics Multi-core Interconnect for Scalable Integrated System Concept Mastering temporal and spatial behavior of each transaction initiator, Ensuring that each transaction initiator will respect an insertion contract Implementation of Hardware Services Maximal Transaction Delay Measure(Max-TDM) t t Maximal Technology Transaction Delay Minimal Technology Transaction Delay Minimal Transaction Delay Measure (Min-TDM) COTS Black Box Approach t CUSTOM White Box Approach

60 AMISIS Architecture Avionics Multi-core Interconnect for Scalable Integrated System Concept Mastering temporal and spatial behavior of each transaction initiator, Ensuring that each transaction initiator will respect an insertion contract Implementing Hardware Services Experimentation s Implementation Objective : Definition of temporal impacts of AMISIS in transaction durations Procedure : Design of AMISIS units in FPGA Measure of AMISIS units temporal impacts

61 First Performance Results of AMISIS AMISIS 125 MHz Memory 400 MHz Load 08 Load 16 Load 32

62 First Performance Results of AMISIS 1 cycle 2 cycles AMISIS 125 MHz Memory 400 MHz

63 First Performance Results of AMISIS AMISIS 125 MHz Memory 400 MHz

64 First Performance Results of AMISIS AMISIS 125 MHz Memory 400 MHz 1 cycle 2 cycles

65 CONCLUSION

66 Conclusion Processing Elements use embedded hardware features that worsen Worst Case Execution Time Estimation

67 Conclusion Processing Elements use embedded hardware features that worsen Worst Case Execution Time Estimation

68 Conclusion Processing Elements use embedded hardware features that worsen Worst Case Execution Time Estimation Dynamic Branch Prediction Out-Of-Order Speculative Execution Larger Pipelines More Ways Policy Replacement : PLRU, FIFO, Round Robin

69 Conclusion Processing Elements use embedded hardware features that worsen Worst Case Execution Time Estimation Mastered Dynamic Branch Prediction Out-Of-Order Speculative Execution Larger Pipelines More Ways Policy Replacement : PLRU, FIFO, Round Robin

70 Conclusion Processing Elements use embedded hardware features that worsen Worst Case Execution Time Estimation Multi-core context implies concurrent accesses that require management to ensure proper spatial and temporal partitioning

71 Conclusion Processing Elements use embedded hardware features that worsen Worst Case Execution Time Estimation Multi-core context implies concurrent accesses that require management to ensure proper spatial and temporal partitioning Scenario 2 shows that increasing the number of shared resources sometimes increases transaction durations Scenario 1 Scenario 2

72 Conclusion Processing Elements use embedded hardware features that worsen Worst Case Execution Time Estimation Multi-core context implies concurrent accesses that require management to ensure proper spatial and temporal partitioning Scenario 2 shows that increasing the number of shared resources sometimes increases transaction durations Scenario 3 and 5 show that unexpected phenomena may appear

73 Conclusion Processing Elements use embedded hardware features that worsen Worst Case Execution Time Estimation Multi-core context implies concurrent accesses that require management to ensure proper spatial and temporal partitioning Scenario 2 shows that increasing the number of shared resources sometimes increases transaction durations Scenario 3 and 5 show that unexpected phenomena may appear First performance results of THALES Avionics AMISIS show that the temporal impact of its controls is negligible

74 Thank You for Your Attention

Overview of Potential Software solutions making multi-core processors predictable for Avionics real-time applications

Overview of Potential Software solutions making multi-core processors predictable for Avionics real-time applications Overview of Potential Software solutions making multi-core processors predictable for Avionics real-time applications Marc Gatti, Thales Avionics Sylvain Girbal, Xavier Jean, Daniel Gracia Pérez, Jimmy

More information

Integration of Mixed Criticality Systems on MultiCores: Limitations, Challenges and Way ahead for Avionics

Integration of Mixed Criticality Systems on MultiCores: Limitations, Challenges and Way ahead for Avionics Integration of Mixed Criticality Systems on MultiCores: Limitations, Challenges and Way ahead for Avionics TecDay 13./14. Oct. 2015 Dietmar Geiger, Bernd Koppenhöfer 1 COTS HW Evolution - Single-Core Multi-Core

More information

AUTOBEST: A microkernel-based system (not only) for automotive applications. Marc Bommert, Alexander Züpke, Robert Kaiser.

AUTOBEST: A microkernel-based system (not only) for automotive applications. Marc Bommert, Alexander Züpke, Robert Kaiser. AUTOBEST: A microkernel-based system (not only) for automotive applications Marc Bommert, Alexander Züpke, Robert Kaiser vorname.name@hs-rm.de Outline Motivation AUTOSAR ARINC 653 AUTOBEST Architecture

More information

Applying MILS to multicore avionics systems

Applying MILS to multicore avionics systems Applying MILS to multicore avionics systems Eur Ing Paul Parkinson FIET Principal Systems Architect, A&D EuroMILS Workshop, Prague, 19 th January 2016 2016 Wind River. All Rights Reserved. Agenda A Brief

More information

Design and Analysis of Time-Critical Systems Introduction

Design and Analysis of Time-Critical Systems Introduction Design and Analysis of Time-Critical Systems Introduction Jan Reineke @ saarland university ACACES Summer School 2017 Fiuggi, Italy computer science Structure of this Course 2. How are they implemented?

More information

Managing Memory for Timing Predictability. Rodolfo Pellizzoni

Managing Memory for Timing Predictability. Rodolfo Pellizzoni Managing Memory for Timing Predictability Rodolfo Pellizzoni Thanks This work would not have been possible without the following students and collaborators Zheng Pei Wu*, Yogen Krish Heechul Yun* Renato

More information

Evaluating Multicore Architectures for Application in High Assurance Systems

Evaluating Multicore Architectures for Application in High Assurance Systems Evaluating Multicore Architectures for Application in High Assurance Systems Ryan Bradetich, Paul Oman, Jim Alves-Foss, and Theora Rice Center for Secure and Dependable Systems University of Idaho Contact:

More information

RAMP-White / FAST-MP

RAMP-White / FAST-MP RAMP-White / FAST-MP Hari Angepat and Derek Chiou Electrical and Computer Engineering University of Texas at Austin Supported in part by DOE, NSF, SRC,Bluespec, Intel, Xilinx, IBM, and Freescale RAMP-White

More information

CNES requirements w.r.t. Next Generation General Purpose Microprocessor

CNES requirements w.r.t. Next Generation General Purpose Microprocessor Round-table on Next Generation Microprocessors for Space Applications : CNES requirements w.r.t. Next Generation General Purpose Microprocessor ESA/ESTEC september 12th 2006 G.Moury, J.Bertrand, M.Pignol

More information

Challenges in Future Avionic Systems on Multi-core Platforms

Challenges in Future Avionic Systems on Multi-core Platforms 2014 IEEE International Symposium on Software Reliability Engineering Workshops Challenges in Future Avionic Systems on Multi-core Platforms Andreas Löfwenmark Avionics Equipment Saab Aeronautics Linköping,

More information

Ensuring Schedulability of Spacecraft Flight Software

Ensuring Schedulability of Spacecraft Flight Software Ensuring Schedulability of Spacecraft Flight Software Flight Software Workshop 7-9 November 2012 Marek Prochazka & Jorge Lopez Trescastro European Space Agency OUTLINE Introduction Current approach to

More information

Distributed IMA with TTEthernet

Distributed IMA with TTEthernet Distributed IMA with thernet ARINC 653 Integration of thernet Georg Gaderer, Product Manager Georg.Gaderer@tttech.com October 30, 2012 Copyright TTTech Computertechnik AG. All rights reserved. Introduction

More information

Copyright 2016 Xilinx

Copyright 2016 Xilinx Zynq Architecture Zynq Vivado 2015.4 Version This material exempt per Department of Commerce license exception TSU Objectives After completing this module, you will be able to: Identify the basic building

More information

Towards AADL to SystemC mapping for partitioned systems. Etienne Borde Laurent Pautet Marc Gatti

Towards AADL to SystemC mapping for partitioned systems. Etienne Borde Laurent Pautet Marc Gatti Towards AADL to SystemC mapping for partitioned systems Michael Lafaye Etienne Borde Laurent Pautet Marc Gatti Presentation of a First Mapping Prototype: AADL to SystemC for Avionics Partitioned Systems

More information

Communication Patterns in Safety Critical Systems for ADAS & Autonomous Vehicles Thorsten Wilmer Tech AD Berlin, 5. March 2018

Communication Patterns in Safety Critical Systems for ADAS & Autonomous Vehicles Thorsten Wilmer Tech AD Berlin, 5. March 2018 Communication Patterns in Safety Critical Systems for ADAS & Autonomous Vehicles Thorsten Wilmer Tech AD Berlin, 5. March 2018 Agenda Motivation Introduction of Safety Components Introduction to ARMv8

More information

An introduction to SDRAM and memory controllers. 5kk73

An introduction to SDRAM and memory controllers. 5kk73 An introduction to SDRAM and memory controllers 5kk73 Presentation Outline (part 1) Introduction to SDRAM Basic SDRAM operation Memory efficiency SDRAM controller architecture Conclusions Followed by part

More information

Memory Hierarchy. Slides contents from:

Memory Hierarchy. Slides contents from: Memory Hierarchy Slides contents from: Hennessy & Patterson, 5ed Appendix B and Chapter 2 David Wentzlaff, ELE 475 Computer Architecture MJT, High Performance Computing, NPTEL Memory Performance Gap Memory

More information

Freescale QorIQ Program Overview

Freescale QorIQ Program Overview August, 2009 Freescale QorIQ Program Overview Multicore processing view Jeffrey Ho Technical Marketing service names are the property of their respective owners. Freescale Semiconductor, Inc. 2009. We

More information

On-Chip Debugging of Multicore Systems

On-Chip Debugging of Multicore Systems Nov 1, 2008 On-Chip Debugging of Multicore Systems PN115 Jeffrey Ho AP Technical Marketing, Networking Systems Division of Freescale Semiconductor, Inc. All other product or service names are the property

More information

Roadrunner. By Diana Lleva Julissa Campos Justina Tandar

Roadrunner. By Diana Lleva Julissa Campos Justina Tandar Roadrunner By Diana Lleva Julissa Campos Justina Tandar Overview Roadrunner background On-Chip Interconnect Number of Cores Memory Hierarchy Pipeline Organization Multithreading Organization Roadrunner

More information

AUTOBEST: A United AUTOSAR-OS And ARINC 653 Kernel. Alexander Züpke, Marc Bommert, Daniel Lohmann

AUTOBEST: A United AUTOSAR-OS And ARINC 653 Kernel. Alexander Züpke, Marc Bommert, Daniel Lohmann AUTOBEST: A United AUTOSAR-OS And ARINC 653 Kernel Alexander Züpke, Marc Bommert, Daniel Lohmann alexander.zuepke@hs-rm.de, marc.bommert@hs-rm.de, lohmann@cs.fau.de Motivation Automotive and Avionic industry

More information

Worst Case Analysis of DRAM Latency in Multi-Requestor Systems. Zheng Pei Wu Yogen Krish Rodolfo Pellizzoni

Worst Case Analysis of DRAM Latency in Multi-Requestor Systems. Zheng Pei Wu Yogen Krish Rodolfo Pellizzoni orst Case Analysis of DAM Latency in Multi-equestor Systems Zheng Pei u Yogen Krish odolfo Pellizzoni Multi-equestor Systems CPU CPU CPU Inter-connect DAM DMA I/O 1/26 Multi-equestor Systems CPU CPU CPU

More information

MultiChipSat: an Innovative Spacecraft Bus Architecture. Alvar Saenz-Otero

MultiChipSat: an Innovative Spacecraft Bus Architecture. Alvar Saenz-Otero MultiChipSat: an Innovative Spacecraft Bus Architecture Alvar Saenz-Otero 29-11-6 Motivation Objectives Architecture Overview Other architectures Hardware architecture Software architecture Challenges

More information

ESE532: System-on-a-Chip Architecture. Today. Message. Real Time. Real-Time Tasks. Real-Time Guarantees. Real Time Demands Challenges

ESE532: System-on-a-Chip Architecture. Today. Message. Real Time. Real-Time Tasks. Real-Time Guarantees. Real Time Demands Challenges ESE532: System-on-a-Chip Architecture Day 9: October 1, 2018 Real Time Real Time Demands Challenges Today Algorithms Architecture Disciplines to achieve Penn ESE532 Fall 2018 -- DeHon 1 Penn ESE532 Fall

More information

Challenges for Next Generation Networking AMP Series

Challenges for Next Generation Networking AMP Series 21 June 2011 Freescale, the Freescale logo, AltiVec, C-5, CodeTEST, CodeWarrior, ColdFire, C-Ware, t he Energy Efficient Solutions logo, mobilegt, PowerQUICC, QorIQ, StarCore and Symphony are trademarks

More information

Memory Hierarchy. Slides contents from:

Memory Hierarchy. Slides contents from: Memory Hierarchy Slides contents from: Hennessy & Patterson, 5ed Appendix B and Chapter 2 David Wentzlaff, ELE 475 Computer Architecture MJT, High Performance Computing, NPTEL Memory Performance Gap Memory

More information

Context. Giorgio Buttazzo. Scuola Superiore Sant Anna. Embedded systems are becoming more complex every day: more functions. higher performance

Context. Giorgio Buttazzo. Scuola Superiore Sant Anna. Embedded systems are becoming more complex every day: more functions. higher performance Giorgio uttazzo g.buttazzo@sssup.it Scuola Superiore Sant nna Context Embedded systems are becoming more complex every day: more functions higher performance higher efficiency new hardware platforms 2

More information

Context. Hardware Performance. Increasing complexity. Software Complexity. And the Result is. Embedded systems are becoming more complex every day:

Context. Hardware Performance. Increasing complexity. Software Complexity. And the Result is. Embedded systems are becoming more complex every day: Context Embedded systems are becoming more complex every day: Giorgio uttazzo g.buttazzo@sssup.it more functions higher performance higher efficiency Scuola Superiore Sant nna new hardware s Increasing

More information

History. PowerPC based micro-architectures. PowerPC ISA. Introduction

History. PowerPC based micro-architectures. PowerPC ISA. Introduction PowerPC based micro-architectures Godfrey van der Linden Presentation for COMP9244 Software view of Processor Architectures 2006-05-25 History 1985 IBM started on AMERICA 1986 Development of RS/6000 1990

More information

HEAD HardwarE Accelerated Deduplication

HEAD HardwarE Accelerated Deduplication HEAD HardwarE Accelerated Deduplication Final Report CS710 Computing Acceleration with FPGA December 9, 2016 Insu Jang Seikwon Kim Seonyoung Lee Executive Summary A-Z development of deduplication SW version

More information

Using Industry Standards to Exploit the Advantages and Resolve the Challenges of Multicore Technology

Using Industry Standards to Exploit the Advantages and Resolve the Challenges of Multicore Technology Using Industry Standards to Exploit the Advantages and Resolve the Challenges of Multicore Technology September 19, 2007 Markus Levy, EEMBC and Multicore Association Enabling the Multicore Ecosystem Multicore

More information

REDUCING CERTIFICATION GRANULARITY TO INCREASE ADAPTABILITY OF AVIONICS SOFTWARE

REDUCING CERTIFICATION GRANULARITY TO INCREASE ADAPTABILITY OF AVIONICS SOFTWARE REDUCING CERTIFICATION GRANULARITY TO INCREASE ADAPTABILITY OF AVIONICS SOFTWARE Martin Rayrole, David Faura, Marc Gatti, Thales Avionics, Meudon la Forêt, France Abstract A strong certification process

More information

Optimizing Data Sharing and Address Translation for the Cell BE Heterogeneous CMP

Optimizing Data Sharing and Address Translation for the Cell BE Heterogeneous CMP Optimizing Data Sharing and Address Translation for the Cell BE Heterogeneous CMP Michael Gschwind IBM T.J. Watson Research Center Cell Design Goals Provide the platform for the future of computing 10

More information

Timing analysis and timing predictability

Timing analysis and timing predictability Timing analysis and timing predictability Architectural Dependences Reinhard Wilhelm Saarland University, Saarbrücken, Germany ArtistDesign Summer School in China 2010 What does the execution time depends

More information

T1042-based Single Board Computer

T1042-based Single Board Computer T1042-based Single Board Computer High Performance/Low Power DO-254 Certifiable SBC IP Features and Benefits Part of the COTS-D family of safety certifiable modules Single conduction-cooled rugged module

More information

Leveraging OpenSPARC. ESA Round Table 2006 on Next Generation Microprocessors for Space Applications EDD

Leveraging OpenSPARC. ESA Round Table 2006 on Next Generation Microprocessors for Space Applications EDD Leveraging OpenSPARC ESA Round Table 2006 on Next Generation Microprocessors for Space Applications G.Furano, L.Messina TEC- OpenSPARC T1 The T1 is a new-from-the-ground-up SPARC microprocessor implementation

More information

XPU A Programmable FPGA Accelerator for Diverse Workloads

XPU A Programmable FPGA Accelerator for Diverse Workloads XPU A Programmable FPGA Accelerator for Diverse Workloads Jian Ouyang, 1 (ouyangjian@baidu.com) Ephrem Wu, 2 Jing Wang, 1 Yupeng Li, 1 Hanlin Xie 1 1 Baidu, Inc. 2 Xilinx Outlines Background - FPGA for

More information

Challenges of FSW Schedulability on Multicore Processors

Challenges of FSW Schedulability on Multicore Processors Challenges of FSW Schedulability on Multicore Processors Flight Software Workshop 27-29 October 2015 Marek Prochazka European Space Agency MULTICORES: WHAT DOES FLIGHT SOFTWARE ENGINEER NEED? Space-qualified

More information

Last Time. Making correct concurrent programs. Maintaining invariants Avoiding deadlocks

Last Time. Making correct concurrent programs. Maintaining invariants Avoiding deadlocks Last Time Making correct concurrent programs Maintaining invariants Avoiding deadlocks Today Power management Hardware capabilities Software management strategies Power and Energy Review Energy is power

More information

Motivation for Parallelism. Motivation for Parallelism. ILP Example: Loop Unrolling. Types of Parallelism

Motivation for Parallelism. Motivation for Parallelism. ILP Example: Loop Unrolling. Types of Parallelism Motivation for Parallelism Motivation for Parallelism The speed of an application is determined by more than just processor speed. speed Disk speed Network speed... Multiprocessors typically improve the

More information

The Nios II Family of Configurable Soft-core Processors

The Nios II Family of Configurable Soft-core Processors The Nios II Family of Configurable Soft-core Processors James Ball August 16, 2005 2005 Altera Corporation Agenda Nios II Introduction Configuring your CPU FPGA vs. ASIC CPU Design Instruction Set Architecture

More information

Embedded Systems: Hardware Components (part II) Todor Stefanov

Embedded Systems: Hardware Components (part II) Todor Stefanov Embedded Systems: Hardware Components (part II) Todor Stefanov Leiden Embedded Research Center, Leiden Institute of Advanced Computer Science Leiden University, The Netherlands Outline Generic Embedded

More information

Multiprocessors and Thread Level Parallelism Chapter 4, Appendix H CS448. The Greed for Speed

Multiprocessors and Thread Level Parallelism Chapter 4, Appendix H CS448. The Greed for Speed Multiprocessors and Thread Level Parallelism Chapter 4, Appendix H CS448 1 The Greed for Speed Two general approaches to making computers faster Faster uniprocessor All the techniques we ve been looking

More information

Computer and Information Sciences College / Computer Science Department CS 207 D. Computer Architecture. Lecture 9: Multiprocessors

Computer and Information Sciences College / Computer Science Department CS 207 D. Computer Architecture. Lecture 9: Multiprocessors Computer and Information Sciences College / Computer Science Department CS 207 D Computer Architecture Lecture 9: Multiprocessors Challenges of Parallel Processing First challenge is % of program inherently

More information

Simplify System Complexity

Simplify System Complexity 1 2 Simplify System Complexity With the new high-performance CompactRIO controller Arun Veeramani Senior Program Manager National Instruments NI CompactRIO The Worlds Only Software Designed Controller

More information

CellSs Making it easier to program the Cell Broadband Engine processor

CellSs Making it easier to program the Cell Broadband Engine processor Perez, Bellens, Badia, and Labarta CellSs Making it easier to program the Cell Broadband Engine processor Presented by: Mujahed Eleyat Outline Motivation Architecture of the cell processor Challenges of

More information

CHAPTER 8: CPU and Memory Design, Enhancement, and Implementation

CHAPTER 8: CPU and Memory Design, Enhancement, and Implementation CHAPTER 8: CPU and Memory Design, Enhancement, and Implementation The Architecture of Computer Hardware, Systems Software & Networking: An Information Technology Approach 5th Edition, Irv Englander John

More information

Atacama: An Open Experimental Platform for Mixed-Criticality Networking on Top of Ethernet

Atacama: An Open Experimental Platform for Mixed-Criticality Networking on Top of Ethernet Atacama: An Open Experimental Platform for Mixed-Criticality Networking on Top of Ethernet Gonzalo Carvajal 1,2 and Sebastian Fischmeister 1 1 University of Waterloo, ON, Canada 2 Universidad de Concepcion,

More information

Multicore for safety-critical embedded systems: challenges andmarch opportunities 15, / 28

Multicore for safety-critical embedded systems: challenges andmarch opportunities 15, / 28 Multicore for safety-critical embedded systems: challenges and opportunities Giuseppe Lipari CRItAL - Émeraude March 15, 2016 Multicore for safety-critical embedded systems: challenges andmarch opportunities

More information

Controlling Execution Time Variability Using COTS for Safety Critical Systems

Controlling Execution Time Variability Using COTS for Safety Critical Systems UNIVERSITÉ PARIS-SUD ÉCOLE DOCTORALE : Sciences et Technologie de l Information, des Télécommunications et des Systèmes Institut d Electronique Fondamentale (IEF) Thales Research & Technology - France

More information

Computer Systems Architecture I. CSE 560M Lecture 19 Prof. Patrick Crowley

Computer Systems Architecture I. CSE 560M Lecture 19 Prof. Patrick Crowley Computer Systems Architecture I CSE 560M Lecture 19 Prof. Patrick Crowley Plan for Today Announcement No lecture next Wednesday (Thanksgiving holiday) Take Home Final Exam Available Dec 7 Due via email

More information

Real-Time Cache Management for Multi-Core Virtualization

Real-Time Cache Management for Multi-Core Virtualization Real-Time Cache Management for Multi-Core Virtualization Hyoseung Kim 1,2 Raj Rajkumar 2 1 University of Riverside, California 2 Carnegie Mellon University Benefits of Multi-Core Processors Consolidation

More information

CSE502: Computer Architecture CSE 502: Computer Architecture

CSE502: Computer Architecture CSE 502: Computer Architecture CSE 502: Computer Architecture Multi-{Socket,,Thread} Getting More Performance Keep pushing IPC and/or frequenecy Design complexity (time to market) Cooling (cost) Power delivery (cost) Possible, but too

More information

Applying Multi-core and Virtualization to Industrial and Safety-Related Applications

Applying Multi-core and Virtualization to Industrial and Safety-Related Applications White Paper Wind River Hypervisor and Operating Systems Intel Processors for Embedded Computing Applying Multi-core and Virtualization to Industrial and Safety-Related Applications Multi-core and virtualization

More information

System Impact of Distributed Multicore Systems December 5th 2012

System Impact of Distributed Multicore Systems December 5th 2012 System Impact of Distributed Multicore Systems December 5th 2012 Software Systems Division & Data Systems Division Final Presentation Days Mathieu Patte (Astrium Satellites) Alfons Crespo (UPV) Outline

More information

High Performance Computing: Blue-Gene and Road Runner. Ravi Patel

High Performance Computing: Blue-Gene and Road Runner. Ravi Patel High Performance Computing: Blue-Gene and Road Runner Ravi Patel 1 HPC General Information 2 HPC Considerations Criterion Performance Speed Power Scalability Number of nodes Latency bottlenecks Reliability

More information

Chapter 5. Introduction ARM Cortex series

Chapter 5. Introduction ARM Cortex series Chapter 5 Introduction ARM Cortex series 5.1 ARM Cortex series variants 5.2 ARM Cortex A series 5.3 ARM Cortex R series 5.4 ARM Cortex M series 5.5 Comparison of Cortex M series with 8/16 bit MCUs 51 5.1

More information

How to Write Fast Code , spring th Lecture, Mar. 31 st

How to Write Fast Code , spring th Lecture, Mar. 31 st How to Write Fast Code 18-645, spring 2008 20 th Lecture, Mar. 31 st Instructor: Markus Püschel TAs: Srinivas Chellappa (Vas) and Frédéric de Mesmay (Fred) Introduction Parallelism: definition Carrying

More information

Hardware-Software Codesign. 1. Introduction

Hardware-Software Codesign. 1. Introduction Hardware-Software Codesign 1. Introduction Lothar Thiele 1-1 Contents What is an Embedded System? Levels of Abstraction in Electronic System Design Typical Design Flow of Hardware-Software Systems 1-2

More information

Computer Architecture!

Computer Architecture! Informatics 3 Computer Architecture! Dr. Boris Grot and Dr. Vijay Nagarajan!! Institute for Computing Systems Architecture, School of Informatics! University of Edinburgh! General Information! Instructors:!

More information

Simplify System Complexity

Simplify System Complexity Simplify System Complexity With the new high-performance CompactRIO controller Fanie Coetzer Field Sales Engineer Northern South Africa 2 3 New control system CompactPCI MMI/Sequencing/Logging FieldPoint

More information

VLSI Design of Multichannel AMBA AHB

VLSI Design of Multichannel AMBA AHB RESEARCH ARTICLE OPEN ACCESS VLSI Design of Multichannel AMBA AHB Shraddha Divekar,Archana Tiwari M-Tech, Department Of Electronics, Assistant professor, Department Of Electronics RKNEC Nagpur,RKNEC Nagpur

More information

CONTENTION IN MULTICORE HARDWARE SHARED RESOURCES: UNDERSTANDING OF THE STATE OF THE ART

CONTENTION IN MULTICORE HARDWARE SHARED RESOURCES: UNDERSTANDING OF THE STATE OF THE ART CONTENTION IN MULTICORE HARDWARE SHARED RESOURCES: UNDERSTANDING OF THE STATE OF THE ART Gabriel Fernandez 1, Jaume Abella 2, Eduardo Quiñones 2, Christine Rochange 3, Tullio Vardanega 4 and Francisco

More information

Performance comparison between a massive SMP machine and clusters

Performance comparison between a massive SMP machine and clusters Performance comparison between a massive SMP machine and clusters Martin Scarcia, Stefano Alberto Russo Sissa/eLab joint Democritos/Sissa Laboratory for e-science Via Beirut 2/4 34151 Trieste, Italy Stefano

More information

Multithreaded Processors. Department of Electrical Engineering Stanford University

Multithreaded Processors. Department of Electrical Engineering Stanford University Lecture 12: Multithreaded Processors Department of Electrical Engineering Stanford University http://eeclass.stanford.edu/ee382a Lecture 12-1 The Big Picture Previous lectures: Core design for single-thread

More information

RAD55xx Platform SoC. Dean Saridakis, Richard Berger, Joseph Marshall *** *** *** *** *** *** *** photo courtesy of NASA

RAD55xx Platform SoC. Dean Saridakis, Richard Berger, Joseph Marshall *** *** *** *** *** *** *** photo courtesy of NASA 1 RAD55xx Platform SoC Dean Saridakis, Richard Berger, Joseph Marshall *** *** *** *** *** *** *** photo courtesy of NASA 2 Agenda RAD55xx Platform SoC Introduction Processor Core / RAD750 Processor Heritage

More information

Multithreading: Exploiting Thread-Level Parallelism within a Processor

Multithreading: Exploiting Thread-Level Parallelism within a Processor Multithreading: Exploiting Thread-Level Parallelism within a Processor Instruction-Level Parallelism (ILP): What we ve seen so far Wrap-up on multiple issue machines Beyond ILP Multithreading Advanced

More information

William Stallings Computer Organization and Architecture 8 th Edition. Chapter 18 Multicore Computers

William Stallings Computer Organization and Architecture 8 th Edition. Chapter 18 Multicore Computers William Stallings Computer Organization and Architecture 8 th Edition Chapter 18 Multicore Computers Hardware Performance Issues Microprocessors have seen an exponential increase in performance Improved

More information

A Predictable Simultaneous Multithreading Scheme for Hard Real-Time

A Predictable Simultaneous Multithreading Scheme for Hard Real-Time A Predictable Simultaneous Multithreading Scheme for Hard Real-Time Jonathan Barre, Christine Rochange, and Pascal Sainrat Institut de Recherche en Informatique de Toulouse, Université detoulouse-cnrs,france

More information

Hardware-Software Codesign. 1. Introduction

Hardware-Software Codesign. 1. Introduction Hardware-Software Codesign 1. Introduction Lothar Thiele 1-1 Contents What is an Embedded System? Levels of Abstraction in Electronic System Design Typical Design Flow of Hardware-Software Systems 1-2

More information

SUCCESSFULL MULTICORE CERTIFICATION WITH SOFTWARE-PARTITIONING Efficient Implementation for DO-178C, EN 50128, ISO 26262

SUCCESSFULL MULTICORE CERTIFICATION WITH SOFTWARE-PARTITIONING Efficient Implementation for DO-178C, EN 50128, ISO 26262 Sven Nordhoff, SYSGO AG, Klein-Winternheim, Germany ABSTRACT The usage of multi-core processors (MCPs) in modern systems is state-of-the art and will also come to reality in safetycritical domains like

More information

Design and Analysis of Real-Time Systems Predictability and Predictable Microarchitectures

Design and Analysis of Real-Time Systems Predictability and Predictable Microarchitectures Design and Analysis of Real-Time Systems Predictability and Predictable Microarcectures Jan Reineke Advanced Lecture, Summer 2013 Notion of Predictability Oxford Dictionary: predictable = adjective, able

More information

BlueVisor: A Scalable Real-time Hardware Hypervisor for Many-core Embedded System

BlueVisor: A Scalable Real-time Hardware Hypervisor for Many-core Embedded System BlueVisor: A Scalable eal-time Hardware Hypervisor for Many-core Embedded System Zhe Jiang, Neil C Audsley, Pan Dong eal-time Systems Group Department of Computer Science University of York, United Kingdom

More information

SMD149 - Operating Systems - Multiprocessing

SMD149 - Operating Systems - Multiprocessing SMD149 - Operating Systems - Multiprocessing Roland Parviainen December 1, 2005 1 / 55 Overview Introduction Multiprocessor systems Multiprocessor, operating system and memory organizations 2 / 55 Introduction

More information

Overview. SMD149 - Operating Systems - Multiprocessing. Multiprocessing architecture. Introduction SISD. Flynn s taxonomy

Overview. SMD149 - Operating Systems - Multiprocessing. Multiprocessing architecture. Introduction SISD. Flynn s taxonomy Overview SMD149 - Operating Systems - Multiprocessing Roland Parviainen Multiprocessor systems Multiprocessor, operating system and memory organizations December 1, 2005 1/55 2/55 Multiprocessor system

More information

Gedae cwcembedded.com. The CHAMP-AV6 VPX-REDI. Digital Signal Processing Card. Maximizing Performance with Minimal Porting Effort

Gedae cwcembedded.com. The CHAMP-AV6 VPX-REDI. Digital Signal Processing Card. Maximizing Performance with Minimal Porting Effort Technology White Paper The CHAMP-AV6 VPX-REDI Digital Signal Processing Card Maximizing Performance with Minimal Porting Effort Introduction The Curtiss-Wright Controls Embedded Computing CHAMP-AV6 is

More information

Intel CoFluent Studio in Digital Imaging

Intel CoFluent Studio in Digital Imaging Intel CoFluent Studio in Digital Imaging Sensata Technologies Use Case Sensata Technologies www.sensatatechnologies.com Formerly Texas Instruments Sensors & Controls, Sensata Technologies is the world

More information

A Closer Look at the Epiphany IV 28nm 64 core Coprocessor. Andreas Olofsson PEGPUM 2013

A Closer Look at the Epiphany IV 28nm 64 core Coprocessor. Andreas Olofsson PEGPUM 2013 A Closer Look at the Epiphany IV 28nm 64 core Coprocessor Andreas Olofsson PEGPUM 2013 1 Adapteva Achieves 3 World Firsts 1. First processor company to reach 50 GFLOPS/W 3. First semiconductor company

More information

ECE 172 Digital Systems. Chapter 15 Turbo Boost Technology. Herbert G. Mayer, PSU Status 8/13/2018

ECE 172 Digital Systems. Chapter 15 Turbo Boost Technology. Herbert G. Mayer, PSU Status 8/13/2018 ECE 172 Digital Systems Chapter 15 Turbo Boost Technology Herbert G. Mayer, PSU Status 8/13/2018 1 Syllabus l Introduction l Speedup Parameters l Definitions l Turbo Boost l Turbo Boost, Actual Performance

More information

Using a Hypervisor to Manage Multi-OS Systems Cory Bialowas, Product Manager

Using a Hypervisor to Manage Multi-OS Systems Cory Bialowas, Product Manager Using a Hypervisor to Manage Multi-OS Systems Cory Bialowas, Product Manager cory.bialowas@windriver.com Trends, Disruptions and Opportunity Wasn t life simple? Single-OS: SMP OS OS CPU Single Core Virtualization

More information

M7: Next Generation SPARC. Hotchips 26 August 12, Stephen Phillips Senior Director, SPARC Architecture Oracle

M7: Next Generation SPARC. Hotchips 26 August 12, Stephen Phillips Senior Director, SPARC Architecture Oracle M7: Next Generation SPARC Hotchips 26 August 12, 2014 Stephen Phillips Senior Director, SPARC Architecture Oracle Safe Harbor Statement The following is intended to outline our general product direction.

More information

Real-Time Mixed-Criticality Wormhole Networks

Real-Time Mixed-Criticality Wormhole Networks eal-time Mixed-Criticality Wormhole Networks Leandro Soares Indrusiak eal-time Systems Group Department of Computer Science University of York United Kingdom eal-time Systems Group 1 Outline Wormhole Networks

More information

Computer Architecture A Quantitative Approach, Fifth Edition. Chapter 2. Memory Hierarchy Design. Copyright 2012, Elsevier Inc. All rights reserved.

Computer Architecture A Quantitative Approach, Fifth Edition. Chapter 2. Memory Hierarchy Design. Copyright 2012, Elsevier Inc. All rights reserved. Computer Architecture A Quantitative Approach, Fifth Edition Chapter 2 Memory Hierarchy Design 1 Introduction Programmers want unlimited amounts of memory with low latency Fast memory technology is more

More information

Design and Analysis of Time-Critical Systems Timing Predictability and Analyzability + Case Studies: PTARM and Kalray MPPA-256

Design and Analysis of Time-Critical Systems Timing Predictability and Analyzability + Case Studies: PTARM and Kalray MPPA-256 Design and Analysis of Time-Critical Systems Timing Predictability and Analyzability + Case Studies: PTARM and Kalray MPPA-256 Jan Reineke @ saarland university computer science ACACES Summer School 2017

More information

Lecture 11: SMT and Caching Basics. Today: SMT, cache access basics (Sections 3.5, 5.1)

Lecture 11: SMT and Caching Basics. Today: SMT, cache access basics (Sections 3.5, 5.1) Lecture 11: SMT and Caching Basics Today: SMT, cache access basics (Sections 3.5, 5.1) 1 Thread-Level Parallelism Motivation: a single thread leaves a processor under-utilized for most of the time by doubling

More information

High-Performance Real-Time Lab (HiPeRT) Marko Bertogna University of Modena, Italy

High-Performance Real-Time Lab (HiPeRT) Marko Bertogna University of Modena, Italy High-Performance Real-Time Lab (HiPeRT) Marko Bertogna University of Modena, Italy marko.bertogna@unimore.it http://hipert.unimore.it/ HiPeRT Lab Research on High-Performance Real-Time Systems ~20 people

More information

POWER7: IBM's Next Generation Server Processor

POWER7: IBM's Next Generation Server Processor POWER7: IBM's Next Generation Server Processor Acknowledgment: This material is based upon work supported by the Defense Advanced Research Projects Agency under its Agreement No. HR0011-07-9-0002 Outline

More information

Serial. Parallel. CIT 668: System Architecture 2/14/2011. Topics. Serial and Parallel Computation. Parallel Computing

Serial. Parallel. CIT 668: System Architecture 2/14/2011. Topics. Serial and Parallel Computation. Parallel Computing CIT 668: System Architecture Parallel Computing Topics 1. What is Parallel Computing? 2. Why use Parallel Computing? 3. Types of Parallelism 4. Amdahl s Law 5. Flynn s Taxonomy of Parallel Computers 6.

More information

Mobile Processors. Jose R. Ortiz Ubarri

Mobile Processors. Jose R. Ortiz Ubarri Mobile Processors Jose R. Ortiz Ubarri Electrical and Computer Engineering Department University of Puerto Rico, Mayagüez Campus Mayagüez, Puerto Rico 00681 5000 Jose.Ortiz@hpcf.upr.edu Introduction While

More information

Computer Architecture

Computer Architecture Informatics 3 Computer Architecture Dr. Vijay Nagarajan Institute for Computing Systems Architecture, School of Informatics University of Edinburgh (thanks to Prof. Nigel Topham) General Information Instructor

More information

Copyright 2012, Elsevier Inc. All rights reserved.

Copyright 2012, Elsevier Inc. All rights reserved. Computer Architecture A Quantitative Approach, Fifth Edition Chapter 2 Memory Hierarchy Design 1 Introduction Introduction Programmers want unlimited amounts of memory with low latency Fast memory technology

More information

Exploration of Cache Coherent CPU- FPGA Heterogeneous System

Exploration of Cache Coherent CPU- FPGA Heterogeneous System Exploration of Cache Coherent CPU- FPGA Heterogeneous System Wei Zhang Department of Electronic and Computer Engineering Hong Kong University of Science and Technology 1 Outline ointroduction to FPGA-based

More information

Computer Architecture. A Quantitative Approach, Fifth Edition. Chapter 2. Memory Hierarchy Design. Copyright 2012, Elsevier Inc. All rights reserved.

Computer Architecture. A Quantitative Approach, Fifth Edition. Chapter 2. Memory Hierarchy Design. Copyright 2012, Elsevier Inc. All rights reserved. Computer Architecture A Quantitative Approach, Fifth Edition Chapter 2 Memory Hierarchy Design 1 Programmers want unlimited amounts of memory with low latency Fast memory technology is more expensive per

More information

BREAKING THE MEMORY WALL

BREAKING THE MEMORY WALL BREAKING THE MEMORY WALL CS433 Fall 2015 Dimitrios Skarlatos OUTLINE Introduction Current Trends in Computer Architecture 3D Die Stacking The memory Wall Conclusion INTRODUCTION Ideal Scaling of power

More information

Time-Triggered Ethernet

Time-Triggered Ethernet Time-Triggered Ethernet Chapters 42 in the Textbook Professor: HONGWEI ZHANG CSC8260 Winter 2016 Presented By: Priyank Baxi (fr0630) fr0630@wayne.edu Outline History Overview TTEthernet Traffic Classes

More information

Computer Architecture!

Computer Architecture! Informatics 3 Computer Architecture! Dr. Boris Grot and Dr. Vijay Nagarajan!! Institute for Computing Systems Architecture, School of Informatics! University of Edinburgh! General Information! Instructors

More information

HPC Architectures. Types of resource currently in use

HPC Architectures. Types of resource currently in use HPC Architectures Types of resource currently in use Reusing this material This work is licensed under a Creative Commons Attribution- NonCommercial-ShareAlike 4.0 International License. http://creativecommons.org/licenses/by-nc-sa/4.0/deed.en_us

More information

A novel way to efficiently simulate complex full systems incorporating hardware accelerators

A novel way to efficiently simulate complex full systems incorporating hardware accelerators ARM Research Summit 2017 Workshop A novel way to efficiently simulate complex full systems incorporating hardware accelerators Nikolaos Tampouratzis Technical University of Crete, Greece Motivation / The

More information

Computer Architecture!

Computer Architecture! Informatics 3 Computer Architecture! Dr. Vijay Nagarajan and Prof. Nigel Topham! Institute for Computing Systems Architecture, School of Informatics! University of Edinburgh! General Information! Instructors

More information

Computer Architecture Crash course

Computer Architecture Crash course Computer Architecture Crash course Frédéric Haziza Department of Computer Systems Uppsala University Summer 2008 Conclusions The multicore era is already here cost of parallelism is dropping

More information