CGAR: Strong Consistency without Synchronous Replication. Seo Jin Park Advised by: John Ousterhout

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "CGAR: Strong Consistency without Synchronous Replication. Seo Jin Park Advised by: John Ousterhout"

Transcription

1 CGAR: Strong Consistency without Synchronous Replication Seo Jin Park Advised by: John Ousterhout

2 Improved update performance of storage systems with master-back replication Fast: updates complete before replication to backups Safe: save RPC requests and retry if master crashes Two variants: CGAR-C: save RPC requests in client library CGAR-W: save RPC requests in a different server (Witness) Performance Result Overview RAMCloud: 0.5x latency, 4x throughput Redis: strongly consistent (cost: 12% latency é) Slide 2

3 CGAR s Role in Platform Lab Granular Computing Platform Cluster Scheduling Low-Latency RPC Scalable Notifications Thread/ App Mgmt Hardware Accelerat ors Low- Latency Storage CGAR Slide 3

4 Consistency in Master- Master-backup replication: client send updates to a master and master replicate state to backups. Consistency after crash Responses for update operations must wait for backup replications (synchronous replication) Must not reveal non-replicated value client write x = 1 X: 1 ok X: 1 ok X: 1 Master Slide 4

5 Waiting for Replication is Not Cheap Synchronous replication increases latency of updates Alternative: asynchronous replication Non-replicated data can be lost Sacrifice consistency if master crashes Enables batched replication (more efficient) Client Master Processing time for RAMCloud WRITE operation 4 µs 3 µs 8 µs Asynchronous update: 7 µs Slide 5

6 Consistency over Performance: RAMCloud RAMCloud uses synchronous replication Consistent even after crash Write: 14.3 µs vs. Read: 5 µs Focused on minimizing latency while consistent Polling wait for replication è Write throughput is only 18% of read throughput Client Write Ok Master(s) s Durable Log Write Slide 6

7 Performance over Consistency: Redis Redis uses asynchronous replication to a file in disk Default: fsync every second Lose data if a master crashes Option for strong consistency: fsync-always On SSDs, 1~2 ms delay Without fsync, SET takes 25 µs. Client SET Ok Server Memory Fsync Log File Server Disk Can we have both consistency and performance? Slide 7

8 Consistency Guaranteed Asynchronous Replication Asynchronous Replication à performance For consistency Save RPC requests in 3 rd -party server (Witness) Replay RPCs in Witness if master crashes Witness Client RPC Master recover Slide 8

9 Witness Record Operation Client multicasts RPC request to master and witness Witness vouches the RPC will be retried if master crash write x = 1 Witness (8MB) client X: 1 Master async X: 0 Slide 9

10 Recovery Steps of CGAR-W Step 1: recover from backups Step 2: retry update RPCs in witness write x = 1 Witness retry X: 01 Y: 7 New Master client recover replicate X: 1 Y: 7 Master X: 0 Y: 7 1 Slide 10

11 Challenges in Using Witness for Recovery Witness may receive RPCs in a different order than master Solution: witness saves only 1 record per key Concurrent operations on same key? Witness rejects all but first Retry may re-execute an RPC Solution: use RIFL to ignore already completed RPC. Update may depend on unreplicated value in master Master cannot assume witness saved the RPC request Solution: delay update if current value is not yet replicated Slide 11

12 Example: RPCs in a Different Order Witness write x = 2 Client Red write x = 1 Client Blue write x = 2 Master 1 Slide 12

13 Example: RPCs in a Different Order Witness write x = 2 Client Red Must wait for replication write x = 1 Client Blue ok Can complete as soon as master returns write x = 2 Master Slide 13

14 Garbage Collection Witness must drop a record before accepting new one with same key client write x = 2 accept write x = 1 client Witness Drop write x = 1 [use RPC ids assigned by RIFL] X: 1 Master async X: 1 Slide 14

15 Using Multiple Witnesses A system can use multiple witnesses per each master Higher availability (recovery can use any witnesses) To use async update, all witnesses must accept client write x = 1 write x = 1 Witnesses X: 1 Master Slide 15

16 Evaluation of CGAR Ø RAMCloud implementation Performance improvement Latency reduction Ø Redis implementation Supports wide range of operations Slide 16

17 RAMCloud s Latency after CGAR Writes are issued sequentially by a client to a master Median 14.3 μs Median 6.6 μs, 7.1 μs Slide 17

18 RAMCloud s Throughput after CGAR Batching replication improved throughput Slide 18

19 Making Redis Consistent with Small Cost SET: write to key-value store HMSET: write to a member of hashmap INCR: increment an integer counter Slide 19

20 Conclusion Fast: updates don t wait for replication Consistent: CGAR saves RPC requests in witness; If server crashes, retry the saved RPCs to recover High throughput: replication can be batched Slide 20

21 Questions Slide 21

22 Latency under Skewed Workloads YCSB-A: Zipfian dist (1M objects, p = 0.99) Slide 25

23 CGAR Decoupled Replication from Update Delay replication RPC s completion time Slide 26

Making RAMCloud Writes Even Faster

Making RAMCloud Writes Even Faster Making RAMCloud Writes Even Faster (Bring Asynchrony to Distributed Systems) Seo Jin Park John Ousterhout Overview Goal: make writes asynchronous with consistency. Approach: rely on client Server returns

More information

RAMCloud and the Low- Latency Datacenter. John Ousterhout Stanford University

RAMCloud and the Low- Latency Datacenter. John Ousterhout Stanford University RAMCloud and the Low- Latency Datacenter John Ousterhout Stanford University Most important driver for innovation in computer systems: Rise of the datacenter Phase 1: large scale Phase 2: low latency Introduction

More information

Lightning Talks. Platform Lab Students Stanford University

Lightning Talks. Platform Lab Students Stanford University Lightning Talks Platform Lab Students Stanford University Lightning Talks 1. MC Switch: Application-Layer Load Balancing on a Switch Eyal Cidon and Sean Choi 2. ReFlex: Remote Flash == Local Flash Ana

More information

CPS 512 midterm exam #1, 10/7/2016

CPS 512 midterm exam #1, 10/7/2016 CPS 512 midterm exam #1, 10/7/2016 Your name please: NetID: Answer all questions. Please attempt to confine your answers to the boxes provided. If you don t know the answer to a question, then just say

More information

The Google File System

The Google File System The Google File System Sanjay Ghemawat, Howard Gobioff and Shun Tak Leung Google* Shivesh Kumar Sharma fl4164@wayne.edu Fall 2015 004395771 Overview Google file system is a scalable distributed file system

More information

GFS: The Google File System

GFS: The Google File System GFS: The Google File System Brad Karp UCL Computer Science CS GZ03 / M030 24 th October 2014 Motivating Application: Google Crawl the whole web Store it all on one big disk Process users searches on one

More information

GFS: The Google File System. Dr. Yingwu Zhu

GFS: The Google File System. Dr. Yingwu Zhu GFS: The Google File System Dr. Yingwu Zhu Motivating Application: Google Crawl the whole web Store it all on one big disk Process users searches on one big CPU More storage, CPU required than one PC can

More information

Rocksteady: Fast Migration for Low-Latency In-memory Storage. Chinmay Kulkarni, Aniraj Kesavan, Tian Zhang, Robert Ricci, Ryan Stutsman

Rocksteady: Fast Migration for Low-Latency In-memory Storage. Chinmay Kulkarni, Aniraj Kesavan, Tian Zhang, Robert Ricci, Ryan Stutsman Rocksteady: Fast Migration for Low-Latency In-memory Storage Chinmay Kulkarni, niraj Kesavan, Tian Zhang, Robert Ricci, Ryan Stutsman 1 Introduction Distributed low-latency in-memory key-value stores are

More information

Low-Latency Datacenters. John Ousterhout Platform Lab Retreat May 29, 2015

Low-Latency Datacenters. John Ousterhout Platform Lab Retreat May 29, 2015 Low-Latency Datacenters John Ousterhout Platform Lab Retreat May 29, 2015 Datacenters: Scale and Latency Scale: 1M+ cores 1-10 PB memory 200 PB disk storage Latency: < 0.5 µs speed-of-light delay Most

More information

Lecture 18: Reliable Storage

Lecture 18: Reliable Storage CS 422/522 Design & Implementation of Operating Systems Lecture 18: Reliable Storage Zhong Shao Dept. of Computer Science Yale University Acknowledgement: some slides are taken from previous versions of

More information

Arachne. Core Aware Thread Management Henry Qin Jacqueline Speiser John Ousterhout

Arachne. Core Aware Thread Management Henry Qin Jacqueline Speiser John Ousterhout Arachne Core Aware Thread Management Henry Qin Jacqueline Speiser John Ousterhout Granular Computing Platform Zaharia Winstein Levis Applications Kozyrakis Cluster Scheduling Ousterhout Low-Latency RPC

More information

Low-Latency Datacenters. John Ousterhout

Low-Latency Datacenters. John Ousterhout Low-Latency Datacenters John Ousterhout The Datacenter Revolution Phase 1: Scale How to use 10,000 servers for a single application? New storage systems: Bigtable, HDFS,... New models of computation: MapReduce,

More information

NPTEL Course Jan K. Gopinath Indian Institute of Science

NPTEL Course Jan K. Gopinath Indian Institute of Science Storage Systems NPTEL Course Jan 2012 (Lecture 39) K. Gopinath Indian Institute of Science Google File System Non-Posix scalable distr file system for large distr dataintensive applications performance,

More information

BERLIN. 2015, Amazon Web Services, Inc. or its affiliates. All rights reserved

BERLIN. 2015, Amazon Web Services, Inc. or its affiliates. All rights reserved BERLIN 2015, Amazon Web Services, Inc. or its affiliates. All rights reserved Amazon Aurora: Amazon s New Relational Database Engine Carlos Conde Technology Evangelist @caarlco 2015, Amazon Web Services,

More information

The Google File System

The Google File System October 13, 2010 Based on: S. Ghemawat, H. Gobioff, and S.-T. Leung: The Google file system, in Proceedings ACM SOSP 2003, Lake George, NY, USA, October 2003. 1 Assumptions Interface Architecture Single

More information

Strata: A Cross Media File System. Youngjin Kwon, Henrique Fingler, Tyler Hunt, Simon Peter, Emmett Witchel, Thomas Anderson

Strata: A Cross Media File System. Youngjin Kwon, Henrique Fingler, Tyler Hunt, Simon Peter, Emmett Witchel, Thomas Anderson A Cross Media File System Youngjin Kwon, Henrique Fingler, Tyler Hunt, Simon Peter, Emmett Witchel, Thomas Anderson 1 Let s build a fast server NoSQL store, Database, File server, Mail server Requirements

More information

IBM V7000 Unified R1.4.2 Asynchronous Replication Performance Reference Guide

IBM V7000 Unified R1.4.2 Asynchronous Replication Performance Reference Guide V7 Unified Asynchronous Replication Performance Reference Guide IBM V7 Unified R1.4.2 Asynchronous Replication Performance Reference Guide Document Version 1. SONAS / V7 Unified Asynchronous Replication

More information

Efficiently Backing up Terabytes of Data with pgbackrest. David Steele

Efficiently Backing up Terabytes of Data with pgbackrest. David Steele Efficiently Backing up Terabytes of Data with pgbackrest PGConf US 2016 David Steele April 20, 2016 Crunchy Data Solutions, Inc. Efficiently Backing up Terabytes of Data with pgbackrest 1 / 22 Agenda 1

More information

Georgia Institute of Technology ECE6102 4/20/2009 David Colvin, Jimmy Vuong

Georgia Institute of Technology ECE6102 4/20/2009 David Colvin, Jimmy Vuong Georgia Institute of Technology ECE6102 4/20/2009 David Colvin, Jimmy Vuong Relatively recent; still applicable today GFS: Google s storage platform for the generation and processing of data used by services

More information

Implementing Linearizability at Large Scale and Low Latency

Implementing Linearizability at Large Scale and Low Latency Implementing Linearizability at Large Scale and Low Latency Collin Lee, Seo Jin Park, Ankita Kejriwal, Satoshi Matsushita, and John Ousterhout Stanford University, NEC Abstract Linearizability is the strongest

More information

Efficiently Backing up Terabytes of Data with pgbackrest

Efficiently Backing up Terabytes of Data with pgbackrest Efficiently Backing up Terabytes of Data with pgbackrest David Steele Crunchy Data PGDay Russia 2017 July 6, 2017 Agenda 1 Why Backup? 2 Living Backups 3 Design 4 Features 5 Performance 6 Changes to Core

More information

No compromises: distributed transactions with consistency, availability, and performance

No compromises: distributed transactions with consistency, availability, and performance No compromises: distributed transactions with consistency, availability, and performance Aleksandar Dragojevi c, Dushyanth Narayanan, Edmund B. Nightingale, Matthew Renzelmann, Alex Shamis, Anirudh Badam,

More information

Amazon Aurora Deep Dive

Amazon Aurora Deep Dive Amazon Aurora Deep Dive Enterprise-class database for the cloud Damián Arregui, Solutions Architect, AWS October 27 th, 2016 2016, Amazon Web Services, Inc. or its Affiliates. All rights reserved. Enterprise

More information

NFS: Naming indirection, abstraction. Abstraction, abstraction, abstraction! Network File Systems: Naming, cache control, consistency

NFS: Naming indirection, abstraction. Abstraction, abstraction, abstraction! Network File Systems: Naming, cache control, consistency Abstraction, abstraction, abstraction! Network File Systems: Naming, cache control, consistency Local file systems Disks are terrible abstractions: low-level blocks, etc. Directories, files, links much

More information

MySQL HA Solutions Selecting the best approach to protect access to your data

MySQL HA Solutions Selecting the best approach to protect access to your data MySQL HA Solutions Selecting the best approach to protect access to your data Sastry Vedantam sastry.vedantam@oracle.com February 2015 Copyright 2015, Oracle and/or its affiliates. All rights reserved

More information

Network File System (NFS)

Network File System (NFS) Network File System (NFS) Brad Karp UCL Computer Science CS GZ03 / M030 14 th October 2015 NFS Is Relevant Original paper from 1985 Very successful, still widely used today Early result; much subsequent

More information

Scalable Low-Latency Indexes for a Key-Value Store Ankita Kejriwal

Scalable Low-Latency Indexes for a Key-Value Store Ankita Kejriwal Scalable Low-Latency Indexes for a Key-Value Store Ankita Kejriwal With Arjun Gopalan, Ashish Gupta, Zhihao Jia, Stephen Yang and John Ousterhout Conjecture Can a key value store support strongly consistent

More information

RAMCube: Exploiting Network Proximity for RAM-Based Key-Value Store

RAMCube: Exploiting Network Proximity for RAM-Based Key-Value Store RAMCube: Exploiting Network Proximity for RAM-Based Key-Value Store Yiming Zhang, Rui Chu @ NUDT Chuanxiong Guo, Guohan Lu, Yongqiang Xiong, Haitao Wu @ MSRA June, 2012 1 Background Disk-based storage

More information

Topics. File Buffer Cache for Performance. What to Cache? COS 318: Operating Systems. File Performance and Reliability

Topics. File Buffer Cache for Performance. What to Cache? COS 318: Operating Systems. File Performance and Reliability Topics COS 318: Operating Systems File Performance and Reliability File buffer cache Disk failure and recovery tools Consistent updates Transactions and logging 2 File Buffer Cache for Performance What

More information

Amazon Aurora Relational databases reimagined.

Amazon Aurora Relational databases reimagined. Amazon Aurora Relational databases reimagined. Ronan Guilfoyle, Solutions Architect, AWS Brian Scanlan, Engineer, Intercom 2015, Amazon Web Services, Inc. or its affiliates. All rights reserved Current

More information

The Google File System (GFS)

The Google File System (GFS) 1 The Google File System (GFS) CS60002: Distributed Systems Antonio Bruto da Costa Ph.D. Student, Formal Methods Lab, Dept. of Computer Sc. & Engg., Indian Institute of Technology Kharagpur 2 Design constraints

More information

Consistency in Distributed Systems

Consistency in Distributed Systems Consistency in Distributed Systems Recall the fundamental DS properties DS may be large in scale and widely distributed 1. concurrent execution of components 2. independent failure modes 3. transmission

More information

Warm standby done right. Heikki Linnakangas / Pivotal

Warm standby done right. Heikki Linnakangas / Pivotal Warm standby done right Heikki Linnakangas / Pivotal This presentation About built-in tools Not about repmgr, WAL-e etc. You probably should use those tools though! Not about monitoring, heartbeats etc.

More information

18-hdfs-gfs.txt Thu Oct 27 10:05: Notes on Parallel File Systems: HDFS & GFS , Fall 2011 Carnegie Mellon University Randal E.

18-hdfs-gfs.txt Thu Oct 27 10:05: Notes on Parallel File Systems: HDFS & GFS , Fall 2011 Carnegie Mellon University Randal E. 18-hdfs-gfs.txt Thu Oct 27 10:05:07 2011 1 Notes on Parallel File Systems: HDFS & GFS 15-440, Fall 2011 Carnegie Mellon University Randal E. Bryant References: Ghemawat, Gobioff, Leung, "The Google File

More information

Gnothi: Separating Data and Metadata for Efficient and Available Storage Replication

Gnothi: Separating Data and Metadata for Efficient and Available Storage Replication Gnothi: Separating Data and Metadata for Efficient and Available Storage Replication Yang Wang, Lorenzo Alvisi, and Mike Dahlin The University of Texas at Austin {yangwang, lorenzo, dahlin}@cs.utexas.edu

More information

Performance Monitoring AlwaysOn Availability Groups. Anthony E. Nocentino

Performance Monitoring AlwaysOn Availability Groups. Anthony E. Nocentino Performance Monitoring AlwaysOn Availability Groups Anthony E. Nocentino aen@centinosystems.com Anthony E. Nocentino Consultant and Trainer Founder and President of Centino Systems Specialize in system

More information

Distributed File Systems II

Distributed File Systems II Distributed File Systems II To do q Very-large scale: Google FS, Hadoop FS, BigTable q Next time: Naming things GFS A radically new environment NFS, etc. Independence Small Scale Variety of workloads Cooperation

More information

Data Storage Revolution

Data Storage Revolution Data Storage Revolution Relational Databases Object Storage (put/get) Dynamo PNUTS CouchDB MemcacheDB Cassandra Speed Scalability Availability Throughput No Complexity Eventual Consistency Write Request

More information

Squall: Fine-Grained Live Reconfiguration for Partitioned Main Memory Databases

Squall: Fine-Grained Live Reconfiguration for Partitioned Main Memory Databases Squall: Fine-Grained Live Reconfiguration for Partitioned Main Memory Databases AARON J. ELMORE, VAIBHAV ARORA, REBECCA TAFT, ANDY PAVLO, DIVY AGRAWAL, AMR EL ABBADI Higher OLTP Throughput Demand for High-throughput

More information

CA485 Ray Walshe Google File System

CA485 Ray Walshe Google File System Google File System Overview Google File System is scalable, distributed file system on inexpensive commodity hardware that provides: Fault Tolerance File system runs on hundreds or thousands of storage

More information

Building Consistent Transactions with Inconsistent Replication

Building Consistent Transactions with Inconsistent Replication DB Reading Group Fall 2015 slides by Dana Van Aken Building Consistent Transactions with Inconsistent Replication Irene Zhang, Naveen Kr. Sharma, Adriana Szekeres, Arvind Krishnamurthy, Dan R. K. Ports

More information

Using the SDACK Architecture to Build a Big Data Product. Yu-hsin Yeh (Evans Ye) Apache Big Data NA 2016 Vancouver

Using the SDACK Architecture to Build a Big Data Product. Yu-hsin Yeh (Evans Ye) Apache Big Data NA 2016 Vancouver Using the SDACK Architecture to Build a Big Data Product Yu-hsin Yeh (Evans Ye) Apache Big Data NA 2016 Vancouver Outline A Threat Analytic Big Data product The SDACK Architecture Akka Streams and data

More information

Da-Wei Chang CSIE.NCKU. Professor Hao-Ren Ke, National Chiao Tung University Professor Hsung-Pin Chang, National Chung Hsing University

Da-Wei Chang CSIE.NCKU. Professor Hao-Ren Ke, National Chiao Tung University Professor Hsung-Pin Chang, National Chung Hsing University Chapter 11 Implementing File System Da-Wei Chang CSIE.NCKU Source: Professor Hao-Ren Ke, National Chiao Tung University Professor Hsung-Pin Chang, National Chung Hsing University Outline File-System Structure

More information

GFS Overview. Design goals/priorities Design for big-data workloads Huge files, mostly appends, concurrency, huge bandwidth Design for failures

GFS Overview. Design goals/priorities Design for big-data workloads Huge files, mostly appends, concurrency, huge bandwidth Design for failures GFS Overview Design goals/priorities Design for big-data workloads Huge files, mostly appends, concurrency, huge bandwidth Design for failures Interface: non-posix New op: record appends (atomicity matters,

More information

Performance Monitoring AlwaysOn Availability Groups. Anthony E. Nocentino

Performance Monitoring AlwaysOn Availability Groups. Anthony E. Nocentino Performance Monitoring AlwaysOn Availability Groups Anthony E. Nocentino aen@centinosystems.com Anthony E. Nocentino Consultant and Trainer Founder and President of Centino Systems Specialize in system

More information

Today: Fault Tolerance. Reliable One-One Communication

Today: Fault Tolerance. Reliable One-One Communication Today: Fault Tolerance Reliable communication Distributed commit Two phase commit Three phase commit Failure recovery Checkpointing Message logging Lecture 17, page 1 Reliable One-One Communication Issues

More information

Blizzard: A Distributed Queue

Blizzard: A Distributed Queue Blizzard: A Distributed Queue Amit Levy (levya@cs), Daniel Suskin (dsuskin@u), Josh Goodwin (dravir@cs) December 14th 2009 CSE 551 Project Report 1 Motivation Distributed systems have received much attention

More information

FlexSC. Flexible System Call Scheduling with Exception-Less System Calls. Livio Soares and Michael Stumm. University of Toronto

FlexSC. Flexible System Call Scheduling with Exception-Less System Calls. Livio Soares and Michael Stumm. University of Toronto FlexSC Flexible System Call Scheduling with Exception-Less System Calls Livio Soares and Michael Stumm University of Toronto Motivation The synchronous system call interface is a legacy from the single

More information

Redis as a Reliable Work Queue. Percona University

Redis as a Reliable Work Queue. Percona University Redis as a Reliable Work Queue Percona University 2015-02-12 Introduction Tom DeWire Principal Software Engineer Bronto Software Chris Thunes Senior Software Engineer Bronto Software Introduction Introduction

More information

Scaling Distributed Machine Learning with the Parameter Server

Scaling Distributed Machine Learning with the Parameter Server Scaling Distributed Machine Learning with the Parameter Server Mu Li, David G. Andersen, Jun Woo Park, Alexander J. Smola, Amr Ahmed, Vanja Josifovski, James Long, Eugene J. Shekita, and Bor-Yiing Su Presented

More information

Indexing in RAMCloud. Ankita Kejriwal, Ashish Gupta, Arjun Gopalan, John Ousterhout. Stanford University

Indexing in RAMCloud. Ankita Kejriwal, Ashish Gupta, Arjun Gopalan, John Ousterhout. Stanford University Indexing in RAMCloud Ankita Kejriwal, Ashish Gupta, Arjun Gopalan, John Ousterhout Stanford University RAMCloud 1.0 Introduction Higher-level data models Without sacrificing latency and scalability Secondary

More information

Tutorial 8 Build resilient, responsive and scalable web applications with SocketPro

Tutorial 8 Build resilient, responsive and scalable web applications with SocketPro Tutorial 8 Build resilient, responsive and scalable web applications with SocketPro Contents: Introduction SocketPro ways for resilient, responsive and scalable web applications Vertical scalability o

More information

CS3600 SYSTEMS AND NETWORKS

CS3600 SYSTEMS AND NETWORKS CS3600 SYSTEMS AND NETWORKS NORTHEASTERN UNIVERSITY Lecture 11: File System Implementation Prof. Alan Mislove (amislove@ccs.neu.edu) File-System Structure File structure Logical storage unit Collection

More information

Advanced file systems: LFS and Soft Updates. Ken Birman (based on slides by Ben Atkin)

Advanced file systems: LFS and Soft Updates. Ken Birman (based on slides by Ben Atkin) : LFS and Soft Updates Ken Birman (based on slides by Ben Atkin) Overview of talk Unix Fast File System Log-Structured System Soft Updates Conclusions 2 The Unix Fast File System Berkeley Unix (4.2BSD)

More information

Consistency and Replication. Some slides are from Prof. Jalal Y. Kawash at Univ. of Calgary

Consistency and Replication. Some slides are from Prof. Jalal Y. Kawash at Univ. of Calgary Consistency and Replication Some slides are from Prof. Jalal Y. Kawash at Univ. of Calgary Reasons for Replication Reliability/Availability : Mask failures Mask corrupted data Performance: Scalability

More information

Presented By: Devarsh Patel

Presented By: Devarsh Patel : Amazon s Highly Available Key-value Store Presented By: Devarsh Patel CS5204 Operating Systems 1 Introduction Amazon s e-commerce platform Requires performance, reliability and efficiency To support

More information

Craig Blitz Oracle Coherence Product Management

Craig Blitz Oracle Coherence Product Management Software Architecture for Highly Available, Scalable Trading Apps: Meeting Low-Latency Requirements Intentionally Craig Blitz Oracle Coherence Product Management 1 Copyright 2011, Oracle and/or its affiliates.

More information

Replication. Feb 10, 2016 CPSC 416

Replication. Feb 10, 2016 CPSC 416 Replication Feb 10, 2016 CPSC 416 How d we get here? Failures & single systems; fault tolerance techniques added redundancy (ECC memory, RAID, etc.) Conceptually, ECC & RAID both put a master in front

More information

18-hdfs-gfs.txt Thu Nov 01 09:53: Notes on Parallel File Systems: HDFS & GFS , Fall 2012 Carnegie Mellon University Randal E.

18-hdfs-gfs.txt Thu Nov 01 09:53: Notes on Parallel File Systems: HDFS & GFS , Fall 2012 Carnegie Mellon University Randal E. 18-hdfs-gfs.txt Thu Nov 01 09:53:32 2012 1 Notes on Parallel File Systems: HDFS & GFS 15-440, Fall 2012 Carnegie Mellon University Randal E. Bryant References: Ghemawat, Gobioff, Leung, "The Google File

More information

Performance Monitoring Always On Availability Groups. Anthony E. Nocentino

Performance Monitoring Always On Availability Groups. Anthony E. Nocentino Performance Monitoring Always On Availability Groups Anthony E. Nocentino aen@centinosystems.com Anthony E. Nocentino Consultant and Trainer Founder and President of Centino Systems Specialize in system

More information

Lecture XIII: Replication-II

Lecture XIII: Replication-II Lecture XIII: Replication-II CMPT 401 Summer 2007 Dr. Alexandra Fedorova Outline Google File System A real replicated file system Paxos Harp A consensus algorithm used in real systems A replicated research

More information

The Google File System

The Google File System The Google File System Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung SOSP 2003 presented by Kun Suo Outline GFS Background, Concepts and Key words Example of GFS Operations Some optimizations in

More information

ApsaraDB for Redis. Product Introduction

ApsaraDB for Redis. Product Introduction ApsaraDB for Redis is compatible with open-source Redis protocol standards and provides persistent memory database services. Based on its high-reliability dual-machine hot standby architecture and seamlessly

More information

Distributed Systems. Lec 10: Distributed File Systems GFS. Slide acks: Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung

Distributed Systems. Lec 10: Distributed File Systems GFS. Slide acks: Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung Distributed Systems Lec 10: Distributed File Systems GFS Slide acks: Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung 1 Distributed File Systems NFS AFS GFS Some themes in these classes: Workload-oriented

More information

ECE Engineering Robust Server Software. Spring 2018

ECE Engineering Robust Server Software. Spring 2018 ECE590-02 Engineering Robust Server Software Spring 2018 Business Continuity: Disaster Recovery Tyler Bletsch Duke University Includes material adapted from the course Information Storage and Management

More information

Optimizing MySQL performance with ZFS. Neelakanth Nadgir Allan Packer Sun Microsystems

Optimizing MySQL performance with ZFS. Neelakanth Nadgir Allan Packer Sun Microsystems Optimizing MySQL performance with ZFS Neelakanth Nadgir Allan Packer Sun Microsystems Who are we? Allan Packer Principal Engineer, Performance http://blogs.sun.com/allanp Neelakanth Nadgir Senior Engineer,

More information

The Google File System

The Google File System The Google File System Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung Google* 정학수, 최주영 1 Outline Introduction Design Overview System Interactions Master Operation Fault Tolerance and Diagnosis Conclusions

More information

The Google File System

The Google File System The Google File System Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung December 2003 ACM symposium on Operating systems principles Publisher: ACM Nov. 26, 2008 OUTLINE INTRODUCTION DESIGN OVERVIEW

More information

GFS. CS6450: Distributed Systems Lecture 5. Ryan Stutsman

GFS. CS6450: Distributed Systems Lecture 5. Ryan Stutsman GFS CS6450: Distributed Systems Lecture 5 Ryan Stutsman Some material taken/derived from Princeton COS-418 materials created by Michael Freedman and Kyle Jamieson at Princeton University. Licensed for

More information

Amazon Aurora Deep Dive

Amazon Aurora Deep Dive Amazon Aurora Deep Dive Anurag Gupta VP, Big Data Amazon Web Services April, 2016 Up Buffer Quorum 100K to Less Proactive 1/10 15 caches Custom, Shared 6-way Peer than read writes/second Automated Pay

More information

MERC. User Guide. For Magento 2.X. Version P a g e

MERC. User Guide. For Magento 2.X. Version P a g e MERC User Guide For Magento 2.X Version 1.0.0 http://litmus7.com/ 1 P a g e Table of Contents Table of Contents... 2 1. Introduction... 3 2. Requirements... 4 3. Installation... 4 4. Configuration... 4

More information

ParaFS: A Log-Structured File System to Exploit the Internal Parallelism of Flash Devices

ParaFS: A Log-Structured File System to Exploit the Internal Parallelism of Flash Devices ParaFS: A Log-Structured File System to Exploit the Internal Parallelism of Devices Jiacheng Zhang, Jiwu Shu, Youyou Lu Tsinghua University 1 Outline Background and Motivation ParaFS Design Evaluation

More information

Amazon Aurora Deep Dive

Amazon Aurora Deep Dive Amazon Aurora Deep Dive Kevin Jernigan, Sr. Product Manager Amazon Aurora PostgreSQL Amazon RDS for PostgreSQL May 18, 2017 2017, Amazon Web Services, Inc. or its Affiliates. All rights reserved. Agenda

More information

The Google File System

The Google File System The Google File System Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung Google SOSP 03, October 19 22, 2003, New York, USA Hyeon-Gyu Lee, and Yeong-Jae Woo Memory & Storage Architecture Lab. School

More information

CS 138: Google. CS 138 XVI 1 Copyright 2017 Thomas W. Doeppner. All rights reserved.

CS 138: Google. CS 138 XVI 1 Copyright 2017 Thomas W. Doeppner. All rights reserved. CS 138: Google CS 138 XVI 1 Copyright 2017 Thomas W. Doeppner. All rights reserved. Google Environment Lots (tens of thousands) of computers all more-or-less equal - processor, disk, memory, network interface

More information

To do. Consensus and related problems. q Failure. q Raft

To do. Consensus and related problems. q Failure. q Raft Consensus and related problems To do q Failure q Consensus and related problems q Raft Consensus We have seen protocols tailored for individual types of consensus/agreements Which process can enter the

More information

SFS: Random Write Considered Harmful in Solid State Drives

SFS: Random Write Considered Harmful in Solid State Drives SFS: Random Write Considered Harmful in Solid State Drives Changwoo Min 1, 2, Kangnyeon Kim 1, Hyunjin Cho 2, Sang-Won Lee 1, Young Ik Eom 1 1 Sungkyunkwan University, Korea 2 Samsung Electronics, Korea

More information

CSE 444: Database Internals. Section 9: 2-Phase Commit and Replication

CSE 444: Database Internals. Section 9: 2-Phase Commit and Replication CSE 444: Database Internals Section 9: 2-Phase Commit and Replication 1 Today 2-Phase Commit Replication 2 Two-Phase Commit Protocol (2PC) One coordinator and many subordinates Phase 1: Prepare Phase 2:

More information

Beyond Block I/O: Rethinking

Beyond Block I/O: Rethinking Beyond Block I/O: Rethinking Traditional Storage Primitives Xiangyong Ouyang *, David Nellans, Robert Wipfel, David idflynn, D. K. Panda * * The Ohio State University Fusion io Agenda Introduction and

More information

MarkLogic Server. Database Replication Guide. MarkLogic 9 May, Copyright 2017 MarkLogic Corporation. All rights reserved.

MarkLogic Server. Database Replication Guide. MarkLogic 9 May, Copyright 2017 MarkLogic Corporation. All rights reserved. Database Replication Guide 1 MarkLogic 9 May, 2017 Last Revised: 9.0-3, September, 2017 Copyright 2017 MarkLogic Corporation. All rights reserved. Table of Contents Table of Contents Database Replication

More information

Rethink the Sync. Abstract. 1 Introduction

Rethink the Sync. Abstract. 1 Introduction Rethink the Sync Edmund B. Nightingale, Kaushik Veeraraghavan, Peter M. Chen, and Jason Flinn Department of Electrical Engineering and Computer Science University of Michigan Abstract We introduce external

More information

Performance Monitoring AlwaysOn Availability Groups. Anthony E. Nocentino

Performance Monitoring AlwaysOn Availability Groups. Anthony E. Nocentino Performance Monitoring AlwaysOn Availability Groups Anthony E. Nocentino aen@centinosystems.com Anthony E. Nocentino Consultant and Trainer Founder and President of Centino Systems Specialize in system

More information

OPERATING SYSTEM. Chapter 12: File System Implementation

OPERATING SYSTEM. Chapter 12: File System Implementation OPERATING SYSTEM Chapter 12: File System Implementation Chapter 12: File System Implementation File-System Structure File-System Implementation Directory Implementation Allocation Methods Free-Space Management

More information

a. Under overload, whole network collapsed iii. How do you make an efficient high-level communication mechanism? 1. Similar to using compiler instead

a. Under overload, whole network collapsed iii. How do you make an efficient high-level communication mechanism? 1. Similar to using compiler instead RPC 1. Project proposals due tonight 2. Exam on Tuesday in class a. Open note, open papers b. Nothing else (no internet, no extra papers) 3. Notes from Creator: a. VMware ESX: Carl Waldspurger i. Still

More information

The Google File System. Alexandru Costan

The Google File System. Alexandru Costan 1 The Google File System Alexandru Costan Actions on Big Data 2 Storage Analysis Acquisition Handling the data stream Data structured unstructured semi-structured Results Transactions Outline File systems

More information

! Design constraints. " Component failures are the norm. " Files are huge by traditional standards. ! POSIX-like

! Design constraints.  Component failures are the norm.  Files are huge by traditional standards. ! POSIX-like Cloud background Google File System! Warehouse scale systems " 10K-100K nodes " 50MW (1 MW = 1,000 houses) " Power efficient! Located near cheap power! Passive cooling! Power Usage Effectiveness = Total

More information

Scalable Control Plane Substrate. Sachin Ka3, John Ousterhout, Guru Parulkar, Marcos Aguilera, Curt Kolovson ONRC + ON.Lab + RAMCloud, VMWare

Scalable Control Plane Substrate. Sachin Ka3, John Ousterhout, Guru Parulkar, Marcos Aguilera, Curt Kolovson ONRC + ON.Lab + RAMCloud, VMWare Scalable Control Plane Substrate Sachin Ka3, John Ousterhout, Guru Parulkar, Marcos Aguilera, Curt Kolovson ONRC + ON.Lab + RAMCloud, VMWare MoEvaEon SeparaEon of control plane is a common trend: networks/systems

More information

Chapter 11: Implementing File Systems

Chapter 11: Implementing File Systems Chapter 11: Implementing File Systems Operating System Concepts 99h Edition DM510-14 Chapter 11: Implementing File Systems File-System Structure File-System Implementation Directory Implementation Allocation

More information

Scalable In-memory Checkpoint with Automatic Restart on Failures

Scalable In-memory Checkpoint with Automatic Restart on Failures Scalable In-memory Checkpoint with Automatic Restart on Failures Xiang Ni, Esteban Meneses, Laxmikant V. Kalé Parallel Programming Laboratory University of Illinois at Urbana-Champaign November, 2012 8th

More information

PNUTS: Yahoo! s Hosted Data Serving Platform. Reading Review by: Alex Degtiar (adegtiar) /30/2013

PNUTS: Yahoo! s Hosted Data Serving Platform. Reading Review by: Alex Degtiar (adegtiar) /30/2013 PNUTS: Yahoo! s Hosted Data Serving Platform Reading Review by: Alex Degtiar (adegtiar) 15-799 9/30/2013 What is PNUTS? Yahoo s NoSQL database Motivated by web applications Massively parallel Geographically

More information

PebblesDB: Building Key-Value Stores using Fragmented Log Structured Merge Trees

PebblesDB: Building Key-Value Stores using Fragmented Log Structured Merge Trees PebblesDB: Building Key-Value Stores using Fragmented Log Structured Merge Trees Pandian Raju 1, Rohan Kadekodi 1, Vijay Chidambaram 1,2, Ittai Abraham 2 1 The University of Texas at Austin 2 VMware Research

More information

The Google File System GFS

The Google File System GFS The Google File System GFS Common Goals of GFS and most Distributed File Systems Performance Reliability Scalability Availability Other GFS Concepts Component failures are the norm rather than the exception.

More information

Distributed Coordination with ZooKeeper - Theory and Practice. Simon Tao EMC Labs of China Oct. 24th, 2015

Distributed Coordination with ZooKeeper - Theory and Practice. Simon Tao EMC Labs of China Oct. 24th, 2015 Distributed Coordination with ZooKeeper - Theory and Practice Simon Tao EMC Labs of China {simon.tao@emc.com} Oct. 24th, 2015 Agenda 1. ZooKeeper Overview 2. Coordination in Spring XD 3. ZooKeeper Under

More information

Chapter 11: Implementing File

Chapter 11: Implementing File Chapter 11: Implementing File Systems Chapter 11: Implementing File Systems File-System Structure File-System Implementation Directory Implementation Allocation Methods Free-Space Management Efficiency

More information

Open-Channel SSDs Then. Now. And Beyond. Matias Bjørling, March 22, Copyright 2017 CNEX Labs

Open-Channel SSDs Then. Now. And Beyond. Matias Bjørling, March 22, Copyright 2017 CNEX Labs Open-Channel SSDs Then. Now. And Beyond. Matias Bjørling, March 22, 2017 What is an Open-Channel SSD? Then Now - Physical Page Addressing v1.2 - LightNVM Subsystem - Developing for an Open-Channel SSD

More information

2017 Winter Review: Lab Overview and Update. John Ousterhout Faculty Director

2017 Winter Review: Lab Overview and Update. John Ousterhout Faculty Director 2017 Winter Review 2017 Winter Review: Lab Overview and Update John Ousterhout Faculty Director Thank You, Sponsors! February 9, 2017 Platform Lab Overview and Update Slide 3 Special Thanks To... February

More information

Chapter 12: File System Implementation

Chapter 12: File System Implementation Chapter 12: File System Implementation Chapter 12: File System Implementation File-System Structure File-System Implementation Directory Implementation Allocation Methods Free-Space Management Efficiency

More information

Ambry: LinkedIn s Scalable Geo- Distributed Object Store

Ambry: LinkedIn s Scalable Geo- Distributed Object Store Ambry: LinkedIn s Scalable Geo- Distributed Object Store Shadi A. Noghabi *, Sriram Subramanian +, Priyesh Narayanan +, Sivabalan Narayanan +, Gopalakrishna Holla +, Mammad Zadeh +, Tianwei Li +, Indranil

More information

Chapter 11: Implementing File Systems. Operating System Concepts 9 9h Edition

Chapter 11: Implementing File Systems. Operating System Concepts 9 9h Edition Chapter 11: Implementing File Systems Operating System Concepts 9 9h Edition Silberschatz, Galvin and Gagne 2013 Chapter 11: Implementing File Systems File-System Structure File-System Implementation Directory

More information

Taurus: A Parallel Transaction Recovery Method Based on Fine-Granularity Dependency Tracking

Taurus: A Parallel Transaction Recovery Method Based on Fine-Granularity Dependency Tracking Taurus: A Parallel Transaction Recovery Method Based on Fine-Granularity Dependency Tracking Xiangyao Yu Siye Zhu Justin Kaashoek CSAIL MIT Phillips Academy Lexington High School yxy@csail.mit.edu szhu@andover.edu

More information