CS 338 Functional Dependencies

Size: px
Start display at page:

Download "CS 338 Functional Dependencies"

Transcription

1 CS 338 Functional Dependencies Bojana Bislimovska Winter 2016

2 Outline Design Guidelines for Relation Schemas Functional Dependency Set and Attribute Closure Schema Decomposition Boyce-Codd Normal Form

3 Design Guidelines for Relation Schemas Measures to determine the quality of relation schema design: Clear semantics of attributes in the schema Reduction of redundant information in tuples Reduction of NULL values in tuples Disallowment of generating spurious tuples Above-mentioned measures are not always independent of one another

4 Design Guidelines for Relation Schemas Guideline 1: Design a relation schema so that is easy to explain its meaning. Do not combine attributes from multiple entity types and relationship types into a single relation Example of violating guideline 1 Every tuple includes employee and department data Redundant repetition of Dname and Manager Ssn for every employee (increases storage space) Potential for many NULL values (employee without department, department without employees)

5 Design Guidelines for Relation Schemas Update anomalies Deleting the last employee in a dept should not delete dept Changing the dept name/mgr requires many tuples to be updated Inserting employees requires checking for consistency of its dept name and manager Guideline 2: Design base relation schemas so that no insertion, deletion, or modification anomalies are present Consistent with guideline 1

6 Design Guidelines for Relation Schemas NULL values in tuples If some attributes do not apply to all tuples in the relation Multiple interpetation of NULL values Guideline 3: Avoid placing attributes in a base relation whose values may frequently be NULL. If NULLs are unavoidable, make sure they apply in exceptional cases, and do not apply to a majority of tuples in the relation.

7 Design Guidelines for Relation Schemas Spurious tuples Guideline 4: Design relation schemas so that they can be joined with equality conditions on appropirately related attribute pairs (primary key, foreign key) that guarantees that no spurious tuples are generated.

8 Functional Dependency Constraint between two sets of attributes from the database Expresses the fact that in a relation schema (values of) a set of attributes uniquely determine (values of) another set of attributes Definition: Given relation schema R(A 1,A 2,,A n ) and sets of attributes X {A 1,A 2,,A n }, Y {A 1,A 2,,A n }, X Y specifies the following constraint (functional dependency): for any tuples t 1 and t 2 in any valid relation state r of R, if t 1 [X] = t 2 [X] then t 1 [Y] = t 2 [Y]. A functional dependency is a property of the semantics (meaning) of the attributes Main use in the further description of a relation schema by specifying constraints on its attributes that must always hold Given a relation state Cannot determine which functional dependencies hold Can state that functional dependency does not hold if there are tuples that show violation of the dependency

9 Functional Dependency Notation: {B 1,B 2,,B i } {C 1,C 2,,C j } but can omit set braces if i=1 or j=1, respectively. Example Following functional dependencies hold Ssn Ename Pnumber {Pname, Plocation} {Ssn, Pnumber} Hours

10 Functional Dependencies and Keys Keys (as defined previously): A superkey is a set of attributes such that no two tuples (in an instance) agree on their values for those attributes. A candidate key is a minimal superkey. A primary key is a candidate key chosen by the DBA Relating keys and FDs: If K R is a superkey for relatio s he a R, the depe de K R holds on R. If depe de K R holds o R a d we assu e that R does ot o tai duplicate tuples (i.e. relational model) then K R is a superkey for relation schema R

11 Closure of FD Sets How do we know what additional FDs hold in a schema? The closure of the set of functional dependencies F (denoted F + ) is the set of all functional dependencies that are satisfied by every relational instance that satisfies F. Informally, F + includes all of the dependencies in F, plus any dependencies they imply.

12 Computing Attribute Closures If we want to derive the maximal set of attributes functionally determined by some X (called the attribute closure of X). function ComputeX + (X, F) begin X + := X; while true do if there e ists Y ) F such that (1) Y X +, and (2) Z X + then X + := X + Z else exit; return X + ; end

13 Computing Attribute Closures Let R be a relational schema and F a set of functional dependencies on R. Then Theorem: X is a superkey of R if and only if ComputeX + (X, F) = R Theorem: X Y F + if and only if Y ComputeX + (X, F)

14 Attribute Closure Example Example: F = { Ssn EName Pnum Pname, Ploc Ploc, Hours Allowa e } ComputeX + ({Pnum,Hours},F): FD X + initial Pnum Pname, Ploc Ploc, Hours Allowa e Pnum, Hours Pnum, Hours, Pname, Ploc Pnum, Hours, Pname, Ploc, Allowance

15 Schema Decomposition Let R be a relation schema (= set of attributes). The collection {R 1,..., R n } of relation schemas is a decomposition of R if R = R 1 R 2 R n A good decomposition does not lose information complicate checking of constraints contain anomalies (or at least contains fewer anomalies)

16 Lossless-Join Decompositions We should be able to reconstruct the instance of the original table from the instances of the tables in the decomposition Example: Consider replacing By decomposing into two tables Student Assignment Group Mark Ann A1 G1 80 Ann A2 G3 60 Bob A1 G2 60 Student Group Mark Ann G1 80 Ann G3 60 Bob G2 60 Assignment Mark A1 80 A2 60 A1 60

17 Lossless-Join Decompositions Computing natural join of SGM and AM produces Student Assignment Group Mark Ann A1 G1 80 Ann A2 G3 60 Ann A1 G3 60 Bob A2 G2 60 Bob A1 G and we get extra data (spurious tuples). We would therefore lose information if we were to replace the first table, Marks, by SGM and AM. If re-joining SGM and AM would always produce exactly the tuples in Marks, then we call SGM and AM a lossless-join decomposition

18 Lossless-Join Decompositions A decomposition {R1, R2} of R is lossless if and only if the common attributes of R1 and R2 form a superkey for either s he a, that is R R R or R R R2 Example: In the previous example we had R = {Student, Assignment, Group, Mark}, F = { tude t, Assig e t Group, Mark }, R1 = {Student, Group, Mark}, R2 = {Assignment, Mark} Decomposition {R1, R2} is lossy e ause R R = {Mark} is ot a superkey of either {Student, Group, Mark} or {Assignment, Mark}

19 Normal Forms What is a good relatio al data ase s he a? Rule of thumb: Independent facts in separate tables: Each relation schema should consist of a primary key and a set of mutually independent attri utes This is achieved by transforming a schema into a normal form. Goals: Intuitive and straightforward transformation Anomaly-free/Nonredundant representation of data

20 Boyce-Codd Normal Form (BCNF) - Informal BCNF formalizes the goal that in a good database schema, independent relationships are stored in separate tables. Given a database schema and a set of functional dependencies for the attributes in the schema, we can determine whether the schema is in BCNF. A database schema is in BCNF if each of its relation schemas is in BCNF. Informally, a relation schema is in BCNF if and only if any group of its attributes that functionally determines any others of its attributes functionally determines all others, i.e., that group of attributes is a superkey of the relation.

21 Formal Definition of BCNF Let R be a relation schema and F a set of functional dependencies. Schema R is in BCNF (w.r.t. F) if and only if whenever (X Y ) F + and XY R, then either (X Y ) is trivial (i.e., Y X), or X is a superkey of R A database schema {R 1,..., R n } is in BCNF if each relation schema R i is in BCNF.

22 BCNF and Redundancy Why does BCNF avoid redundancy? Consider: Supplied_Items Sno Sname City Pno Pname Price The following functional dependency holds: Sno Sname, City Therefore, supplier name ith a d it Aja ust e repeated for ea h ite supplied supplier S1. Assume the above FD holds over a schema R that is in BCNF. This implies that: Sno is a superkey for R each Sno value appears on one row only no need to repeat Sname and City values

23 Lossless-Join BCNF Decomposition function DecomposeBCNF(R, F) begin Result := {R}; while some R i Result a d X Y F + violate the BCNF condition do begin Replace R i by R i Y X ; Add {X, Y } to Result; end; return Result; end

24 Lossless-Join BCNF Decomposition No efficient procedure to do this exists. Results depend on sequence of FDs used to decompose the relations. It is possible that no lossless join dependency preserving BCNF decomposition exists

25 Lossless-Join BCNF Decomposition Example R = {Sno,Sname,City,Pno,Pname,Price} functional dependencies: Sno Sname,City Pno Pname Sno,Pno Pri e This schema is not in BCNF because, for example, Sno determines Sname and City, but is not a superkey of R.

26 Lossless-Join BCNF Decomposition Example The complete schema is now R 1 = {Sno,Sname,City} R 2 = {Sno,Pno,Price} R 3 = {Pno,Pname} This schema is a losslessjoin, BCNF decomposition of the original schema R.

Schema Refinement: Dependencies and Normal Forms

Schema Refinement: Dependencies and Normal Forms Schema Refinement: Dependencies and Normal Forms Grant Weddell David R. Cheriton School of Computer Science University of Waterloo CS 348 Introduction to Database Management Spring 2012 CS 348 (Intro to

More information

Schema Refinement: Dependencies and Normal Forms

Schema Refinement: Dependencies and Normal Forms Schema Refinement: Dependencies and Normal Forms Grant Weddell Cheriton School of Computer Science University of Waterloo CS 348 Introduction to Database Management Spring 2016 CS 348 (Intro to DB Mgmt)

More information

Schema Refinement: Dependencies and Normal Forms

Schema Refinement: Dependencies and Normal Forms Schema Refinement: Dependencies and Normal Forms M. Tamer Özsu David R. Cheriton School of Computer Science University of Waterloo CS 348 Introduction to Database Management Fall 2012 CS 348 Schema Refinement

More information

V. Database Design CS448/ How to obtain a good relational database schema

V. Database Design CS448/ How to obtain a good relational database schema V. How to obtain a good relational database schema Deriving new relational schema from ER-diagrams Normal forms: use of constraints in evaluating existing relational schema CS448/648 1 Translating an E-R

More information

Functional Dependencies and Normalization for Relational Databases Design & Analysis of Database Systems

Functional Dependencies and Normalization for Relational Databases Design & Analysis of Database Systems Functional Dependencies and Normalization for Relational Databases 406.426 Design & Analysis of Database Systems Jonghun Park jonghun@snu.ac.kr Dept. of Industrial Engineering Seoul National University

More information

Normalization. Murali Mani. What and Why Normalization? To remove potential redundancy in design

Normalization. Murali Mani. What and Why Normalization? To remove potential redundancy in design 1 Normalization What and Why Normalization? To remove potential redundancy in design Redundancy causes several anomalies: insert, delete and update Normalization uses concept of dependencies Functional

More information

FUNCTIONAL DEPENDENCIES CHAPTER , 15.5 (6/E) CHAPTER , 10.5 (5/E)

FUNCTIONAL DEPENDENCIES CHAPTER , 15.5 (6/E) CHAPTER , 10.5 (5/E) FUNCTIONAL DEPENDENCIES CHAPTER 15.1-15.2, 15.5 (6/E) CHAPTER 10.1-10.2, 10.5 (5/E) 4 LECTURE OUTLINE Design guidelines for relation schemas Functional dependencies Definition and interpretation Formal

More information

Chapter 10. Normalization. Chapter Outline. Chapter Outline(contd.)

Chapter 10. Normalization. Chapter Outline. Chapter Outline(contd.) Chapter 10 Normalization Chapter Outline 1 Informal Design Guidelines for Relational Databases 1.1Semantics of the Relation Attributes 1.2 Redundant Information in Tuples and Update Anomalies 1.3 Null

More information

Informal Design Guidelines for Relational Databases

Informal Design Guidelines for Relational Databases Outline Informal Design Guidelines for Relational Databases Semantics of the Relation Attributes Redundant Information in Tuples and Update Anomalies Null Values in Tuples Spurious Tuples Functional Dependencies

More information

Elmasri/Navathe, Fundamentals of Database Systems, Fourth Edition Chapter 10-2

Elmasri/Navathe, Fundamentals of Database Systems, Fourth Edition Chapter 10-2 Elmasri/Navathe, Fundamentals of Database Systems, Fourth Edition Chapter 10-2 Chapter Outline 1 Informal Design Guidelines for Relational Databases 1.1Semantics of the Relation Attributes 1.2 Redundant

More information

Chapter 10. Chapter Outline. Chapter Outline. Functional Dependencies and Normalization for Relational Databases

Chapter 10. Chapter Outline. Chapter Outline. Functional Dependencies and Normalization for Relational Databases Chapter 10 Functional Dependencies and Normalization for Relational Databases Chapter Outline 1 Informal Design Guidelines for Relational Databases 1.1Semantics of the Relation Attributes 1.2 Redundant

More information

Copyright 2016 Ramez Elmasri and Shamkant B. Navathe

Copyright 2016 Ramez Elmasri and Shamkant B. Navathe CHAPTER 14 Basics of Functional Dependencies and Normalization for Relational Databases Slide 14-2 Chapter Outline 1 Informal Design Guidelines for Relational Databases 1.1 Semantics of the Relation Attributes

More information

Chapter 14. Database Design Theory: Introduction to Normalization Using Functional and Multivalued Dependencies

Chapter 14. Database Design Theory: Introduction to Normalization Using Functional and Multivalued Dependencies Chapter 14 Database Design Theory: Introduction to Normalization Using Functional and Multivalued Dependencies Copyright 2012 Ramez Elmasri and Shamkant B. Navathe Chapter Outline 1 Informal Design Guidelines

More information

Functional Dependencies and. Databases. 1 Informal Design Guidelines for Relational Databases. 4 General Normal Form Definitions (For Multiple Keys)

Functional Dependencies and. Databases. 1 Informal Design Guidelines for Relational Databases. 4 General Normal Form Definitions (For Multiple Keys) 1 / 13 1 Informal Design Guidelines for Relational Databases 1.1Semantics of the Relation Attributes 1.2 Redundant d Information in Tuples and Update Anomalies 1.3 Null Values in Tuples 1.4 Spurious Tuples

More information

CSE 544 Principles of Database Management Systems. Magdalena Balazinska Winter 2009 Lecture 4 - Schema Normalization

CSE 544 Principles of Database Management Systems. Magdalena Balazinska Winter 2009 Lecture 4 - Schema Normalization CSE 544 Principles of Database Management Systems Magdalena Balazinska Winter 2009 Lecture 4 - Schema Normalization References R&G Book. Chapter 19: Schema refinement and normal forms Also relevant to

More information

UNIT 3 DATABASE DESIGN

UNIT 3 DATABASE DESIGN UNIT 3 DATABASE DESIGN Objective To study design guidelines for relational databases. To know about Functional dependencies. To have an understanding on First, Second, Third Normal forms To study about

More information

Guideline 1: Semantic of the relation attributes Do not mix attributes from distinct real world. example

Guideline 1: Semantic of the relation attributes Do not mix attributes from distinct real world. example Design guidelines for relational schema Semantic of the relation attributes Do not mix attributes from distinct real world Design a relation schema so that it is easy to explain its meaning. Do not combine

More information

Chapter 14 Outline. Normalization for Relational Databases: Outline. Chapter 14: Basics of Functional Dependencies and

Chapter 14 Outline. Normalization for Relational Databases: Outline. Chapter 14: Basics of Functional Dependencies and Ramez Elmasri, Shamkant B. Navathe(2016) Fundamentals of Database Systems (7th Edition), pearson, isbn 10: 0-13-397077-9;isbn-13:978-0-13-397077-7. Chapter 14: Basics of Functional Dependencies and Normalization

More information

Functional Dependencies & Normalization for Relational DBs. Truong Tuan Anh CSE-HCMUT

Functional Dependencies & Normalization for Relational DBs. Truong Tuan Anh CSE-HCMUT Functional Dependencies & Normalization for Relational DBs Truong Tuan Anh CSE-HCMUT 1 2 Contents 1 Introduction 2 Functional dependencies (FDs) 3 Normalization 4 Relational database schema design algorithms

More information

Relational Database design. Slides By: Shree Jaswal

Relational Database design. Slides By: Shree Jaswal Relational Database design Slides By: Shree Jaswal Topics: Design guidelines for relational schema, Functional Dependencies, Definition of Normal Forms- 1NF, 2NF, 3NF, BCNF, Converting Relational Schema

More information

Database Design Theory and Normalization. CS 377: Database Systems

Database Design Theory and Normalization. CS 377: Database Systems Database Design Theory and Normalization CS 377: Database Systems Recap: What Has Been Covered Lectures 1-2: Database Overview & Concepts Lecture 4: Representational Model (Relational Model) & Mapping

More information

CS 2451 Database Systems: Database and Schema Design

CS 2451 Database Systems: Database and Schema Design CS 2451 Database Systems: Database and Schema Design http://www.seas.gwu.edu/~bhagiweb/cs2541 Spring 2018 Instructor: Dr. Bhagi Narahari Relational Model: Definitions Review Relations/tables, Attributes/Columns,

More information

CSE 562 Database Systems

CSE 562 Database Systems Goal CSE 562 Database Systems Question: The relational model is great, but how do I go about designing my database schema? Database Design Some slides are based or modified from originals by Magdalena

More information

CSE 544 Principles of Database Management Systems. Magdalena Balazinska Fall 2009 Lecture 3 - Schema Normalization

CSE 544 Principles of Database Management Systems. Magdalena Balazinska Fall 2009 Lecture 3 - Schema Normalization CSE 544 Principles of Database Management Systems Magdalena Balazinska Fall 2009 Lecture 3 - Schema Normalization References R&G Book. Chapter 19: Schema refinement and normal forms Also relevant to this

More information

COSC Dr. Ramon Lawrence. Emp Relation

COSC Dr. Ramon Lawrence. Emp Relation COSC 304 Introduction to Database Systems Normalization Dr. Ramon Lawrence University of British Columbia Okanagan ramon.lawrence@ubc.ca Normalization Normalization is a technique for producing relations

More information

The strategy for achieving a good design is to decompose a badly designed relation appropriately.

The strategy for achieving a good design is to decompose a badly designed relation appropriately. The strategy for achieving a good design is to decompose a badly designed relation appropriately. Functional Dependencies The single most important concept in relational schema design theory is that of

More information

MODULE: 3 FUNCTIONAL DEPENDENCIES

MODULE: 3 FUNCTIONAL DEPENDENCIES MODULE: 3 (13 hours) Database design: functional dependencies - Inference Rules for Functional Dependencies - Closure -- Minimal Cover -Normal forms First-second and third normal forms Boyce- Codd normal

More information

Normalisation. Normalisation. Normalisation

Normalisation. Normalisation. Normalisation Normalisation Normalisation Main objective in developing a logical data model for relational database systems is to create an accurate and efficient representation of the data, its relationships, and constraints

More information

CSCI 403: Databases 13 - Functional Dependencies and Normalization

CSCI 403: Databases 13 - Functional Dependencies and Normalization CSCI 403: Databases 13 - Functional Dependencies and Normalization Introduction The point of this lecture material is to discuss some objective measures of the goodness of a database schema. The method

More information

Relational Design: Characteristics of Well-designed DB

Relational Design: Characteristics of Well-designed DB 1. Minimal duplication Relational Design: Characteristics of Well-designed DB Consider table newfaculty (Result of F aculty T each Course) Id Lname Off Bldg Phone Salary Numb Dept Lvl MaxSz 20000 Cotts

More information

Unit IV. S_id S_Name S_Address Subject_opted

Unit IV. S_id S_Name S_Address Subject_opted Page no: 1 Unit IV Normalization of Database Database Normalizations is a technique of organizing the data in the database. Normalization is a systematic approach of decomposing tables to eliminate data

More information

Birkbeck. (University of London) BSc/FD EXAMINATION. Department of Computer Science and Information Systems. Database Management (COIY028H6)

Birkbeck. (University of London) BSc/FD EXAMINATION. Department of Computer Science and Information Systems. Database Management (COIY028H6) Birkbeck (University of London) BSc/FD EXAMINATION Department of Computer Science and Information Systems Database Management (COIY028H6) CREDIT VALUE: 15 credits Date of examination: 9 June 2016 Duration

More information

Lecture 11 - Chapter 8 Relational Database Design Part 1

Lecture 11 - Chapter 8 Relational Database Design Part 1 CMSC 461, Database Management Systems Spring 2018 Lecture 11 - Chapter 8 Relational Database Design Part 1 These slides are based on Database System Concepts 6th edition book and are a modified version

More information

Part II: Using FD Theory to do Database Design

Part II: Using FD Theory to do Database Design Part II: Using FD Theory to do Database Design 32 Recall that poorly designed table? part manufacturer manaddress seller selleraddress price 1983 Hammers R Us 99 Pinecrest ABC 1229 Bloor W 5.59 8624 Lee

More information

Schema Refinement and Normal Forms

Schema Refinement and Normal Forms Schema Refinement and Normal Forms Chapter 19 Quiz #2 Next Wednesday Comp 521 Files and Databases Fall 2010 1 The Evils of Redundancy Redundancy is at the root of several problems associated with relational

More information

Redundancy:Dependencies between attributes within a relation cause redundancy.

Redundancy:Dependencies between attributes within a relation cause redundancy. Normalization Normalization: It is the process of removing redundant data from your tables in order to improve storage efficiency, data integrity and scalability. This improvement is balanced against an

More information

Chapter 6: Relational Database Design

Chapter 6: Relational Database Design Chapter 6: Relational Database Design Chapter 6: Relational Database Design Features of Good Relational Design Atomic Domains and First Normal Form Decomposition Using Functional Dependencies Second Normal

More information

Relational Design 1 / 34

Relational Design 1 / 34 Relational Design 1 / 34 Relational Design Basic design approaches. What makes a good design better than a bad design? How do we tell we have a "good" design? How to we go about creating a good design?

More information

The Relational Model and Normalization

The Relational Model and Normalization The Relational Model and Normalization 1. Introduction 2 2. Relational Model Terminology 3 4. Normal Forms 11 5. Multi-valued Dependency 21 6. The Fifth Normal Form 22 The Relational Model and Normalization

More information

Dr. Anis Koubaa. Advanced Databases SE487. Prince Sultan University

Dr. Anis Koubaa. Advanced Databases SE487. Prince Sultan University Advanced Databases Prince Sultan University College of Computer and Information Sciences Fall 2013 Chapter 15 Basics of Functional Dependencies and Normalization for Relational Databases Anis Koubaa SE487

More information

CSE 544 Principles of Database Management Systems

CSE 544 Principles of Database Management Systems CSE 544 Principles of Database Management Systems Magdalena Balazinska Winter 2015 Lecture 2 SQL and Schema Normalization 1 Announcements Paper review First paper review is due before lecture on Wednesday

More information

The Relational Data Model

The Relational Data Model The Relational Data Model Lecture 6 1 Outline Relational Data Model Functional Dependencies Logical Schema Design Reading Chapter 8 2 1 The Relational Data Model Data Modeling Relational Schema Physical

More information

Database Management System Prof. Partha Pratim Das Department of Computer Science & Engineering Indian Institute of Technology, Kharagpur

Database Management System Prof. Partha Pratim Das Department of Computer Science & Engineering Indian Institute of Technology, Kharagpur Database Management System Prof. Partha Pratim Das Department of Computer Science & Engineering Indian Institute of Technology, Kharagpur Lecture - 19 Relational Database Design (Contd.) Welcome to module

More information

Functional Dependencies CS 1270

Functional Dependencies CS 1270 Functional Dependencies CS 1270 Constraints We use constraints to enforce semantic requirements on a DBMS Predicates that the DBMS must ensure to be always true. Predicates are checked when the DBMS chooses

More information

DATABASE DESIGN I - 1DL300

DATABASE DESIGN I - 1DL300 DATABASE DESIGN I - 1DL300 Autumn 2012 An Introductory Course on Database Systems http://www.it.uu.se/edu/course/homepage/dbastekn/ht12/ Uppsala Database Laboratory Department of Information Technology,

More information

CMU SCS CMU SCS CMU SCS CMU SCS whole nothing but

CMU SCS CMU SCS CMU SCS CMU SCS whole nothing but Faloutsos & Pavlo 15-415/615 Carnegie Mellon Univ. Dept. of Computer Science 15-415/615 - DB Applications Lecture #17: Schema Refinement & Normalization - Normal Forms (R&G, ch. 19) Overview - detailed

More information

Database Management System

Database Management System Database Management System Lecture 4 Database Design Normalization and View * Some materials adapted from R. Ramakrishnan, J. Gehrke and Shawn Bowers Today s Agenda Normalization View Database Management

More information

Chapter 8: Relational Database Design

Chapter 8: Relational Database Design Chapter 8: Relational Database Design Database System Concepts, 6 th Ed. See www.db-book.com for conditions on re-use Chapter 8: Relational Database Design Features of Good Relational Design Atomic Domains

More information

In Chapters 3 through 6, we presented various aspects

In Chapters 3 through 6, we presented various aspects 15 chapter Basics of Functional Dependencies and Normalization for Relational Databases In Chapters 3 through 6, we presented various aspects of the relational model and the languages associated with it.

More information

We shall represent a relation as a table with columns and rows. Each column of the table has a name, or attribute. Each row is called a tuple.

We shall represent a relation as a table with columns and rows. Each column of the table has a name, or attribute. Each row is called a tuple. Logical Database design Earlier we saw how to convert an unorganized text description of information requirements into a conceptual design, by the use of ER diagrams. The advantage of ER diagrams is that

More information

Carnegie Mellon Univ. Dept. of Computer Science /615 - DB Applications. Overview - detailed. Goal. Faloutsos & Pavlo CMU SCS /615

Carnegie Mellon Univ. Dept. of Computer Science /615 - DB Applications. Overview - detailed. Goal. Faloutsos & Pavlo CMU SCS /615 Faloutsos & Pavlo 15-415/615 Carnegie Mellon Univ. Dept. of Computer Science 15-415/615 - DB Applications Lecture #17: Schema Refinement & Normalization - Normal Forms (R&G, ch. 19) Overview - detailed

More information

Chapter 7: Relational Database Design

Chapter 7: Relational Database Design Chapter 7: Relational Database Design Database System Concepts, 5th Ed. See www.db-book.com for conditions on re-use Chapter 7: Relational Database Design Features of Good Relational Design Atomic Domains

More information

Normalization. Anomalies Functional Dependencies Closures Key Computation Projecting Relations BCNF Reconstructing Information Other Normal Forms

Normalization. Anomalies Functional Dependencies Closures Key Computation Projecting Relations BCNF Reconstructing Information Other Normal Forms Anomalies Functional Dependencies Closures Key Computation Projecting Relations BCNF Reconstructing Information Other Normal Forms Normalization Niklas Fors (niklas.fors@cs.lth.se) Normalization 1 / 45

More information

Relational Design Theory. Relational Design Theory. Example. Example. A badly designed schema can result in several anomalies.

Relational Design Theory. Relational Design Theory. Example. Example. A badly designed schema can result in several anomalies. Relational Design Theory Relational Design Theory A badly designed schema can result in several anomalies Update-Anomalies: If we modify a single fact, we have to change several tuples Insert-Anomalies:

More information

Final Review. Zaki Malik November 20, 2008

Final Review. Zaki Malik November 20, 2008 Final Review Zaki Malik November 20, 2008 Basic Operators Covered Renaming If two relations have the same attribute, disambiguate the attributes by prefixing the attribute with the name of the relation

More information

Database design III. Quiz time! Using FDs to detect anomalies. Decomposition. Decomposition. Boyce-Codd Normal Form 11/4/16

Database design III. Quiz time! Using FDs to detect anomalies. Decomposition. Decomposition. Boyce-Codd Normal Form 11/4/16 Lecture 3 Quiz time! Database design III Functional dependencies cont. BCNF and 3NF What s wrong with this schema? {(, 2, Databases, Steven Van Acker ), (, 4, Databases, Rogardt Heldal )} Redundancy! Using

More information

TDDD12 Databasteknik Föreläsning 4: Normalisering

TDDD12 Databasteknik Föreläsning 4: Normalisering What is Good Design TDDD12 Databasteknik Föreläsning 4: Normalisering Can we be sure that the translation from the EER diagram to relational tables results in a good database design? Or: Confronted with

More information

Theory of Normal Forms Decomposition of Relations. Overview

Theory of Normal Forms Decomposition of Relations. Overview .. Winter 2008 CPE/CSC 366: Database Modeling, Design and Implementation Alexander Dekhtyar.. Overview Theory of Normal Forms Decomposition of Relations Functional Dependencies capture the attribute dependencies

More information

Mapping ER Diagrams to. Relations (Cont d) Mapping ER Diagrams to. Exercise. Relations. Mapping ER Diagrams to Relations (Cont d) Exercise

Mapping ER Diagrams to. Relations (Cont d) Mapping ER Diagrams to. Exercise. Relations. Mapping ER Diagrams to Relations (Cont d) Exercise CSC 74 Database Management Systems Topic #6: Database Design Weak Entity Type E Create a relation R Include all simple attributes and simple components of composite attributes. Include the primary key

More information

Lecture 5 Design Theory and Normalization

Lecture 5 Design Theory and Normalization CompSci 516 Data Intensive Computing Systems Lecture 5 Design Theory and Normalization Instructor: Sudeepa Roy Duke CS, Fall 2017 CompSci 516: Database Systems 1 HW1 deadline: Announcements Due on 09/21

More information

NORMAL FORMS. CS121: Relational Databases Fall 2017 Lecture 18

NORMAL FORMS. CS121: Relational Databases Fall 2017 Lecture 18 NORMAL FORMS CS121: Relational Databases Fall 2017 Lecture 18 Equivalent Schemas 2 Many different schemas can represent a set of data Which one is best? What does best even mean? Main goals: Representation

More information

IS 263 Database Concepts

IS 263 Database Concepts IS 263 Database Concepts Lecture 4: Normalization Instructor: Henry Kalisti 1 Department of Computer Science and Engineering Limitations of E- R Designs Provides a set of guidelines, does not result in

More information

customer = (customer_id, _ customer_name, customer_street,

customer = (customer_id, _ customer_name, customer_street, Relational Database Design COMPILED BY: RITURAJ JAIN The Banking Schema branch = (branch_name, branch_city, assets) customer = (customer_id, _ customer_name, customer_street, customer_city) account = (account_number,

More information

Unit 3 : Relational Database Design

Unit 3 : Relational Database Design Unit 3 : Relational Database Design Database System Concepts, 6 th Ed. See www.db-book.com for conditions on re-use Content Relational Model: Basic concepts, Attributes and Domains, CODD's Rules, Relational

More information

CIS 330: Applied Database Systems. ER to Relational Relational Algebra

CIS 330: Applied Database Systems. ER to Relational Relational Algebra CIS 330: Applied Database Systems ER to Relational Relational Algebra 1 Logical DB Design: ER to Relational Entity sets to tables: ssn name Employees lot CREATE TABLE Employees (ssn CHAR(11), name CHAR(20),

More information

BCNF. Yufei Tao. Department of Computer Science and Engineering Chinese University of Hong Kong BCNF

BCNF. Yufei Tao. Department of Computer Science and Engineering Chinese University of Hong Kong BCNF Yufei Tao Department of Computer Science and Engineering Chinese University of Hong Kong Recall A primary goal of database design is to decide what tables to create. Usually, there are two principles:

More information

More Relational Algebra

More Relational Algebra More Relational Algebra LECTURE 6 Dr. Philipp Leitner philipp.leitner@chalmers.se @xleitix LECTURE 6 Covers Parts of Chapter 8 Parts of Chapter 14 (high-level!) Please read this up until next lecture!

More information

NORMALISATION (Relational Database Schema Design Revisited)

NORMALISATION (Relational Database Schema Design Revisited) NORMALISATION (Relational Database Schema Design Revisited) Designing an ER Diagram is fairly intuitive, and faithfully following the steps to map an ER diagram to tables may not always result in the best

More information

CSE 544 Principles of Database Management Systems

CSE 544 Principles of Database Management Systems CSE 544 Principles of Database Management Systems Alvin Cheung Fall 2015 Lecture 2 SQL and Schema Normalization 1 Announcements Paper review First paper review is due on Wednesday 10:30am Details on website

More information

DATABASE MANAGEMENT SYSTEMS

DATABASE MANAGEMENT SYSTEMS www..com Code No: N0321/R07 Set No. 1 1. a) What is a Superkey? With an example, describe the difference between a candidate key and the primary key for a given relation? b) With an example, briefly describe

More information

Databases -Normalization I. (GF Royle, N Spadaccini ) Databases - Normalization I 1 / 24

Databases -Normalization I. (GF Royle, N Spadaccini ) Databases - Normalization I 1 / 24 Databases -Normalization I (GF Royle, N Spadaccini 2006-2010) Databases - Normalization I 1 / 24 This lecture This lecture introduces normal forms, decomposition and normalization. We will explore problems

More information

This lecture. Databases -Normalization I. Repeating Data. Redundancy. This lecture introduces normal forms, decomposition and normalization.

This lecture. Databases -Normalization I. Repeating Data. Redundancy. This lecture introduces normal forms, decomposition and normalization. This lecture Databases -Normalization I This lecture introduces normal forms, decomposition and normalization (GF Royle 2006-8, N Spadaccini 2008) Databases - Normalization I 1 / 23 (GF Royle 2006-8, N

More information

Desired properties of decompositions

Desired properties of decompositions Desired properties of decompositions We expect that after decomposition No anomalies and redundancies We can recover the original relation from the tuples in its decompositions We can ensure that after

More information

Lectures 12: Design Theory I. 1. Normal forms & functional dependencies 2/19/2018. Today s Lecture. What you will learn about in this section

Lectures 12: Design Theory I. 1. Normal forms & functional dependencies 2/19/2018. Today s Lecture. What you will learn about in this section Today s Lecture Lectures 12: Design Theory I Professor Xiannong Meng Spring 2018 Lecture and activity contents are based on what Prof Chris Ré used in his CS 145 in the fall 2016 term with permission 1.

More information

Chapter 16. Relational Database Design Algorithms. Database Design Approaches. Top-Down Design

Chapter 16. Relational Database Design Algorithms. Database Design Approaches. Top-Down Design Chapter 16 Relational Database Design Algorithms Database Design Approaches Top-Down design (Starting with conceptual design) Bottom-Up Design (relational synthesis) 2 Top-Down Design Design conceptual

More information

Lectures 5 & 6. Lectures 6: Design Theory Part II

Lectures 5 & 6. Lectures 6: Design Theory Part II Lectures 5 & 6 Lectures 6: Design Theory Part II Lecture 6 Today s Lecture 1. Boyce-Codd Normal Form ACTIVITY 2. Decompositions & 3NF ACTIVITY 3. MVDs ACTIVITY 2 Lecture 6 > Section 1 1. Boyce-Codd Normal

More information

Normal Forms. Winter Lecture 19

Normal Forms. Winter Lecture 19 Normal Forms Winter 2006-2007 Lecture 19 Equivalent Schemas Many schemas can represent a set of data Which one is best? What does best even mean? Main goals: Representation must be complete Data should

More information

Birkbeck. (University of London) BSc/FD EXAMINATION. Department of Computer Science and Information Systems. Database Management (COIY028H6)

Birkbeck. (University of London) BSc/FD EXAMINATION. Department of Computer Science and Information Systems. Database Management (COIY028H6) Birkbeck (University of London) BSc/FD EXAMINATION Department of Computer Science and Information Systems Database Management (COIY028H6) CREDIT VALUE: 15 credits Date of examination: Monday 9th June 2014

More information

CSIT5300: Advanced Database Systems

CSIT5300: Advanced Database Systems CSIT5300: Advanced Database Systems L06: Relational Database Design BCNF Dr. Kenneth LEUNG Department of Computer Science and Engineering The Hong Kong University of Science and Technology Hong Kong SAR,

More information

CS411 Database Systems. 05: Relational Schema Design Ch , except and

CS411 Database Systems. 05: Relational Schema Design Ch , except and CS411 Database Systems 05: Relational Schema Design Ch. 3.1-3.5, except 3.4.2-3.4.3 and 3.5.3. 1 How does this fit in? ER Diagrams: Data Definition Translation to Relational Schema: Data Definition Relational

More information

Relational Database Design (II)

Relational Database Design (II) Relational Database Design (II) 1 Roadmap of This Lecture Algorithms for Functional Dependencies (cont d) Decomposition Using Multi-valued Dependencies More Normal Form Database-Design Process Modeling

More information

Example Examination. Allocated Time: 100 minutes Maximum Points: 250

Example Examination. Allocated Time: 100 minutes Maximum Points: 250 CS542 EXAMPLE EXAM Elke A. Rundensteiner Example Examination Allocated Time: 100 minutes Maximum Points: 250 STUDENT NAME: General Instructions: This test is a closed book exam (besides one cheat sheet).

More information

Relational Model. CS 377: Database Systems

Relational Model. CS 377: Database Systems Relational Model CS 377: Database Systems ER Model: Recap Recap: Conceptual Models A high-level description of the database Sufficiently precise that technical people can understand it But, not so precise

More information

Functional Dependencies, Normalization. Rose-Hulman Institute of Technology Curt Clifton

Functional Dependencies, Normalization. Rose-Hulman Institute of Technology Curt Clifton Functional Dependencies, Normalization Rose-Hulman Institute of Technology Curt Clifton Or Fixing Broken Database Designs This material will almost certainly appear on Exam II next week. Outline Functional

More information

Applied Databases. Sebastian Maneth. Lecture 5 ER Model, Normal Forms. University of Edinburgh - January 30 th, 2017

Applied Databases. Sebastian Maneth. Lecture 5 ER Model, Normal Forms. University of Edinburgh - January 30 th, 2017 Applied Databases Lecture 5 ER Model, Normal Forms Sebastian Maneth University of Edinburgh - January 30 th, 2017 Outline 2 1. Entity Relationship Model 2. Normal Forms From Last Lecture 3 the Lecturer

More information

Steps in normalisation. Steps in normalisation 7/15/2014

Steps in normalisation. Steps in normalisation 7/15/2014 Introduction to normalisation Normalisation Normalisation = a formal process for deciding which attributes should be grouped together in a relation Normalisation is the process of decomposing relations

More information

Functional Dependencies and Finding a Minimal Cover

Functional Dependencies and Finding a Minimal Cover Functional Dependencies and Finding a Minimal Cover Robert Soulé 1 Normalization An anomaly occurs in a database when you can update, insert, or delete data, and get undesired side-effects. These side

More information

To overcome these anomalies we need to normalize the data. In the next section we will discuss about normalization.

To overcome these anomalies we need to normalize the data. In the next section we will discuss about normalization. Anomalies in DBMS There are three types of anomalies that occur when the database is not normalized. These are Insertion, update and deletion anomaly. Let s take an example to understand this. Example:

More information

Databases 1. Daniel POP

Databases 1. Daniel POP Databases 1 Daniel POP Week 6 & 7 Agenda Introduction to normalization Functional dependencies 1NF 2NF 3NF. Transitive dependencies BCNF 4NF. Multivalued dependencies 5NF De-normalization Normalization

More information

Introduction to Database Design, fall 2011 IT University of Copenhagen. Normalization. Rasmus Pagh

Introduction to Database Design, fall 2011 IT University of Copenhagen. Normalization. Rasmus Pagh Introduction to Database Design, fall 2011 IT University of Copenhagen Normalization Rasmus Pagh Based on KBL sections 6.1-6.8 (except p. 203 207m), 6.9 (until Multivalued dependencies ), 6.11, and 6.12.

More information

Lecture #8 (Still More Relational Theory...!)

Lecture #8 (Still More Relational Theory...!) Introduction to Data Management Lecture #8 (Still More Relational Theory...!) Instructor: Mike Carey mjcarey@ics.uci.edu Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 1 Announcements v

More information

Techno India Batanagar Computer Science and Engineering. Model Questions. Subject Name: Database Management System Subject Code: CS 601

Techno India Batanagar Computer Science and Engineering. Model Questions. Subject Name: Database Management System Subject Code: CS 601 Techno India Batanagar Computer Science and Engineering Model Questions Subject Name: Database Management System Subject Code: CS 601 Multiple Choice Type Questions 1. Data structure or the data stored

More information

UNIT -III. Two Marks. The main goal of normalization is to reduce redundant data. Normalization is based on functional dependencies.

UNIT -III. Two Marks. The main goal of normalization is to reduce redundant data. Normalization is based on functional dependencies. UNIT -III Relational Database Design: Features of Good Relational Designs- Atomic Domains and First Normal Form- Second Normal Form-Decomposition Using Functional Dependencies- Functional-Dependency Theory-Algorithms

More information

DBMS Chapter Three IS304. Database Normalization-Comp.

DBMS Chapter Three IS304. Database Normalization-Comp. Database Normalization-Comp. Contents 4. Boyce Codd Normal Form (BCNF) 5. Fourth Normal Form (4NF) 6. Fifth Normal Form (5NF) 7. Sixth Normal Form (6NF) 1 4. Boyce Codd Normal Form (BCNF) In the first

More information

Database Normalization. (Olav Dæhli 2018)

Database Normalization. (Olav Dæhli 2018) Database Normalization (Olav Dæhli 2018) 1 What is normalization and why normalize? Normalization: A set of rules to decompose relations (tables) into smaller relations (tables), without loosing any data

More information

Databases Tutorial. March,15,2012 Jing Chen Mcmaster University

Databases Tutorial. March,15,2012 Jing Chen Mcmaster University Databases Tutorial March,15,2012 Jing Chen Mcmaster University Outline 1NF Functional Dependencies BCNF 3NF Larger Schema Suppose we combine borrower and loan to get bor_loan - borrower = (customer_id,

More information

Relational Model History. COSC 416 NoSQL Databases. Relational Model (Review) Relation Example. Relational Model Definitions. Relational Integrity

Relational Model History. COSC 416 NoSQL Databases. Relational Model (Review) Relation Example. Relational Model Definitions. Relational Integrity COSC 416 NoSQL Databases Relational Model (Review) Dr. Ramon Lawrence University of British Columbia Okanagan ramon.lawrence@ubc.ca Relational Model History The relational model was proposed by E. F. Codd

More information

Database Systems. Basics of the Relational Data Model

Database Systems. Basics of the Relational Data Model Database Systems Relational Design Theory Jens Otten University of Oslo Jens Otten (UiO) Database Systems Relational Design Theory INF3100 Spring 18 1 / 30 Basics of the Relational Data Model title year

More information

DATABASTEKNIK - 1DL116

DATABASTEKNIK - 1DL116 1 DATABASTEKNIK - 1DL116 Spring 2004 An introductury course on database systems http://user.it.uu.se/~udbl/dbt-vt2004/ Kjell Orsborn Uppsala Database Laboratory Department of Information Technology, Uppsala

More information

Wentworth Institute of Technology COMP2670 Databases Spring 2016 Derbinsky. Normalization. Lecture 9

Wentworth Institute of Technology COMP2670 Databases Spring 2016 Derbinsky. Normalization. Lecture 9 Lecture 9 1 Outline 1. Context 2. Objectives 3. Functional Dependencies 4. Normal Forms 1NF 2NF 3NF 2 Database Design and Implementation Process 3 Theory and process by which to evaluate and improve relational

More information