SAZ4B/SAE5A Operating System Unit : I - V

Size: px
Start display at page:

Download "SAZ4B/SAE5A Operating System Unit : I - V"

Transcription

1 SAZ4B/SAE5A Operating System Unit : I - V

2 TM Unit I: Contents Views, Goals & Types of system OS Structure, Components & Services System Structures &Layered Approach Virtual Machines System Design and Implementation. Process Management & Scheduling Cooperating Process,Threads Interprocess Communication. CPU Scheduling criteria & Algorithms 1

3 TM OS VIEWS A modern computer consists of: One or more processors Main memory Disks Printers Various input/output devices. Managing all these varied components requires a layer of software the Operating System (OS). 2

4 TM OS GOALS Control/execute user/application programs. Make the computer system convenient to use. Ease the solving of user problems. Use the computer hardware in an efficient manner. 3

5 Types of Operating Systems TM 1. Realtime Operating System (RTOS) 2. Singleuser, Single task 3. Singleuser, multitasking 4. Multiuser 4

6 TM OS Structure OS Layer Structure gives the internal design of operating system. 5

7 OS ComponentsTM Components used in operating system. 6

8 TM OS-Services The following are examples of services provided by an operating system: Context Switching & Scheduling, Memory Management Inter-process Communication File Systems High level I/O facilities 7

9 OS System Structure TM Operating system internal system structure 8

10 OS Layered Structure TM Layers starts from layer 0 to layer N functions and operations in lower level layer Used for modularization of OS Higher level invokes lower level layers Less layers provide more functionality 9

11 TM Virtual Machines It is completely isolated guest Operating System It creates an illusion of multiple processors each capable of executing independently. It has two categories: 1. System virtual machines. 2. Process virtual machines 10

12 OS System Design and TM Implementation At the highest level, system design is dominated by the choice of hardware and system type. Beyond this level, the requirements can be divided into two groups: user goals, and system goals. User goals include convenience, reliability, security, and speed. System goals include ease of design, implementation, maintenance, flexibility, and efficiency. 11

13 Process Management TM 12

14 Process Scheduling TM A process is an instance of a computer program that is being executed. It contains the program code and its current activity. Depending on the operating system (OS), a process may be made up of multiple threads of execution that execute instructions concurrently. 13

15 Cooperating process TM A process is independent if it cannot affect other other process or be affected by it. Any process that does not share data with others is independent. Otherwise the process is cooperating. Cooperation is done to provide information sharing, computational speedups, modularity and convenience. 14

16 Threads & Interprocess TM Communication A thread of execution is the smallest sequence of programmed instructions that can be managed independently by a scheduler, which is typically a part of the operating system. Inter-process communication (IPC) refers specifically to the mechanisms an operating system provides to allow the processes to manage shared data. 15

17 TM Scheduling Criteria and Algorithm Scheduling Criteria Scheduling Algorithm CPU utilization Throughput Turnaround Time Waiting Time Response Time watch?v=6txxa3hbx8y 16

18 TM Unit II: Contents Process Synchronization: Critical-Section problem Synchronization Hardware Semaphores Classic Problems of Synchronization Critical Region Deadlock Characterization Methods for handling Deadlocks Prevention, Avoidance, and Detection of Deadlock Recovery from deadlock 17

19 Process Synchronization Process Synchronization means sharing system resources by processes in a such a way that, Concurrent access to shared data is handled thereby minimizing the chance of inconsistent data 18

20 Critical Section Problem 19

21 Semaphores A semaphore is a variable or abstract data type used to control access to a common resource by multiple processes in a concurrent system such as a multiprogramming operating system. concurrent accesses to shared resources can lead to unexpected or erroneous behavior, so parts of the program where the shared resource is accessed are protected. This protected section is the critical section or critical region. Semaphores Critical Region 20

22 Classification Problem of Synchronization Dining Philosophers problem is an example of synchronization problem 21

23 Deadlock A set of blocked processes each holding a resource and waiting to acquire a resource held by another process in the set. Example - System has 2 tape drives - P1 and P2 each hold one tape drive and each needs another one. 22

24 Deadlock Characterization Deadlock can arise if four conditions hold simultaneously. 1. Mutual exclusion: at least one process must be held in a nonsharable mode. 2. Hold and wait: there must be a process holding one resource and waiting for another. 3. No preemption: resources cannot be preempted. 4. Circular wait: There must exist a set {p 0, p 1,...p n } of waiting processes such that p 0 is waiting for a resource which is held by p 1, p 1 is waiting for a resource which is held by p 2,..., p n-1 is waiting for a resource which is held by p n and p n is waiting for a resource which is held by p 0. 23

25 Methods for Handling Deadlock Ensure that the system will never enter a deadlock state. Allow the system to enter a deadlock state and then recover. Ignore the problem and pretend that deadlocks never occur in the system; used by most operating systems, including UNIX. 24

26 Prevention, Avoidance and Detection of Deadlock Deadlock Prevention. Disallow one of the four necessary conditions for deadlock. Deadlock Avoidance. Do not grant a resource request if this allocation have the potential to lead to a deadlock. Deadlock Detection. Always grant resource request when possible. Periodically check for deadlocks. If a deadlock exists, recover from it. Ignore the problem... Makes sense if the likelihood is very low. 25

27 Recovery from Deadlock Process Termination Abort all deadlocked processes: - Fast - A lot of process work is lost. Abort one deadlocked process at a time and check for deadlocks again: - More work to resolve a deadlock. - Better in terms of process work. - What is a good order to abort processes? Resource Preemption what is a good way to select a victim How can we rollback and then recover from preemption? How can we protect from starvation 26

28 TM Unit III: Contents Memory Management & Address Binding Dynamic Loading and Linking Overlays Logical and Physical Address Space Contiguous Allocation Internal & External Fragmentation Non Contiguous Allocation Paging and Segmentation schemes Implementation, Hardware Protection Sharing Fragmentation. 27

29 Memory Management Memory management is the function responsible for managing the computer's primary memory. The memory management function keeps track of the status of each memory location, either allocated or free. When memory is allocated it determines which memory locations will be assigned. 28

30 Address Binding Address binding is the process of mapping the program's logical or virtual addresses to corresponding physical or main memory addresses. 29

31 Dynamic Loading and Linking Dynamic loading is a mechanism by which a computer program can, at run time, load a library into memory, retrieve the addresses of functions and variables contained in the library A dynamic linker is the part of an operating system that loads and links the shared libraries needed by an executable program. 30

32 Overlays Overlaying is a programming method that allows programs to be larger than the computer's main memory. An embedded system would normally use overlays because of the limitation of physical memory, which is internal memory for a system-on-chip, and the lack of virtual memory facilities. 31

33 Logical and Physical Address Space Logical address space is set of logical addresses that generated by a program. The physical address is address that seen by memory unit and used to access memory units. Virtual addresses are mapped with physical addresses by memory management unit. 32

34 Contiguous Allocation Relocation-register scheme used to protect user processes from each other, and from changing operatingsystem code and data. Relocation register contains value of smallest physical address; limit register contains range of logical addresses each logical address must be less than the limit register. ynip2m 33

35 Non Contiguous Allocation The Non-contiguous memory allocation allows a process to acquire the several memory blocks at the different location in the memory according to its requirement. The noncontiguous memory allocation also reduces the memory wastage caused due to internal and external fragmentation. As it utilizes the memory holes, created during internal and external fragmentation. 34

36 Internal & External Fragmentation The disadvantage of contiguous memory allocation is fragmentation. There are two types of fragmentation, namely, Internal fragmentation and External fragmentation. Internal Fragmenation - allocated memory may be slightly larger than requested memory; this size difference is memory internal to a partition, but not being used.occurs when memory is allocated in fixed size pieces. External fragmentation - When the total memory space that is got by adding the scattered holes is sufficient to satisfy a request but it is not available contiguously, then this type of fragmentation is called external fragmentation. 35

37 Paging Physical address space of a process can be noncontiguous; process is allocated physical memory whenever the latter is available - Avoids external fragmentation - Avoids problem of varying sized memory chunks Divide physical memory into fixed-sized blocks called frames - Size is power of 2, between 512 bytes and 16 Mb Divide logical memory into blocks of same size called pages - To run a program of size N pages, need to find N free frames and load program - Set up a page table to translate logical to physical addresses -- Backing store likewise split into pages Still have Internal fragmentation 36

38 Segmentation schemes A Memory Management technique in which memory is divided into variable sized chunks which can be allocated to processes. Each chunk is called a Segment. Advantages of Segmentation: - No Internal fragmentation. - Segment Table consumes less space in comparison to Page table in paging. Disadvantage of Segmentation: - As processes are loaded and removed from the memory, the free memory space is broken into little pieces, causing External fragmentation. 37

39 Hardware Protection I/O Protection : All I/O instruction should be privileged instructions. The user can only perform I/O operations through the OS Memory Protection : Protect the OS from access by users program, protect user programs from each other. CPU Protection : A timer to prevent a user program from getting stuck in an infinite loop. 38

40 Sharing Sharing is a technique which enables many people, located at various terminals, to use a particular computer system at the same time. Time-sharing or multitasking is a logical extension of multiprogramming. Processor's time which is shared among multiple users simultaneously is termed as time-sharing. Advantages of Timesharing operating systems are as follows Provides the advantage of quick response. Reduces CPU idle time. Disadvantages of Time-sharing operating systems are as follows Problem of reliability. Question of security and integrity of user programs and data. 39

41 Fragmentation Reduce external fragmentation by compaction - Shuffle memory contents to place all free memory together in one large block - Compaction is possible only if relocation is dynamic, and is done at execution time Now consider that backing store has same fragmentation problems. Types of Fragmentations External Fragmentation total memory space exists to satisfy a request, but it is not contiguous Internal Fragmentation allocated memory may be slightly larger than requested memory; this size difference is memory internal to a partition, but not being used. 40

42 TM Unit IV: Contents Virtual Memory Demand Paging Page Replacement Algorithms Thrashing File System Concepts & Access methods Directory Structure Protection Consistency Semantics File System Structures Allocation methods Free Space Management 41

43 Virtual Memory o Virtual memory is a common part of operating system on desktop computers. o The team virtual memory refers to something which appears to be present but actually it is not o The virtual memory technique allows users to use more memory for a program than the real memory of a computer. 42

44 Demand Paging Demand paging is a method of virtual memory management. In a system that uses demand paging, the operating system copies a disk page into physical memory only if an attempt is made to access it and that page is not already in memory. It follows that a process begins execution with none of its pages in physical memory, and many page faults will occur until most of a process's working set of pages is located in physical memory. 43

45 Page Replacement Algorithm When a fault occurs, the OS loads the faulted page from disk into a page of memory. At some point, the process has used all of the page frames it is allowed to use. When this happens, the OS must replace a page for each page faulted in. That is, it must select a page to throw out of primary memory to make room. How it does this is determined by the page replacement algorithm. The goal of the replacement algorithm is to reduce the fault rate by selecting the best victim page to remove. 44

46 Thrashing If a process does not have enough pages, the page-fault rate is very high low CPU utilization OS thinks it needs increased multiprogramming adds another process to system Thrashing is when a process is busy swapping pages in and out 45

47 File System Concepts File System Interface The user level (more visible) portion of the file system. Access methods Directory Structure Protection File System Implementation The OS level (less visible) portion of the file system. Allocation and Free Space Management Directory Implementation 46

48 File System- Access Methods Sequential access read all bytes/records from the beginning cannot jump around, could rewind or back up convenient when medium was magenatic tape Random access bytes/records read in any order essential for data base systems read can be move file marker (seek), then read or read and then move file marker 47

49 Directory Structure A single level directory system Two level directory system Tree directory system Single level directory system Two level directory system Tree directory system 48

50 File System Structures Three kinds of files byte sequence record sequence tree (a) An executable file (b) An archive 49

51 Allocation Methods The main idea behind allocation is effective utilization of file space and fast access of the files. There are three types of allocation: - contiguous allocation - linked allocation - Indexed allocation To keep track of the free space, the file system maintains a free-space list which tracks all the disk blocks which are free. To create a file, the required space is reserved for the file and the corresponding space is removed from the free list linked to each other. 50

52 Free Space Management 51

53 TM Unit V: Contents I/O Systems Overview I/O Hardware Application I/O Interface Kernel I/O subsystem Transforming I/O Requests to Hardware Operations Performance of I/O System Secondary Storage Structures Protection, Goals, Domain Access matrix Security problem, Authentication Threats, Threat Monitoring, Encryption 52

54 I/O System - Overview I/O management is a major component of operating system design and operation Important aspect of computer operation I/O devices vary greatly Various methods to control them Performance management New types of devices frequent Ports, busses, device controllers connect to various devices Device drivers encapsulate device details Present uniform device-access interface to I/O subsystem 53

55 I/O hardware Incredible variety of I/O devices Storage Transmission Human-interface Common concepts signals from I/O devices interface with computer Sometimes integrated Sometimes separate circuit board (host adapter) Contains processor, microcode, private memory, bus controller, etc Some talk to per-device controller with bus controller, microcode, memory, etc 54

56 Application I/O Interface I/O system calls encapsulate device behaviors in generic classes Device-driver layer hides differences among I/O controllers from kernel New devices talking already-implemented protocols need no extra work Each OS has its own I/O subsystem structures and device driver frameworks Devices vary in many dimensions Character-stream or block Sequential or random-access Synchronous or asynchronous (or both) Sharable or dedicated Speed of operation read-write, read only, or write only 55

57 Kernel I/O Subsystem Scheduling Some I/O request ordering via per-device queue Some OSs try fairness Some implement Quality Of Service (i.e. IPQOS) Buffering - store data in memory while transferring between devices To cope with device speed mismatch To cope with device transfer size mismatch To maintain copy semantics Double buffering two copies of the data Kernel and user Varying sizes Full / being processed and not-full / being used Copy-on-write can be used for efficiency in some cases 56

58 Transforming I/O Requests to Hardware Operations Consider reading a file from disk for a process: Determine device holding file Translate name to device representation Physically read data from disk into buffer Make data available to requesting process Return control to process 57

59 I/O System Performance I/O a major factor in system performance: Demands CPU to execute device driver, kernel I/O code Context switches due to interrupts Data copying Network traffic especially stressful To improve performance - Reduce number of context switches - Reduce data copying - Reduce interrupts by using large transfers, smart controllers, polling - Use DMA - Use smarter hardware devices - Balance CPU, memory, bus, and I/O performance for highest throughput 58

60 Secondary Storage Structures Main memory only large storage media that the CPU can access directly. Secondary storage Extension of main memory that provides large nonvolatile storage capacity. Magnetic disks Rigid metal or glass platters covered with magnetic recording material. - Disk surface is logically divided into tracks, which are subdivided into sectors. - The disk controller determines the logical interaction between the device and the computer 59

61 Storage Protection Security and Protection services Protect OS from users Protect users from other users Prevent unauthorized entry to system Prevent unauthorized system use y authorized users. 60

62 Storage System - Goals Describe factors that determine storage device performance. Choose appropriate secondary storage devices and their technologies Outlines characteristics common to all storage devices. Explains the technology strengths and weaknesses of primary storage an secondary storage. 61

63 Domain Access matrix CPU does not transfer data, only initiates operation DMA controller transfers data directly to/from main memory Interrupts when transfer completed Input protocol: 62

64 Storage security problem Secure : resources use an accessed as intended under all circumstances Intruders (Crakers) : attempt to breach security Threat is potential security violation Attack is attempt to breach security Attack can e accidental or malicious Easier to protect against accidental than malicious. 63

65 Authentication Authentication is a process in which the credentials provided are compared to those on file in a database of authorized users information on a local operating system or within an authentication server. If the credentials match, the process is completed and the user is granted authorization for access. Types of Authentications User authentication Machine authentication Password-based authentication 64

66 Threats System threats refers to misuse of system services and network connections to put user in trouble. System threats can be used to launch program threats on a complete network called as program attack. System threats creates such an environment that operating system resources/ user files are misused. Following is the list of some well-known system threats. Worm Worm is a process which can choked down a system performance by using system resources to extreme levels. Port Scanning Port scanning is a mechanism or means by which a hacker can detects system vulnerabilities to make an attack on the system. Denial of Service Denial of service attacks normally prevents user to make legitimate use of the system. For example, a user may not be able to use internet if denial of service attacks browser's content settings. 65

67 Threat Monitoring Check for suspicious patterns of activity i.e., several incorrect password attempts may signal password guessing. Audit log records the time, user and type of all accesses to an object Scan the system periodically for security holes, done when the computer is relatively unused. 66

68 Encryption The translation of data into a secret code. Encryption is the most effective way to achieve data security. To read an encrypted file, you must have access to a secret key or password that enables you to decrypt it. Unencrypted data is called plain text ; encrypted data is referred to as cipher text. There are two main types of encryption: 1. Asymmetric encryption (also called public-key encryption) 2. Symmetric encryption. 69

Chapter 13: I/O Systems

Chapter 13: I/O Systems Chapter 13: I/O Systems DM510-14 Chapter 13: I/O Systems I/O Hardware Application I/O Interface Kernel I/O Subsystem Transforming I/O Requests to Hardware Operations STREAMS Performance 13.2 Objectives

More information

Chapter 12: I/O Systems

Chapter 12: I/O Systems Chapter 12: I/O Systems Chapter 12: I/O Systems I/O Hardware! Application I/O Interface! Kernel I/O Subsystem! Transforming I/O Requests to Hardware Operations! STREAMS! Performance! Silberschatz, Galvin

More information

Chapter 13: I/O Systems

Chapter 13: I/O Systems Chapter 13: I/O Systems Chapter 13: I/O Systems I/O Hardware Application I/O Interface Kernel I/O Subsystem Transforming I/O Requests to Hardware Operations STREAMS Performance Silberschatz, Galvin and

More information

Chapter 12: I/O Systems. Operating System Concepts Essentials 8 th Edition

Chapter 12: I/O Systems. Operating System Concepts Essentials 8 th Edition Chapter 12: I/O Systems Silberschatz, Galvin and Gagne 2011 Chapter 12: I/O Systems I/O Hardware Application I/O Interface Kernel I/O Subsystem Transforming I/O Requests to Hardware Operations STREAMS

More information

I/O Systems. Amir H. Payberah. Amirkabir University of Technology (Tehran Polytechnic)

I/O Systems. Amir H. Payberah. Amirkabir University of Technology (Tehran Polytechnic) I/O Systems Amir H. Payberah amir@sics.se Amirkabir University of Technology (Tehran Polytechnic) Amir H. Payberah (Tehran Polytechnic) I/O Systems 1393/9/15 1 / 57 Motivation Amir H. Payberah (Tehran

More information

Chapter 13: I/O Systems. Operating System Concepts 9 th Edition

Chapter 13: I/O Systems. Operating System Concepts 9 th Edition Chapter 13: I/O Systems Silberschatz, Galvin and Gagne 2013 Chapter 13: I/O Systems Overview I/O Hardware Application I/O Interface Kernel I/O Subsystem Transforming I/O Requests to Hardware Operations

More information

Chapter 13: I/O Systems

Chapter 13: I/O Systems COP 4610: Introduction to Operating Systems (Spring 2015) Chapter 13: I/O Systems Zhi Wang Florida State University Content I/O hardware Application I/O interface Kernel I/O subsystem I/O performance Objectives

More information

Chapter 13: I/O Systems

Chapter 13: I/O Systems Chapter 13: I/O Systems I/O Hardware Application I/O Interface Kernel I/O Subsystem Transforming I/O Requests to Hardware Operations Streams Performance Objectives Explore the structure of an operating

More information

Device-Functionality Progression

Device-Functionality Progression Chapter 12: I/O Systems I/O Hardware I/O Hardware Application I/O Interface Kernel I/O Subsystem Transforming I/O Requests to Hardware Operations Incredible variety of I/O devices Common concepts Port

More information

Chapter 12: I/O Systems. I/O Hardware

Chapter 12: I/O Systems. I/O Hardware Chapter 12: I/O Systems I/O Hardware Application I/O Interface Kernel I/O Subsystem Transforming I/O Requests to Hardware Operations I/O Hardware Incredible variety of I/O devices Common concepts Port

More information

Module 12: I/O Systems

Module 12: I/O Systems Module 12: I/O Systems I/O hardwared Application I/O Interface Kernel I/O Subsystem Transforming I/O Requests to Hardware Operations Performance 12.1 I/O Hardware Incredible variety of I/O devices Common

More information

Chapter 13: I/O Systems

Chapter 13: I/O Systems Chapter 13: I/O Systems Chapter 13: I/O Systems I/O Hardware Application I/O Interface Kernel I/O Subsystem Transforming I/O Requests to Hardware Operations Streams Performance 13.2 Silberschatz, Galvin

More information

Chapter 13: I/O Systems. Chapter 13: I/O Systems. Objectives. I/O Hardware. A Typical PC Bus Structure. Device I/O Port Locations on PCs (partial)

Chapter 13: I/O Systems. Chapter 13: I/O Systems. Objectives. I/O Hardware. A Typical PC Bus Structure. Device I/O Port Locations on PCs (partial) Chapter 13: I/O Systems Chapter 13: I/O Systems I/O Hardware Application I/O Interface Kernel I/O Subsystem Transforming I/O Requests to Hardware Operations Streams Performance 13.2 Silberschatz, Galvin

More information

by I.-C. Lin, Dept. CS, NCTU. Textbook: Operating System Concepts 8ed CHAPTER 13: I/O SYSTEMS

by I.-C. Lin, Dept. CS, NCTU. Textbook: Operating System Concepts 8ed CHAPTER 13: I/O SYSTEMS by I.-C. Lin, Dept. CS, NCTU. Textbook: Operating System Concepts 8ed CHAPTER 13: I/O SYSTEMS Chapter 13: I/O Systems I/O Hardware Application I/O Interface Kernel I/O Subsystem Transforming I/O Requests

More information

Lecture 13 Input/Output (I/O) Systems (chapter 13)

Lecture 13 Input/Output (I/O) Systems (chapter 13) Bilkent University Department of Computer Engineering CS342 Operating Systems Lecture 13 Input/Output (I/O) Systems (chapter 13) Dr. İbrahim Körpeoğlu http://www.cs.bilkent.edu.tr/~korpe 1 References The

More information

CS370 Operating Systems

CS370 Operating Systems CS370 Operating Systems Colorado State University Yashwant K Malaiya Spring 2018 Lecture 2 Slides based on Text by Silberschatz, Galvin, Gagne Various sources 1 1 2 What is an Operating System? What is

More information

CS370 Operating Systems

CS370 Operating Systems CS370 Operating Systems Colorado State University Yashwant K Malaiya Fall 2016 Lecture 2 Slides based on Text by Silberschatz, Galvin, Gagne Various sources 1 1 2 System I/O System I/O (Chap 13) Central

More information

CSE 4/521 Introduction to Operating Systems. Lecture 24 I/O Systems (Overview, Application I/O Interface, Kernel I/O Subsystem) Summer 2018

CSE 4/521 Introduction to Operating Systems. Lecture 24 I/O Systems (Overview, Application I/O Interface, Kernel I/O Subsystem) Summer 2018 CSE 4/521 Introduction to Operating Systems Lecture 24 I/O Systems (Overview, Application I/O Interface, Kernel I/O Subsystem) Summer 2018 Overview Objective: Explore the structure of an operating system

More information

To provide a grand tour of the major operating systems components To provide coverage of basic computer system organization

To provide a grand tour of the major operating systems components To provide coverage of basic computer system organization Introduction What Operating Systems Do Computer-System Organization Computer-System Architecture Operating-System Structure Operating-System Operations Process Management Memory Management Storage Management

More information

Module 12: I/O Systems

Module 12: I/O Systems Module 12: I/O Systems I/O Hardware Application I/O Interface Kernel I/O Subsystem Transforming I/O Requests to Hardware Operations Performance Operating System Concepts 12.1 Silberschatz and Galvin c

More information

Chapter 13: I/O Systems

Chapter 13: I/O Systems Chapter 13: I/O Systems Chapter 13: I/O Systems I/O Hardware Application I/O Interface Kernel I/O Subsystem Transforming I/O Requests to Hardware Operations Streams Performance 13.2 Silberschatz, Galvin

More information

Chapter 8: Deadlocks. The Deadlock Problem

Chapter 8: Deadlocks. The Deadlock Problem Chapter 8: Deadlocks System Model Deadlock Characterization Methods for Handling Deadlocks Deadlock Prevention Deadlock Avoidance Deadlock Detection Recovery from Deadlock Combined Approach to Deadlock

More information

The Deadlock Problem. Chapter 8: Deadlocks. Bridge Crossing Example. System Model. Deadlock Characterization. Resource-Allocation Graph

The Deadlock Problem. Chapter 8: Deadlocks. Bridge Crossing Example. System Model. Deadlock Characterization. Resource-Allocation Graph Chapter 8: Deadlocks The Deadlock Problem System Model Deadlock Characterization Methods for Handling Deadlocks Deadlock Prevention Deadlock Avoidance Deadlock Detection Recovery from Deadlock Combined

More information

Unit-03 Deadlock and Memory Management Unit-03/Lecture-01

Unit-03 Deadlock and Memory Management Unit-03/Lecture-01 1 Unit-03 Deadlock and Memory Management Unit-03/Lecture-01 The Deadlock Problem 1. A set of blocked processes each holding a resource and waiting to acquire a resource held by another process in the set.

More information

CSC Operating Systems Spring Lecture - XII Midterm Review. Tevfik Ko!ar. Louisiana State University. March 4 th, 2008.

CSC Operating Systems Spring Lecture - XII Midterm Review. Tevfik Ko!ar. Louisiana State University. March 4 th, 2008. CSC 4103 - Operating Systems Spring 2008 Lecture - XII Midterm Review Tevfik Ko!ar Louisiana State University March 4 th, 2008 1 I/O Structure After I/O starts, control returns to user program only upon

More information

Deadlock. Operating Systems. Autumn CS4023

Deadlock. Operating Systems. Autumn CS4023 Operating Systems Autumn 2017-2018 Outline Deadlock 1 Deadlock Outline Deadlock 1 Deadlock The Deadlock Problem Deadlock A set of blocked processes each holding a resource and waiting to acquire a resource

More information

ROEVER ENGINEERING COLLEGE, PERAMBALUR DEPARTMENT OF INFORMATION TECHNOLOGY OPERATING SYSTEMS QUESTION BANK UNIT-I

ROEVER ENGINEERING COLLEGE, PERAMBALUR DEPARTMENT OF INFORMATION TECHNOLOGY OPERATING SYSTEMS QUESTION BANK UNIT-I systems are based on time-sharing systems ROEVER ENGINEERING COLLEGE, PERAMBALUR DEPARTMENT OF INFORMATION TECHNOLOGY OPERATING SYSTEMS QUESTION BANK UNIT-I 1 What is an operating system? An operating

More information

Lecture 1 Introduction (Chapter 1 of Textbook)

Lecture 1 Introduction (Chapter 1 of Textbook) Bilkent University Department of Computer Engineering CS342 Operating Systems Lecture 1 Introduction (Chapter 1 of Textbook) Dr. İbrahim Körpeoğlu http://www.cs.bilkent.edu.tr/~korpe 1 References The slides

More information

CSI3131 Final Exam Review

CSI3131 Final Exam Review CSI3131 Final Exam Review Final Exam: When: April 24, 2015 2:00 PM Where: SMD 425 File Systems I/O Hard Drive Virtual Memory Swap Memory Storage and I/O Introduction CSI3131 Topics Process Computing Systems

More information

Deadlocks. Minsoo Ryu. Real-Time Computing and Communications Lab. Hanyang University.

Deadlocks. Minsoo Ryu. Real-Time Computing and Communications Lab. Hanyang University. Deadlocks Minsoo Ryu Real-Time Computing and Communications Lab. Hanyang University msryu@hanyang.ac.kr Topics Covered System Model Deadlock Characterization Methods for Handling Deadlocks Deadlock Prevention

More information

Chapter 1: Introduction

Chapter 1: Introduction Chapter 1: Introduction Chapter 1: Introduction What Operating Systems Do Computer-System Organization Computer-System Architecture Operating-System Structure Operating-System Operations Process Management

More information

Following are a few basic questions that cover the essentials of OS:

Following are a few basic questions that cover the essentials of OS: Operating Systems Following are a few basic questions that cover the essentials of OS: 1. Explain the concept of Reentrancy. It is a useful, memory-saving technique for multiprogrammed timesharing systems.

More information

Chapter 1: Introduction

Chapter 1: Introduction Chapter 1: Introduction Silberschatz, Galvin and Gagne 2009 Chapter 1: Introduction What Operating Systems Do Computer-System Organization Computer-System Architecture Operating-System Structure Operating-System

More information

I/O Systems. 04/16/2007 CSCI 315 Operating Systems Design 1

I/O Systems. 04/16/2007 CSCI 315 Operating Systems Design 1 I/O Systems Notice: The slides for this lecture have been largely based on those accompanying the textbook Operating Systems Concepts with Java, by Silberschatz, Galvin, and Gagne (2007). Many, if not

More information

Chapter 1: Introduction

Chapter 1: Introduction Chapter 1: Introduction Chapter 1: Introduction What Operating Systems Do Computer-System Organization Computer-System Architecture Operating-System Structure Operating-System Operations Process Management

More information

CHAPTER NO - 1 : Introduction:

CHAPTER NO - 1 : Introduction: Sr. No L.J. Institute of Engineering & Technology Semester: IV (26) Subject Name: Operating System Subject Code:21402 Faculties: Prof. Saurin Dave CHAPTER NO - 1 : Introduction: TOPIC:1 Basics of Operating

More information

Chapter 13: I/O Systems

Chapter 13: I/O Systems Chapter 13: I/O Systems I/O Hardware Application I/O Interface Kernel I/O Subsystem Transforming I/O Requests to Hardware Operations Streams Performance I/O Hardware Incredible variety of I/O devices Common

More information

Chapter 7: Deadlocks. Operating System Concepts 8 th Edition,

Chapter 7: Deadlocks. Operating System Concepts 8 th Edition, Chapter 7: Deadlocks, Silberschatz, Galvin and Gagne 2009 Chapter Objectives To develop a description of deadlocks, which prevent sets of concurrent processes from completing their tasks To present a number

More information

The Deadlock Problem. A set of blocked processes each holding a resource and waiting to acquire a resource held by another process in the set.

The Deadlock Problem. A set of blocked processes each holding a resource and waiting to acquire a resource held by another process in the set. Deadlock The Deadlock Problem A set of blocked processes each holding a resource and waiting to acquire a resource held by another process in the set Example semaphores A and B, initialized to 1 P 0 P

More information

Course Details. Operating Systems with C/C++ Course Details. What is an Operating System?

Course Details. Operating Systems with C/C++ Course Details. What is an Operating System? Lecture Course in Autumn Term 2013 University of Birmingham Lecture notes and resources: http://www.cs.bham.ac.uk/ exr/teaching/lectures/opsys/13_14 closed facebook group: UoBOperatingSystems anyone registered

More information

QUESTION BANK UNIT I

QUESTION BANK UNIT I QUESTION BANK Subject Name: Operating Systems UNIT I 1) Differentiate between tightly coupled systems and loosely coupled systems. 2) Define OS 3) What are the differences between Batch OS and Multiprogramming?

More information

CONTENTS. Computer-System Structures

CONTENTS. Computer-System Structures CONTENTS PART ONE OVERVIEW Chapter 1 Introduction 1.1 What Is an Operating System? 3 1.2 Simple Batch Systems 6 1.3 Multiprogrammed Batched Systems 8 1.4 Time-Sharing Systems 9 1.5 Personal-Computer Systems

More information

Chapter 7: Deadlocks

Chapter 7: Deadlocks Chapter 7: Deadlocks The Deadlock Problem System Model Deadlock Characterization Methods for Handling Deadlocks Deadlock Prevention Deadlock Avoidance Deadlock Detection Recovery from Deadlock Chapter

More information

7/20/2008. What Operating Systems Do Computer-System Organization

7/20/2008. What Operating Systems Do Computer-System Organization Introduction to Operating Systems Introduction What Operating Systems Do Computer-System Organization Computer-System Architecture Operating-System Structure Operating-System Operations Process Management

More information

Module 1. Introduction:

Module 1. Introduction: Module 1 Introduction: Operating system is the most fundamental of all the system programs. It is a layer of software on top of the hardware which constitutes the system and manages all parts of the system.

More information

Chapter 13: I/O Systems

Chapter 13: I/O Systems Chapter 13: I/O Systems Silberschatz, Galvin and Gagne 2013! Chapter 13: I/O Systems I/O Hardware" Application I/O Interface" Kernel I/O Subsystem" Transforming I/O Requests to Hardware Operations" STREAMS"

More information

System Model. Types of resources Reusable Resources Consumable Resources

System Model. Types of resources Reusable Resources Consumable Resources Deadlocks The Deadlock Problem System Model Deadlock Characterization Methods for Handling Deadlocks Deadlock Prevention Deadlock Avoidance Deadlock Detection Recovery from Deadlock System Model Types

More information

Chapter 13: I/O Systems

Chapter 13: I/O Systems Chapter 13: I/O Systems Chapter 13: I/O Systems I/O Hardware Application I/O Interface Kernel I/O Subsystem Transforming I/O Requests to Hardware Operations Streams Performance 13.2 Silberschatz, Galvin

More information

The control of I/O devices is a major concern for OS designers

The control of I/O devices is a major concern for OS designers Lecture Overview I/O devices I/O hardware Interrupts Direct memory access Device dimensions Device drivers Kernel I/O subsystem Operating Systems - June 26, 2001 I/O Device Issues The control of I/O devices

More information

Chapter 7: Deadlocks. Operating System Concepts 8 th Edition,! Silberschatz, Galvin and Gagne 2009!

Chapter 7: Deadlocks. Operating System Concepts 8 th Edition,! Silberschatz, Galvin and Gagne 2009! Chapter 7: Deadlocks Operating System Concepts 8 th Edition,! Silberschatz, Galvin and Gagne 2009! Chapter 7: Deadlocks The Deadlock Problem System Model Deadlock Characterization Methods for Handling

More information

19.1. Security must consider external environment of the system, and protect it from:

19.1. Security must consider external environment of the system, and protect it from: Module 19: Security The Security Problem Authentication Program Threats System Threats Securing Systems Intrusion Detection Encryption Windows NT 19.1 The Security Problem Security must consider external

More information

Chapter 1: Introduction. Operating System Concepts 8th Edition,

Chapter 1: Introduction. Operating System Concepts 8th Edition, Chapter 1: Introduction, Administrivia Reading: Chapter 1. Next time: Continued Grand Tour. 1.2 Outline Common computer system devices. Parallelism within an operating system. Interrupts. Storage operation,

More information

CSE Opera+ng System Principles

CSE Opera+ng System Principles CSE 30341 Opera+ng System Principles Lecture 2 Introduc5on Con5nued Recap Last Lecture What is an opera+ng system & kernel? What is an interrupt? CSE 30341 Opera+ng System Principles 2 1 OS - Kernel CSE

More information

COT 4600 Operating Systems Fall Dan C. Marinescu Office: HEC 439 B Office hours: Tu-Th 3:00-4:00 PM

COT 4600 Operating Systems Fall Dan C. Marinescu Office: HEC 439 B Office hours: Tu-Th 3:00-4:00 PM COT 4600 Operating Systems Fall 2009 Dan C. Marinescu Office: HEC 439 B Office hours: Tu-Th 3:00-4:00 PM Lecture 23 Attention: project phase 4 due Tuesday November 24 Final exam Thursday December 10 4-6:50

More information

Chapter 1: Introduction. Chapter 1: Introduction

Chapter 1: Introduction. Chapter 1: Introduction Chapter 1: Introduction Chapter 1: Introduction What Operating Systems Do Computer-System Organization Computer-System Architecture Operating-System Structure Operating-System Operations Process Management

More information

Che-Wei Chang Department of Computer Science and Information Engineering, Chang Gung University

Che-Wei Chang Department of Computer Science and Information Engineering, Chang Gung University Che-Wei Chang chewei@mail.cgu.edu.tw Department of Computer Science and Information Engineering, Chang Gung University l Chapter 10: File System l Chapter 11: Implementing File-Systems l Chapter 12: Mass-Storage

More information

Operating Systems. Lecture Course in Autumn Term 2015 University of Birmingham. Eike Ritter. September 22, 2015

Operating Systems. Lecture Course in Autumn Term 2015 University of Birmingham. Eike Ritter. September 22, 2015 Lecture Course in Autumn Term 2015 University of Birmingham September 22, 2015 Course Details Overview Course Details What is an Operating System? OS Definition and Structure Lecture notes and resources:

More information

Instruction Cycle. Computer-System Architecture. Computer-System Operation. Common Functions of Interrupts. Chapter 2: Computer-System Structures

Instruction Cycle. Computer-System Architecture. Computer-System Operation. Common Functions of Interrupts. Chapter 2: Computer-System Structures Summary Operating Systems evolved through stages Resident monitors Multiprogrammed batch systems Time-shared multiuser systems Desktop systems Specialized operating systems (real-time, handheld, parallel

More information

November 13, Networking/Interprocess Communication (25 pts)

November 13, Networking/Interprocess Communication (25 pts) Name: (some people got this wrong) User Id: (many people got this wrong) CMPSCI 377: Operating Systems Exam 2: Synchronization, Deadlock, Interprocess Communication, File Systems, and Memory Management

More information

Module 20: Security. The Security Problem Authentication Program Threats System Threats Threat Monitoring Encryption. Operating System Concepts 20.

Module 20: Security. The Security Problem Authentication Program Threats System Threats Threat Monitoring Encryption. Operating System Concepts 20. Module 20: Security The Security Problem Authentication Program Threats System Threats Threat Monitoring Encryption 20.1 The Security Problem Security must consider external environment of the system,

More information

R13 SET - 1 2. Answering the question in Part-A is compulsory 1 a) Define Operating System. List out the objectives of an operating system. [3M] b) Describe different attributes of the process. [4M] c)

More information

Chapter 7: Deadlocks. Operating System Concepts 8 th Edition,

Chapter 7: Deadlocks. Operating System Concepts 8 th Edition, Chapter 7: Deadlocks, Silberschatz, Galvin and Gagne 2009 Chapter 7: Deadlocks The Deadlock Problem System Model Deadlock Characterization Methods for Handling Deadlocks Deadlock Prevention Deadlock Avoidance

More information

MC7204 OPERATING SYSTEMS

MC7204 OPERATING SYSTEMS MC7204 OPERATING SYSTEMS QUESTION BANK UNIT I INTRODUCTION 9 Introduction Types of operating systems operating systems structures Systems components operating systems services System calls Systems programs

More information

OPERATING SYSTEMS: Lesson 1: Introduction to Operating Systems

OPERATING SYSTEMS: Lesson 1: Introduction to Operating Systems OPERATING SYSTEMS: Lesson 1: Introduction to Jesús Carretero Pérez David Expósito Singh José Daniel García Sánchez Francisco Javier García Blas Florin Isaila 1 Why study? a) OS, and its internals, largely

More information

Chapter 7: Deadlocks. Operating System Concepts with Java 8 th Edition

Chapter 7: Deadlocks. Operating System Concepts with Java 8 th Edition Chapter 7: Deadlocks 7.1 Silberschatz, Galvin and Gagne 2009 Chapter 7: Deadlocks The Deadlock Problem System Model Deadlock Characterization Methods for Handling Deadlocks Deadlock Prevention Deadlock

More information

Main Points of the Computer Organization and System Software Module

Main Points of the Computer Organization and System Software Module Main Points of the Computer Organization and System Software Module You can find below the topics we have covered during the COSS module. Reading the relevant parts of the textbooks is essential for a

More information

The Deadlock Problem

The Deadlock Problem The Deadlock Problem A set of blocked processes each holding a resource and waiting to acquire a resource held by another process in the set. Example System has 2 disk drives. P 1 and P 2 each hold one

More information

CSE 421/521 - Operating Systems Fall Lecture - XXV. Final Review. University at Buffalo

CSE 421/521 - Operating Systems Fall Lecture - XXV. Final Review. University at Buffalo CSE 421/521 - Operating Systems Fall 2014 Lecture - XXV Final Review Tevfik Koşar University at Buffalo December 2nd, 2014 1 Final Exam December 4th, Thursday 11:00am - 12:20pm Room: 110 Knox Chapters

More information

Deadlocks. Operating System Concepts - 7 th Edition, Feb 14, 2005

Deadlocks. Operating System Concepts - 7 th Edition, Feb 14, 2005 Deadlocks Deadlocks The Deadlock Problem System Model Deadlock Characterization Methods for Handling Deadlocks Deadlock Prevention Deadlock Avoidance Deadlock Detection Recovery from Deadlock 7.2 Silberschatz,

More information

Fall COMP3511 Review

Fall COMP3511 Review Outline Fall 2015 - COMP3511 Review Monitor Deadlock and Banker Algorithm Paging and Segmentation Page Replacement Algorithms and Working-set Model File Allocation Disk Scheduling Review.2 Monitors Condition

More information

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad - 500 043 COMPUTER SCIENCE AND ENGINEERING DEFINITIONS AND TERMINOLOGY Course Name : OPERATING SYSTEMS Course Code : ACS007 Program

More information

Chapter 8: Deadlocks

Chapter 8: Deadlocks Chapter 8: Deadlocks System Model Deadlock Characterization Methods for Handling Deadlocks Deadlock Prevention Deadlock Avoidance Deadlock Detection Recovery from Deadlock Combined Approach to Deadlock

More information

Chapter 8: Deadlocks. The Deadlock Problem. System Model. Bridge Crossing Example. Resource-Allocation Graph. Deadlock Characterization

Chapter 8: Deadlocks. The Deadlock Problem. System Model. Bridge Crossing Example. Resource-Allocation Graph. Deadlock Characterization Chapter 8: Deadlocks The Deadlock Problem System Model Deadlock Characterization Methods for Handling Deadlocks Deadlock Prevention Deadlock Avoidance Deadlock Detection Recovery from Deadlock Combined

More information

Chapter 7 : 7: Deadlocks Silberschatz, Galvin and Gagne 2009 Operating System Concepts 8th Edition, Chapter 7: Deadlocks

Chapter 7 : 7: Deadlocks Silberschatz, Galvin and Gagne 2009 Operating System Concepts 8th Edition, Chapter 7: Deadlocks Chapter 7: Deadlocks, Silberschatz, Galvin and Gagne 2009 Chapter 7: Deadlocks The Deadlock Problem System Model Deadlock Characterization Methods for Handling Deadlocks Deadlock Prevention Deadlock Avoidance

More information

SPOS MODEL ANSWER MAY 2018

SPOS MODEL ANSWER MAY 2018 SPOS MODEL ANSWER MAY 2018 Q 1. a ) Write Algorithm of pass I of two pass assembler. [5] Ans :- begin if starting address is given LOCCTR = starting address; else LOCCTR = 0; while OPCODE!= END do ;; or

More information

Process Synchronisation (contd.) Deadlock. Operating Systems. Spring CS5212

Process Synchronisation (contd.) Deadlock. Operating Systems. Spring CS5212 Operating Systems Spring 2009-2010 Outline Process Synchronisation (contd.) 1 Process Synchronisation (contd.) 2 Announcements Presentations: will be held on last teaching week during lectures make a 20-minute

More information

Department of Computer applications. [Part I: Medium Answer Type Questions]

Department of Computer applications. [Part I: Medium Answer Type Questions] Department of Computer applications BBDNITM, Lucknow MCA 311: OPERATING SYSTEM [Part I: Medium Answer Type Questions] UNIT 1 Q1. What do you mean by an Operating System? What are the main functions of

More information

Techno India Batanagar Department of Computer Science & Engineering. Model Questions. Multiple Choice Questions:

Techno India Batanagar Department of Computer Science & Engineering. Model Questions. Multiple Choice Questions: Techno India Batanagar Department of Computer Science & Engineering Model Questions Subject Name: Operating System Multiple Choice Questions: Subject Code: CS603 1) Shell is the exclusive feature of a)

More information

CS6401- OPERATING SYSTEM

CS6401- OPERATING SYSTEM 1. What is an Operating system? CS6401- OPERATING SYSTEM QUESTION BANK UNIT-I An operating system is a program that manages the computer hardware. It also provides a basis for application programs and

More information

Chapter 7: Deadlocks. Chapter 7: Deadlocks. The Deadlock Problem. Chapter Objectives. System Model. Bridge Crossing Example

Chapter 7: Deadlocks. Chapter 7: Deadlocks. The Deadlock Problem. Chapter Objectives. System Model. Bridge Crossing Example Silberschatz, Galvin and Gagne 2009 Chapter 7: Deadlocks Chapter 7: Deadlocks The Deadlock Problem System Model Deadlock Characterization Methods for Handling Deadlocks Deadlock Prevention Deadlock Avoidance

More information

Ref: Chap 12. Secondary Storage and I/O Systems. Applied Operating System Concepts 12.1

Ref: Chap 12. Secondary Storage and I/O Systems. Applied Operating System Concepts 12.1 Ref: Chap 12 Secondary Storage and I/O Systems Applied Operating System Concepts 12.1 Part 1 - Secondary Storage Secondary storage typically: is anything that is outside of primary memory does not permit

More information

Module 7: Deadlocks. The Deadlock Problem. Bridge Crossing Example. System Model

Module 7: Deadlocks. The Deadlock Problem. Bridge Crossing Example. System Model Module 7: Deadlocks The Deadlock Problem System Model Deadlock Characterization Methods for Handling Deadlocks Deadlock Prevention Deadlock Avoidance Deadlock Detection Recovery from Deadlock Combined

More information

Introduction. CS3026 Operating Systems Lecture 01

Introduction. CS3026 Operating Systems Lecture 01 Introduction CS3026 Operating Systems Lecture 01 One or more CPUs Device controllers (I/O modules) Memory Bus Operating system? Computer System What is an Operating System An Operating System is a program

More information

CS330: Operating System and Lab. (Spring 2006) I/O Systems

CS330: Operating System and Lab. (Spring 2006) I/O Systems CS330: Operating System and Lab. (Spring 2006) I/O Systems Today s Topics Block device vs. Character device Direct I/O vs. Memory-mapped I/O Polling vs. Interrupts Programmed I/O vs. DMA Blocking vs. Non-blocking

More information

Chendu College of Engineering & Technology

Chendu College of Engineering & Technology Chendu College of Engineering & Technology (Approved by AICTE, New Delhi and Affiliated to Anna University) Zamin Endathur, Madurantakam, Kancheepuram District 603311 +91-44-27540091/92 www.ccet.org.in

More information

Chapter 7: Deadlocks

Chapter 7: Deadlocks Chapter 7: Deadlocks Chapter 7: Deadlocks The Deadlock Problem System Model Deadlock Characterization Methods for Handling Deadlocks Deadlock Prevention Deadlock Avoidance Deadlock Detection Recovery from

More information

Computer-System Architecture (cont.) Symmetrically Constructed Clusters (cont.) Advantages: 1. Greater computational power by running applications

Computer-System Architecture (cont.) Symmetrically Constructed Clusters (cont.) Advantages: 1. Greater computational power by running applications Computer-System Architecture (cont.) Symmetrically Constructed Clusters (cont.) Advantages: 1. Greater computational power by running applications concurrently on all computers in the cluster. Disadvantages:

More information

Module 2: Computer-System Structures. Computer-System Architecture

Module 2: Computer-System Structures. Computer-System Architecture Module 2: Computer-System Structures Computer-System Operation I/O Structure Storage Structure Storage Hierarchy Hardware Protection General System Architecture Operating System Concepts 2.1 Silberschatz

More information

Module 3. DEADLOCK AND STARVATION

Module 3. DEADLOCK AND STARVATION This document can be downloaded from www.chetanahegde.in with most recent updates. 1 Module 3. DEADLOCK AND STARVATION 3.1 PRINCIPLES OF DEADLOCK Deadlock can be defined as the permanent blocking of a

More information

Chapter 7: Deadlocks

Chapter 7: Deadlocks Chapter 7: Deadlocks System Model Deadlock Characterization Methods for Handling Deadlocks Deadlock Prevention Deadlock Avoidance Deadlock Detection Recovery from Deadlock Combined Approach to Deadlock

More information

Input/Output Management

Input/Output Management Chapter 11 Input/Output Management This could be the messiest aspect of an operating system. There are just too much stuff involved, it is difficult to develop a uniform and consistent theory to cover

More information

European University of Lefke. Instructor: Dr. Arif SARI

European University of Lefke. Instructor: Dr. Arif SARI European University of Lefke CIS 105 Operating Systems Instructor: Dr. Arif SARI Email: asari@eul.edu.tr Introduction 1.1 Silberschatz, Galvin and Gagne 2009 Chapter 1: Introduction, Silberschatz, Galvin

More information

Chapter 8: Memory- Management Strategies. Operating System Concepts 9 th Edition

Chapter 8: Memory- Management Strategies. Operating System Concepts 9 th Edition Chapter 8: Memory- Management Strategies Operating System Concepts 9 th Edition Silberschatz, Galvin and Gagne 2013 Chapter 8: Memory Management Strategies Background Swapping Contiguous Memory Allocation

More information

Chapter 7: Deadlocks

Chapter 7: Deadlocks Chapter 7: Deadlocks Chapter 7: Deadlocks 7.1 System Model 7.2 Deadlock Characterization 7.3 Methods for Handling Deadlocks 7.4 Deadlock Prevention 7.5 Deadlock Avoidance 7.6 Deadlock Detection 7.7 Recovery

More information

The Deadlock Problem (1)

The Deadlock Problem (1) Deadlocks The Deadlock Problem (1) A set of blocked processes each holding a resource and waiting to acquire a resource held by another process in the set. Example System has 2 disk drives. P 1 and P 2

More information

Final Exam Review. CPSC 457, Spring 2016 June 29-30, M. Reza Zakerinasab Department of Computer Science, University of Calgary

Final Exam Review. CPSC 457, Spring 2016 June 29-30, M. Reza Zakerinasab Department of Computer Science, University of Calgary Final Exam Review CPSC 457, Spring 2016 June 29-30, 2015 M. Reza Zakerinasab Department of Computer Science, University of Calgary Final Exam Components Final Exam: Monday July 4, 2016 @ 8 am in ICT 121

More information

CSc33200: Operating Systems, CS-CCNY, Fall 2003 Jinzhong Niu December 10, Review

CSc33200: Operating Systems, CS-CCNY, Fall 2003 Jinzhong Niu December 10, Review CSc33200: Operating Systems, CS-CCNY, Fall 2003 Jinzhong Niu December 10, 2003 Review 1 Overview 1.1 The definition, objectives and evolution of operating system An operating system exploits and manages

More information

SNS COLLEGE OF ENGINEERING

SNS COLLEGE OF ENGINEERING SNS COLLEGE OF ENGINEERING Coimbatore. Department of Computer Science and Engineering Question Bank- Even Semester 2015-2016 CS6401 OPERATING SYSTEMS Unit-I OPERATING SYSTEMS OVERVIEW 1. Differentiate

More information

Model answer of AS-4159 Operating System B.tech fifth Semester Information technology

Model answer of AS-4159 Operating System B.tech fifth Semester Information technology Q.no I Ii Iii Iv V Vi Vii viii ix x Model answer of AS-4159 Operating System B.tech fifth Semester Information technology Q.1 Objective type Answer d(321) C(Execute more jobs in the same time) Three/three

More information

Concurrency: Deadlock and Starvation. Chapter 6

Concurrency: Deadlock and Starvation. Chapter 6 Concurrency: Deadlock and Starvation Chapter 6 Deadlock Permanent blocking of a set of processes that either compete for system resources or communicate with each other Involve conflicting needs for resources

More information