Question And Answer.

Size: px
Start display at page:

Download "Question And Answer."

Transcription

1 Q.1 What is the number of swaps required to sort n elements using selection sort, in the worst case? A. &#920(n) B. &#920(n log n) C. &#920(n2) D. &#920(n2 log n) ANSWER : Option A &#920(n) Note that we are concerned about the swaps, not the comparisons. In the best case, there is no need for any swap. The best case scenario is when the given list of elements is already in sorted order. In the worst case, we need (n-1) swaps. For example, consider the list 10, 5, 6, 7, 8, 9. We need 5 swaps. To conclude, 0 <= (the number of required swaps) < n Q.2 A machine took 200 sec to sort 200 names, using bubble sort. In 800 sec, it can approximately sort? A. 400 names B. 800 names C. 750 names D. 800 names ANSWER : Option A 400 names For sorting 200 names bubble sort makes 200 x 199/2 = comparisons. The time needed for 1 comparison is 200 sec. In 800 sec it can make 80,000 comparisons. We have to fine n, such that n(n - 1)/2 = 80,000. From this n is approximately 400. Q.3 A machine needs a minimum of 100 sec to sort 1000 names by quick sort.the minimum time needed to sort 100 names will be approximately? A sec B. 6.7 sec C sec D sec ANSWER : Option B 6.7 sec In the best case quick sort algorithm makes n log(n) comparisons. so 1000 x log (1000) = 9000 comparisons, which takes 100 sec. To sort 100 names a minimum of 100 log(100) = 600 comparisons are needed. This takes 100 x 600/9000 = 6.7 sec. Q.4 Which of following algorithm scans the list by swapping the entries whenever pair of adjacent keys are out of desired order? A. Insertion sort B. Quick sort C. Shell sort Page 1

2 D. Bubble sort ANSWER : Option D Bubble sort Bubble sort only is the algorithm from the given options which compares the adjacent keys. Q.5 For the quick sort algorithm, what is the time complexity of the best/worst case? A. best case: O(n) worst case: O(n*n) B. best case: O(n) worst case: O(n*log(n)) C. best case: O(n*log(n)) worst case: O(n*log(n)) D. best case: O(n*log(n)) worst case: O(n*n) ANSWER : Option D best case: O(n*log(n)) worst case: O(n*n) The worst case here is, if the list is already sorted in descending order and we want to sort it in ascending order. In this case it takes O(n2) time. Otherwise it takes O( n * log(n) ) time. Q.6 To sort many large object or structures, it would be most efficient to A. Place reference to them in and array an sort the array B. Place them in a linked list and sort the linked list C. Place pointers to them in an array and sort the array D. Place them in an array and sort the array ANSWER : Option B Place them in a linked list and sort the linked list Dynamic structure (Memory Allocated at run-time). We can have more than one datatype. Re-arrange of linked list is easy (Insertion-Deletion). It doesn^aeurtmt waste memory. Q.7 The complexity of multiplying two matrices of order m*n and n*p is A. mnp B. mp C. mn D. np ANSWER : Option A mnp The complexity of multiplying two matrices of order m*n and n*p is mnp Q.8 Which of the following is not a limitation of binary search algorithm? A. must use a sorted array B. requirement of sorted array is expensive when a lot of insertion and deletions are needed C. there must be a mechanism to access middle element directly Page 2

3 D. binary search algorithm is not efficient when the data elements are more than ANSWER : Option D binary search algorithm is not efficient when the data elements are more than binary search algorithm is not efficient when the data elements are more than 1000.We can search more than 1000 element in binary search there is no limitation. Q.9 The way a card game player arranges his cards as he picks them up one by one, is an example of? A. bubble sort B. selection sort C. insertion sort D. merge sort ANSWER : Option C insertion sort He scans throught the rest of the cards and pick the one with least value and places it next to the point till which he has already sorted the cards Q.10 Binary search algorithm cannot be applied to A. sorted linked list B. sorted binary trees C. sorted linear array D. pointer array ANSWER : Option A sorted linked list The binary search algorithm depends on equal (or direct) access time for any selected element of a list. A linked list, however, does not provide that, so a binary search is inappropriate for a linked list. Q.11 The average search time of hashing, with linear probing will be less if the load factor A. Is far less than one B. equals one C. is far greater than one D. none of these ANSWER : Option A Is far less than one Load factor is the ratio of number of records that are currently present and the total number of records that can be present. If the load factor is less, free space will be more. This means probability of collision is less. So, search time will be less. Q.12 If a node having two children is deleted from a binary tree, it is replaced by its Page 3

4 A. Inorder predecessor B. Inorder successor C. Preorder predecessor D. None of the above ANSWER : Option B Inorder successor In Binary Tree, Inorder successor of a node is the next node in Inorder traversal of the Binary Tree. Inorder Successor is NULL for the last node in Inoorder traversal. In Binary Search Tree, Inorder Successor of an input node can also be defined as the node with the smallest key greater than the key of input node. So, it is sometimes important to find next node in sorted order. Q.13 The searching technique that takes O (1) time to find a data is A. Linear Search B. Binary Search C. Hashing D. Tree Search ANSWER : Option C Hashing Hash tables are often used to implement associative arrays, sets and caches. Like arrays, hash tables provide constant-time O(1) lookup on average, regardless of the number of items in the table. However, the rare worst-case lookup time can be as bad as O(n). Compared to other associative array data structures, hash tables are most useful when large numbers of records of data are to be stored. Q.14 For the bubble sort algorithm, what is the time complexity of the best/worst case? (assume that the computation stops as soon as no more swaps in one pass) A. best case: O(n) worst case: O(n*n) B. best case: O(n) worst case: O(n*log(n)) C. best case: O(n*log(n)) worst case: O(n*log(n)) D. best case: O(n*log(n)) worst case: O(n*n) ANSWER : Option A best case: O(n) worst case: O(n*n) Best Case is the one in which it is already sorted, and hence it takes O(n) time, otherwise it takes O(n2) time. Q.15 Which of the following is not the required condition for binary search algorithm? A. The list must be sorted B. The list must be sorted C. There must be mechanism to delete and/or insert elements in list D. none of above Page 4

5 ANSWER : Option C There must be mechanism to delete and/or insert elements in list There is no such require condition in binary search algorithm. It^aEURTMs not necessary that you^aeurtmve to add or delete any element in list. Q.16 The time taken by nondeterministic sorting algorithm is A. O(1) B. O(log n) C. O(n log n) D. O(n). ANSWER : Option D O(n). As there it sorts the entries in one loop. Because in nondeterministic sorting algorithms the abstractions are used which can^aeurtmt be programmed. Q.17 In worst case Quick Sort has order A. O (n log n) B. O (n2/2) C. O (log n) D. O (n2/4) ANSWER : Option B O (n2/2) Each partition gives unbalanced split. We get T(n) = T(n  1) + (n) = &#920(n2). In worst case, Quick Sort as bad as BubbleSort. The worst-case occurs when the list is already sorted, and the last element chosen as pivot. Page 5

Operations on Heap Tree The major operations required to be performed on a heap tree are Insertion, Deletion, and Merging.

Operations on Heap Tree The major operations required to be performed on a heap tree are Insertion, Deletion, and Merging. Priority Queue, Heap and Heap Sort In this time, we will study Priority queue, heap and heap sort. Heap is a data structure, which permits one to insert elements into a set and also to find the largest

More information

DATA STRUCTURE : A MCQ QUESTION SET Code : RBMCQ0305

DATA STRUCTURE : A MCQ QUESTION SET Code : RBMCQ0305 Q.1 If h is any hashing function and is used to hash n keys in to a table of size m, where n

More information

Overview of Sorting Algorithms

Overview of Sorting Algorithms Unit 7 Sorting s Simple Sorting algorithms Quicksort Improving Quicksort Overview of Sorting s Given a collection of items we want to arrange them in an increasing or decreasing order. You probably have

More information

Cpt S 122 Data Structures. Sorting

Cpt S 122 Data Structures. Sorting Cpt S 122 Data Structures Sorting Nirmalya Roy School of Electrical Engineering and Computer Science Washington State University Sorting Process of re-arranging data in ascending or descending order Given

More information

CS301 - Data Structures Glossary By

CS301 - Data Structures Glossary By CS301 - Data Structures Glossary By Abstract Data Type : A set of data values and associated operations that are precisely specified independent of any particular implementation. Also known as ADT Algorithm

More information

Analysis of Algorithms. Unit 4 - Analysis of well known Algorithms

Analysis of Algorithms. Unit 4 - Analysis of well known Algorithms Analysis of Algorithms Unit 4 - Analysis of well known Algorithms 1 Analysis of well known Algorithms Brute Force Algorithms Greedy Algorithms Divide and Conquer Algorithms Decrease and Conquer Algorithms

More information

Sorting Pearson Education, Inc. All rights reserved.

Sorting Pearson Education, Inc. All rights reserved. 1 19 Sorting 2 19.1 Introduction (Cont.) Sorting data Place data in order Typically ascending or descending Based on one or more sort keys Algorithms Insertion sort Selection sort Merge sort More efficient,

More information

& ( D. " mnp ' ( ) n 3. n 2. ( ) C. " n

& ( D.  mnp ' ( ) n 3. n 2. ( ) C.  n CSE Name Test Summer Last Digits of Mav ID # Multiple Choice. Write your answer to the LEFT of each problem. points each. The time to multiply two n " n matrices is: A. " n C. "% n B. " max( m,n, p). The

More information

1. [1 pt] What is the solution to the recurrence T(n) = 2T(n-1) + 1, T(1) = 1

1. [1 pt] What is the solution to the recurrence T(n) = 2T(n-1) + 1, T(1) = 1 Asymptotics, Recurrence and Basic Algorithms 1. [1 pt] What is the solution to the recurrence T(n) = 2T(n-1) + 1, T(1) = 1 2. O(n) 2. [1 pt] What is the solution to the recurrence T(n) = T(n/2) + n, T(1)

More information

Department of Computer Science and Technology

Department of Computer Science and Technology UNIT : Stack & Queue Short Questions 1 1 1 1 1 1 1 1 20) 2 What is the difference between Data and Information? Define Data, Information, and Data Structure. List the primitive data structure. List the

More information

We can use a max-heap to sort data.

We can use a max-heap to sort data. Sorting 7B N log N Sorts 1 Heap Sort We can use a max-heap to sort data. Convert an array to a max-heap. Remove the root from the heap and store it in its proper position in the same array. Repeat until

More information

Selection, Bubble, Insertion, Merge, Heap, Quick Bucket, Radix

Selection, Bubble, Insertion, Merge, Heap, Quick Bucket, Radix Spring 2010 Review Topics Big O Notation Heaps Sorting Selection, Bubble, Insertion, Merge, Heap, Quick Bucket, Radix Hashtables Tree Balancing: AVL trees and DSW algorithm Graphs: Basic terminology and

More information

Programming II (CS300)

Programming II (CS300) 1 Programming II (CS300) Chapter 12: Sorting Algorithms MOUNA KACEM mouna@cs.wisc.edu Spring 2018 Outline 2 Last week Implementation of the three tree depth-traversal algorithms Implementation of the BinarySearchTree

More information

n 2 ( ) ( ) + n is in Θ n logn

n 2 ( ) ( ) + n is in Θ n logn CSE Test Spring Name Last Digits of Mav ID # Multiple Choice. Write your answer to the LEFT of each problem. points each. The time to multiply an m n matrix and a n p matrix is in: A. Θ( n) B. Θ( max(

More information

( ) + n. ( ) = n "1) + n. ( ) = T n 2. ( ) = 2T n 2. ( ) = T( n 2 ) +1

( ) + n. ( ) = n 1) + n. ( ) = T n 2. ( ) = 2T n 2. ( ) = T( n 2 ) +1 CSE 0 Name Test Summer 00 Last Digits of Student ID # Multiple Choice. Write your answer to the LEFT of each problem. points each. Suppose you are sorting millions of keys that consist of three decimal

More information

Sorting. Dr. Baldassano Yu s Elite Education

Sorting. Dr. Baldassano Yu s Elite Education Sorting Dr. Baldassano Yu s Elite Education Last week recap Algorithm: procedure for computing something Data structure: system for keeping track for information optimized for certain actions Good algorithms

More information

FINALTERM EXAMINATION Fall 2009 CS301- Data Structures Question No: 1 ( Marks: 1 ) - Please choose one The data of the problem is of 2GB and the hard

FINALTERM EXAMINATION Fall 2009 CS301- Data Structures Question No: 1 ( Marks: 1 ) - Please choose one The data of the problem is of 2GB and the hard FINALTERM EXAMINATION Fall 2009 CS301- Data Structures Question No: 1 The data of the problem is of 2GB and the hard disk is of 1GB capacity, to solve this problem we should Use better data structures

More information

Second Semester - Question Bank Department of Computer Science Advanced Data Structures and Algorithms...

Second Semester - Question Bank Department of Computer Science Advanced Data Structures and Algorithms... Second Semester - Question Bank Department of Computer Science Advanced Data Structures and Algorithms.... Q1) Let the keys are 28, 47, 20, 36, 43, 23, 25, 54 and table size is 11 then H(28)=28%11=6; H(47)=47%11=3;

More information

(2,4) Trees. 2/22/2006 (2,4) Trees 1

(2,4) Trees. 2/22/2006 (2,4) Trees 1 (2,4) Trees 9 2 5 7 10 14 2/22/2006 (2,4) Trees 1 Outline and Reading Multi-way search tree ( 10.4.1) Definition Search (2,4) tree ( 10.4.2) Definition Search Insertion Deletion Comparison of dictionary

More information

Question Bank Subject: Advanced Data Structures Class: SE Computer

Question Bank Subject: Advanced Data Structures Class: SE Computer Question Bank Subject: Advanced Data Structures Class: SE Computer Question1: Write a non recursive pseudo code for post order traversal of binary tree Answer: Pseudo Code: 1. Push root into Stack_One.

More information

Sorting and Selection

Sorting and Selection Sorting and Selection Introduction Divide and Conquer Merge-Sort Quick-Sort Radix-Sort Bucket-Sort 10-1 Introduction Assuming we have a sequence S storing a list of keyelement entries. The key of the element

More information

Chapter 4. Divide-and-Conquer. Copyright 2007 Pearson Addison-Wesley. All rights reserved.

Chapter 4. Divide-and-Conquer. Copyright 2007 Pearson Addison-Wesley. All rights reserved. Chapter 4 Divide-and-Conquer Copyright 2007 Pearson Addison-Wesley. All rights reserved. Divide-and-Conquer The most-well known algorithm design strategy: 2. Divide instance of problem into two or more

More information

Data Structures Question Bank Multiple Choice

Data Structures Question Bank Multiple Choice Section 1. Fundamentals: Complexity, Algorthm Analysis 1. An algorithm solves A single problem or function Multiple problems or functions Has a single programming language implementation 2. A solution

More information

Quick Sort. CSE Data Structures May 15, 2002

Quick Sort. CSE Data Structures May 15, 2002 Quick Sort CSE 373 - Data Structures May 15, 2002 Readings and References Reading Section 7.7, Data Structures and Algorithm Analysis in C, Weiss Other References C LR 15-May-02 CSE 373 - Data Structures

More information

26 How Many Times Must a White Dove Sail...

26 How Many Times Must a White Dove Sail... Lecture 26 c 2005 Felleisen, Proulx, et. al. 26 How Many Times Must a White Dove Sail... From Here to Eternity According to an old legend the priests in the Temple of Brahma got the task of measuring the

More information

Binary Trees. BSTs. For example: Jargon: Data Structures & Algorithms. root node. level: internal node. edge.

Binary Trees. BSTs. For example: Jargon: Data Structures & Algorithms. root node. level: internal node. edge. Binary Trees 1 A binary tree is either empty, or it consists of a node called the root together with two binary trees called the left subtree and the right subtree of the root, which are disjoint from

More information

Divide-and-Conquer. The most-well known algorithm design strategy: smaller instances. combining these solutions

Divide-and-Conquer. The most-well known algorithm design strategy: smaller instances. combining these solutions Divide-and-Conquer The most-well known algorithm design strategy: 1. Divide instance of problem into two or more smaller instances 2. Solve smaller instances recursively 3. Obtain solution to original

More information

Algorithms in Systems Engineering ISE 172. Lecture 16. Dr. Ted Ralphs

Algorithms in Systems Engineering ISE 172. Lecture 16. Dr. Ted Ralphs Algorithms in Systems Engineering ISE 172 Lecture 16 Dr. Ted Ralphs ISE 172 Lecture 16 1 References for Today s Lecture Required reading Sections 6.5-6.7 References CLRS Chapter 22 R. Sedgewick, Algorithms

More information

Sorting. Sorting. Stable Sorting. In-place Sort. Bubble Sort. Bubble Sort. Selection (Tournament) Heapsort (Smoothsort) Mergesort Quicksort Bogosort

Sorting. Sorting. Stable Sorting. In-place Sort. Bubble Sort. Bubble Sort. Selection (Tournament) Heapsort (Smoothsort) Mergesort Quicksort Bogosort Principles of Imperative Computation V. Adamchik CS 15-1 Lecture Carnegie Mellon University Sorting Sorting Sorting is ordering a list of objects. comparison non-comparison Hoare Knuth Bubble (Shell, Gnome)

More information

(2,4) Trees Goodrich, Tamassia (2,4) Trees 1

(2,4) Trees Goodrich, Tamassia (2,4) Trees 1 (2,4) Trees 9 2 5 7 10 14 2004 Goodrich, Tamassia (2,4) Trees 1 Multi-Way Search Tree A multi-way search tree is an ordered tree such that Each internal node has at least two children and stores d -1 key-element

More information

DATA STRUCTURES AND ALGORITHMS

DATA STRUCTURES AND ALGORITHMS DATA STRUCTURES AND ALGORITHMS For COMPUTER SCIENCE DATA STRUCTURES &. ALGORITHMS SYLLABUS Programming and Data Structures: Programming in C. Recursion. Arrays, stacks, queues, linked lists, trees, binary

More information

FORTH SEMESTER DIPLOMA EXAMINATION IN ENGINEERING/ TECHNOLIGY- MARCH, 2012 DATA STRUCTURE (Common to CT and IF) [Time: 3 hours

FORTH SEMESTER DIPLOMA EXAMINATION IN ENGINEERING/ TECHNOLIGY- MARCH, 2012 DATA STRUCTURE (Common to CT and IF) [Time: 3 hours TED (10)-3071 Reg. No.. (REVISION-2010) (Maximum marks: 100) Signature. FORTH SEMESTER DIPLOMA EXAMINATION IN ENGINEERING/ TECHNOLIGY- MARCH, 2012 DATA STRUCTURE (Common to CT and IF) [Time: 3 hours PART

More information

SAMPLE OF THE STUDY MATERIAL PART OF CHAPTER 6. Sorting Algorithms

SAMPLE OF THE STUDY MATERIAL PART OF CHAPTER 6. Sorting Algorithms SAMPLE OF THE STUDY MATERIAL PART OF CHAPTER 6 6.0 Introduction Sorting algorithms used in computer science are often classified by: Computational complexity (worst, average and best behavior) of element

More information

A6-R3: DATA STRUCTURE THROUGH C LANGUAGE

A6-R3: DATA STRUCTURE THROUGH C LANGUAGE A6-R3: DATA STRUCTURE THROUGH C LANGUAGE NOTE: 1. There are TWO PARTS in this Module/Paper. PART ONE contains FOUR questions and PART TWO contains FIVE questions. 2. PART ONE is to be answered in the TEAR-OFF

More information

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY THIRD SEMESTER B.TECH DEGREE EXAMINATION, JULY 2017 CS205: DATA STRUCTURES (CS, IT)

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY THIRD SEMESTER B.TECH DEGREE EXAMINATION, JULY 2017 CS205: DATA STRUCTURES (CS, IT) D B3D042 Pages: 2 Reg. No. Name: APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY THIRD SEMESTER B.TECH DEGREE EXAMINATION, JULY 2017 Max. Marks: 100 CS205: DATA STRUCTURES (CS, IT) PART A Answer all questions.

More information

Module 2: Classical Algorithm Design Techniques

Module 2: Classical Algorithm Design Techniques Module 2: Classical Algorithm Design Techniques Dr. Natarajan Meghanathan Associate Professor of Computer Science Jackson State University Jackson, MS 39217 E-mail: natarajan.meghanathan@jsums.edu Module

More information

INSTITUTE OF AERONAUTICAL ENGINEERING

INSTITUTE OF AERONAUTICAL ENGINEERING INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad - 500 043 COMPUTER SCIENCE AND ENGINEERING TUTORIAL QUESTION BANK Course Name Course Code Class Branch DATA STRUCTURES ACS002 B. Tech

More information

( ) ( ) C. " 1 n. ( ) $ f n. ( ) B. " log( n! ) ( ) and that you already know ( ) ( ) " % g( n) ( ) " #&

( ) ( ) C.  1 n. ( ) $ f n. ( ) B.  log( n! ) ( ) and that you already know ( ) ( )  % g( n) ( )  #& CSE 0 Name Test Summer 008 Last 4 Digits of Mav ID # Multiple Choice. Write your answer to the LEFT of each problem. points each. The time for the following code is in which set? for (i=0; i

More information

Chapter 3:- Divide and Conquer. Compiled By:- Sanjay Patel Assistant Professor, SVBIT.

Chapter 3:- Divide and Conquer. Compiled By:- Sanjay Patel Assistant Professor, SVBIT. Chapter 3:- Divide and Conquer Compiled By:- Assistant Professor, SVBIT. Outline Introduction Multiplying large Integers Problem Problem Solving using divide and conquer algorithm - Binary Search Sorting

More information

UNIT-2 DIVIDE & CONQUER

UNIT-2 DIVIDE & CONQUER Overview: Divide and Conquer Master theorem Master theorem based analysis for Binary Search Merge Sort Quick Sort Divide and Conquer UNIT-2 DIVIDE & CONQUER Basic Idea: 1. Decompose problems into sub instances.

More information

Table ADT and Sorting. Algorithm topics continuing (or reviewing?) CS 24 curriculum

Table ADT and Sorting. Algorithm topics continuing (or reviewing?) CS 24 curriculum Table ADT and Sorting Algorithm topics continuing (or reviewing?) CS 24 curriculum A table ADT (a.k.a. Dictionary, Map) Table public interface: // Put information in the table, and a unique key to identify

More information

TREES. Trees - Introduction

TREES. Trees - Introduction TREES Chapter 6 Trees - Introduction All previous data organizations we've studied are linear each element can have only one predecessor and successor Accessing all elements in a linear sequence is O(n)

More information

1. Two main measures for the efficiency of an algorithm are a. Processor and memory b. Complexity and capacity c. Time and space d.

1. Two main measures for the efficiency of an algorithm are a. Processor and memory b. Complexity and capacity c. Time and space d. 1. Two main measures for the efficiency of an algorithm are a. Processor and memory b. Complexity and capacity c. Time and space d. Data and space 2. The time factor when determining the efficiency of

More information

SCJ2013 Data Structure & Algorithms. Bubble Sort. Nor Bahiah Hj Ahmad & Dayang Norhayati A. Jawawi

SCJ2013 Data Structure & Algorithms. Bubble Sort. Nor Bahiah Hj Ahmad & Dayang Norhayati A. Jawawi SCJ2013 Data Structure & Algorithms Bubble Sort Nor Bahiah Hj Ahmad & Dayang Norhayati A. Jawawi 1 Bubble Sort Sorting activities for Bubble: Go through multiple passes over the array. In every pass: Compare

More information

CSC Design and Analysis of Algorithms

CSC Design and Analysis of Algorithms CSC 8301- Design and Analysis of Algorithms Lecture 6 Divide and Conquer Algorithm Design Technique Divide-and-Conquer The most-well known algorithm design strategy: 1. Divide a problem instance into two

More information

Quiz 1 Solutions. (a) f(n) = n g(n) = log n Circle all that apply: f = O(g) f = Θ(g) f = Ω(g)

Quiz 1 Solutions. (a) f(n) = n g(n) = log n Circle all that apply: f = O(g) f = Θ(g) f = Ω(g) Introduction to Algorithms March 11, 2009 Massachusetts Institute of Technology 6.006 Spring 2009 Professors Sivan Toledo and Alan Edelman Quiz 1 Solutions Problem 1. Quiz 1 Solutions Asymptotic orders

More information

CSC Design and Analysis of Algorithms. Lecture 6. Divide and Conquer Algorithm Design Technique. Divide-and-Conquer

CSC Design and Analysis of Algorithms. Lecture 6. Divide and Conquer Algorithm Design Technique. Divide-and-Conquer CSC 8301- Design and Analysis of Algorithms Lecture 6 Divide and Conquer Algorithm Design Technique Divide-and-Conquer The most-well known algorithm design strategy: 1. Divide a problem instance into two

More information

Week 10. Sorting. 1 Binary heaps. 2 Heapification. 3 Building a heap 4 HEAP-SORT. 5 Priority queues 6 QUICK-SORT. 7 Analysing QUICK-SORT.

Week 10. Sorting. 1 Binary heaps. 2 Heapification. 3 Building a heap 4 HEAP-SORT. 5 Priority queues 6 QUICK-SORT. 7 Analysing QUICK-SORT. Week 10 1 2 3 4 5 6 Sorting 7 8 General remarks We return to sorting, considering and. Reading from CLRS for week 7 1 Chapter 6, Sections 6.1-6.5. 2 Chapter 7, Sections 7.1, 7.2. Discover the properties

More information

Sorting. Sorting in Arrays. SelectionSort. SelectionSort. Binary search works great, but how do we create a sorted array in the first place?

Sorting. Sorting in Arrays. SelectionSort. SelectionSort. Binary search works great, but how do we create a sorted array in the first place? Sorting Binary search works great, but how do we create a sorted array in the first place? Sorting in Arrays Sorting algorithms: Selection sort: O(n 2 ) time Merge sort: O(nlog 2 (n)) time Quicksort: O(n

More information

Test 1 Last 4 Digits of Mav ID # Multiple Choice. Write your answer to the LEFT of each problem. 2 points each t 1

Test 1 Last 4 Digits of Mav ID # Multiple Choice. Write your answer to the LEFT of each problem. 2 points each t 1 CSE 0 Name Test Fall 00 Last Digits of Mav ID # Multiple Choice. Write your answer to the LEFT of each problem. points each t. What is the value of k? k=0 A. k B. t C. t+ D. t+ +. Suppose that you have

More information

Chapter 10. Sorting and Searching Algorithms. Fall 2017 CISC2200 Yanjun Li 1. Sorting. Given a set (container) of n elements

Chapter 10. Sorting and Searching Algorithms. Fall 2017 CISC2200 Yanjun Li 1. Sorting. Given a set (container) of n elements Chapter Sorting and Searching Algorithms Fall 2017 CISC2200 Yanjun Li 1 Sorting Given a set (container) of n elements Eg array, set of words, etc Suppose there is an order relation that can be set across

More information

Quick-Sort fi fi fi 7 9. Quick-Sort Goodrich, Tamassia

Quick-Sort fi fi fi 7 9. Quick-Sort Goodrich, Tamassia Quick-Sort 7 4 9 6 2 fi 2 4 6 7 9 4 2 fi 2 4 7 9 fi 7 9 2 fi 2 9 fi 9 Quick-Sort 1 Quick-Sort ( 10.2 text book) Quick-sort is a randomized sorting algorithm based on the divide-and-conquer paradigm: x

More information

Divide and Conquer Sorting Algorithms and Noncomparison-based

Divide and Conquer Sorting Algorithms and Noncomparison-based Divide and Conquer Sorting Algorithms and Noncomparison-based Sorting Algorithms COMP1927 16x1 Sedgewick Chapters 7 and 8 Sedgewick Chapter 6.10, Chapter 10 DIVIDE AND CONQUER SORTING ALGORITHMS Step 1

More information

Unit-2 Divide and conquer 2016

Unit-2 Divide and conquer 2016 2 Divide and conquer Overview, Structure of divide-and-conquer algorithms, binary search, quick sort, Strassen multiplication. 13% 05 Divide-and- conquer The Divide and Conquer Paradigm, is a method of

More information

Multi-way Search Trees! M-Way Search! M-Way Search Trees Representation!

Multi-way Search Trees! M-Way Search! M-Way Search Trees Representation! Lecture 10: Multi-way Search Trees: intro to B-trees 2-3 trees 2-3-4 trees Multi-way Search Trees A node on an M-way search tree with M 1 distinct and ordered keys: k 1 < k 2 < k 3

More information

) $ f ( n) " %( g( n)

) $ f ( n)  %( g( n) CSE 0 Name Test Spring 008 Last Digits of Mav ID # Multiple Choice. Write your answer to the LEFT of each problem. points each. The time to compute the sum of the n elements of an integer array is: # A.

More information

Week 10. Sorting. 1 Binary heaps. 2 Heapification. 3 Building a heap 4 HEAP-SORT. 5 Priority queues 6 QUICK-SORT. 7 Analysing QUICK-SORT.

Week 10. Sorting. 1 Binary heaps. 2 Heapification. 3 Building a heap 4 HEAP-SORT. 5 Priority queues 6 QUICK-SORT. 7 Analysing QUICK-SORT. Week 10 1 Binary s 2 3 4 5 6 Sorting Binary s 7 8 General remarks Binary s We return to sorting, considering and. Reading from CLRS for week 7 1 Chapter 6, Sections 6.1-6.5. 2 Chapter 7, Sections 7.1,

More information

Elementary Sorting Algorithms

Elementary Sorting Algorithms Elementary Sorting Algorithms COMP1927 16x1 Sedgewick Chapter 6 WARM UP EXERCISE: HANDSHAKE PROBLEM In a room of n people, how many different handshakes are possible? 0 + 1 + 2 + + (n-1) Using Maths formula:

More information

Binary heaps (chapters ) Leftist heaps

Binary heaps (chapters ) Leftist heaps Binary heaps (chapters 20.3 20.5) Leftist heaps Binary heaps are arrays! A binary heap is really implemented using an array! 8 18 29 20 28 39 66 Possible because of completeness property 37 26 76 32 74

More information

Comparison Sorts. Chapter 9.4, 12.1, 12.2

Comparison Sorts. Chapter 9.4, 12.1, 12.2 Comparison Sorts Chapter 9.4, 12.1, 12.2 Sorting We have seen the advantage of sorted data representations for a number of applications Sparse vectors Maps Dictionaries Here we consider the problem of

More information

Quick Sort. Mithila Bongu. December 13, 2013

Quick Sort. Mithila Bongu. December 13, 2013 Quick Sort Mithila Bongu December 13, 2013 Abstract Quicksort is a sorting algorithm and also known as a Partion-Exchange Sort in which partition is carried out dynamically. Quicksort is a comparision

More information

Course Name: B.Tech. 3 th Sem. No of hours allotted to complete the syllabi: 44 Hours No of hours allotted per week: 3 Hours. Planned.

Course Name: B.Tech. 3 th Sem. No of hours allotted to complete the syllabi: 44 Hours No of hours allotted per week: 3 Hours. Planned. Course Name: B.Tech. 3 th Sem. Subject: Data Structures No of hours allotted to complete the syllabi: 44 Hours No of hours allotted per week: 3 Hours Paper Code: ETCS-209 Topic Details No of Hours Planned

More information

COMP 250 Fall recurrences 2 Oct. 13, 2017

COMP 250 Fall recurrences 2 Oct. 13, 2017 COMP 250 Fall 2017 15 - recurrences 2 Oct. 13, 2017 Here we examine the recurrences for mergesort and quicksort. Mergesort Recall the mergesort algorithm: we divide the list of things to be sorted into

More information

COSC 2007 Data Structures II Final Exam. Part 1: multiple choice (1 mark each, total 30 marks, circle the correct answer)

COSC 2007 Data Structures II Final Exam. Part 1: multiple choice (1 mark each, total 30 marks, circle the correct answer) COSC 2007 Data Structures II Final Exam Thursday, April 13 th, 2006 This is a closed book and closed notes exam. There are total 3 parts. Please answer the questions in the provided space and use back

More information

Randomized Algorithms, Hash Functions

Randomized Algorithms, Hash Functions Randomized Algorithms, Hash Functions Lecture A Tiefenbruck MWF 9-9:50am Center 212 Lecture B Jones MWF 2-2:50pm Center 214 Lecture C Tiefenbruck MWF 11-11:50am Center 212 http://cseweb.ucsd.edu/classes/wi16/cse21-abc/

More information

CSE Data Structures and Introduction to Algorithms... In Java! Instructor: Fei Wang. Mid-Term Exam. CSE2100 DS & Algorithms 1

CSE Data Structures and Introduction to Algorithms... In Java! Instructor: Fei Wang. Mid-Term Exam. CSE2100 DS & Algorithms 1 CSE 2100 Data Structures and Introduction to Algorithms...! In Java!! Instructor: Fei Wang! Mid-Term Exam CSE2100 DS & Algorithms 1 1. True or False (20%=2%x10)! (1) O(n) is O(n^2) (2) The height h of

More information

Sorting. Quicksort analysis Bubble sort. November 20, 2017 Hassan Khosravi / Geoffrey Tien 1

Sorting. Quicksort analysis Bubble sort. November 20, 2017 Hassan Khosravi / Geoffrey Tien 1 Sorting Quicksort analysis Bubble sort November 20, 2017 Hassan Khosravi / Geoffrey Tien 1 Quicksort analysis How long does Quicksort take to run? Let's consider the best and the worst case These differ

More information

2-3 Tree. Outline B-TREE. catch(...){ printf( "Assignment::SolveProblem() AAAA!"); } ADD SLIDES ON DISJOINT SETS

2-3 Tree. Outline B-TREE. catch(...){ printf( Assignment::SolveProblem() AAAA!); } ADD SLIDES ON DISJOINT SETS Outline catch(...){ printf( "Assignment::SolveProblem() AAAA!"); } Balanced Search Trees 2-3 Trees 2-3-4 Trees Slide 4 Why care about advanced implementations? Same entries, different insertion sequence:

More information

Mergesort again. 1. Split the list into two equal parts

Mergesort again. 1. Split the list into two equal parts Quicksort Mergesort again 1. Split the list into two equal parts 5 3 9 2 8 7 3 2 1 4 5 3 9 2 8 7 3 2 1 4 Mergesort again 2. Recursively mergesort the two parts 5 3 9 2 8 7 3 2 1 4 2 3 5 8 9 1 2 3 4 7 Mergesort

More information

Computational Optimization ISE 407. Lecture 16. Dr. Ted Ralphs

Computational Optimization ISE 407. Lecture 16. Dr. Ted Ralphs Computational Optimization ISE 407 Lecture 16 Dr. Ted Ralphs ISE 407 Lecture 16 1 References for Today s Lecture Required reading Sections 6.5-6.7 References CLRS Chapter 22 R. Sedgewick, Algorithms in

More information

CSC Design and Analysis of Algorithms. Lecture 6. Divide and Conquer Algorithm Design Technique. Divide-and-Conquer

CSC Design and Analysis of Algorithms. Lecture 6. Divide and Conquer Algorithm Design Technique. Divide-and-Conquer CSC 8301- Design and Analysis of Algorithms Lecture 6 Divide and Conuer Algorithm Design Techniue Divide-and-Conuer The most-well known algorithm design strategy: 1. Divide a problem instance into two

More information

Comparison of x with an entry in the array

Comparison of x with an entry in the array 1. Basic operations in algorithm An algorithm to solve a particular task employs some set of basic operations. When we estimate the amount of work done by an algorithm we usually do not consider all the

More information

O(n): printing a list of n items to the screen, looking at each item once.

O(n): printing a list of n items to the screen, looking at each item once. UNIT IV Sorting: O notation efficiency of sorting bubble sort quick sort selection sort heap sort insertion sort shell sort merge sort radix sort. O NOTATION BIG OH (O) NOTATION Big oh : the function f(n)=o(g(n))

More information

Sorting. Bubble Sort. Pseudo Code for Bubble Sorting: Sorting is ordering a list of elements.

Sorting. Bubble Sort. Pseudo Code for Bubble Sorting: Sorting is ordering a list of elements. Sorting Sorting is ordering a list of elements. Types of sorting: There are many types of algorithms exist based on the following criteria: Based on Complexity Based on Memory usage (Internal & External

More information

Principles of Computer Science

Principles of Computer Science Principles of Computer Science Binary Trees 08/11/2013 CSCI 2010 - Binary Trees - F.Z. Qureshi 1 Today s Topics Extending LinkedList with Fast Search Sorted Binary Trees Tree Concepts Traversals of a Binary

More information

Advanced Algorithms, Third Class, Computer Science Department, CSW,

Advanced Algorithms, Third Class, Computer Science Department, CSW, Done by Mokhtar M. Hasan, Lecturer at the Computer Science Department, College of Science for Women, to fulfill the course subject of Advanced Algorithm material. Advanced Algorithms, Third Class, Computer

More information

Copyright 2009, Artur Czumaj 1

Copyright 2009, Artur Czumaj 1 CS 244 Algorithm Design Instructor: Artur Czumaj Lecture 2 Sorting You already know sorting algorithms Now you will see more We will want to understand generic techniques used for sorting! Lectures: Monday

More information

Garbage Collection: recycling unused memory

Garbage Collection: recycling unused memory Outline backtracking garbage collection trees binary search trees tree traversal binary search tree algorithms: add, remove, traverse binary node class 1 Backtracking finding a path through a maze is an

More information

COMP3121/3821/9101/ s1 Assignment 1

COMP3121/3821/9101/ s1 Assignment 1 Sample solutions to assignment 1 1. (a) Describe an O(n log n) algorithm (in the sense of the worst case performance) that, given an array S of n integers and another integer x, determines whether or not

More information

Quicksort. Repeat the process recursively for the left- and rightsub-blocks.

Quicksort. Repeat the process recursively for the left- and rightsub-blocks. Quicksort As the name implies, this is the fastest known sorting algorithm in practice. It is excellent for average input but bad for the worst-case input. (you will see later). Basic idea: (another divide-and-conquer

More information

CS8391-DATA STRUCTURES QUESTION BANK UNIT I

CS8391-DATA STRUCTURES QUESTION BANK UNIT I CS8391-DATA STRUCTURES QUESTION BANK UNIT I 2MARKS 1.Define data structure. The data structure can be defined as the collection of elements and all the possible operations which are required for those

More information

Day 10. COMP1006/1406 Summer M. Jason Hinek Carleton University

Day 10. COMP1006/1406 Summer M. Jason Hinek Carleton University Day 10 COMP1006/1406 Summer 2016 M. Jason Hinek Carleton University today s agenda assignments Only the Project is left! Recursion Again Efficiency 2 last time... recursion... binary trees... 3 binary

More information

Sorting. Weiss chapter , 8.6

Sorting. Weiss chapter , 8.6 Sorting Weiss chapter 8.1 8.3, 8.6 Sorting 5 3 9 2 8 7 3 2 1 4 1 2 2 3 3 4 5 7 8 9 Very many different sorting algorithms (bubblesort, insertion sort, selection sort, quicksort, heapsort, mergesort, shell

More information

COMP251: Background. Jérôme Waldispühl School of Computer Science McGill University

COMP251: Background. Jérôme Waldispühl School of Computer Science McGill University COMP251: Background Jérôme Waldispühl School of Computer Science McGill University Big-Oh notation f(n) is O(g(n)) iff there exists a point n 0 beyond which f(n) is less than some fixed constant times

More information

CS8391-DATA STRUCTURES

CS8391-DATA STRUCTURES ST.JOSEPH COLLEGE OF ENGINEERING DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERI NG CS8391-DATA STRUCTURES QUESTION BANK UNIT I 2MARKS 1.Explain the term data structure. The data structure can be defined

More information

Search Trees - 1 Venkatanatha Sarma Y

Search Trees - 1 Venkatanatha Sarma Y Search Trees - 1 Lecture delivered by: Venkatanatha Sarma Y Assistant Professor MSRSAS-Bangalore 11 Objectives To introduce, discuss and analyse the different ways to realise balanced Binary Search Trees

More information

Binary Trees, Binary Search Trees

Binary Trees, Binary Search Trees Binary Trees, Binary Search Trees Trees Linear access time of linked lists is prohibitive Does there exist any simple data structure for which the running time of most operations (search, insert, delete)

More information

Lecture 7. Transform-and-Conquer

Lecture 7. Transform-and-Conquer Lecture 7 Transform-and-Conquer 6-1 Transform and Conquer This group of techniques solves a problem by a transformation to a simpler/more convenient instance of the same problem (instance simplification)

More information

DIVIDE & CONQUER. Problem of size n. Solution to sub problem 1

DIVIDE & CONQUER. Problem of size n. Solution to sub problem 1 DIVIDE & CONQUER Definition: Divide & conquer is a general algorithm design strategy with a general plan as follows: 1. DIVIDE: A problem s instance is divided into several smaller instances of the same

More information

Design and Analysis of Algorithms - - Assessment

Design and Analysis of Algorithms - - Assessment X Courses» Design and Analysis of Algorithms Week 1 Quiz 1) In the code fragment below, start and end are integer values and prime(x) is a function that returns true if x is a prime number and false otherwise.

More information

Data Structure. IBPS SO (IT- Officer) Exam 2017

Data Structure. IBPS SO (IT- Officer) Exam 2017 Data Structure IBPS SO (IT- Officer) Exam 2017 Data Structure: In computer science, a data structure is a way of storing and organizing data in a computer s memory so that it can be used efficiently. Data

More information

CS 2412 Data Structures. Chapter 10 Sorting and Searching

CS 2412 Data Structures. Chapter 10 Sorting and Searching CS 2412 Data Structures Chapter 10 Sorting and Searching Some concepts Sorting is one of the most common data-processing applications. Sorting algorithms are classed as either internal or external. Sorting

More information

A set of nodes (or vertices) with a single starting point

A set of nodes (or vertices) with a single starting point Binary Search Trees Understand tree terminology Understand and implement tree traversals Define the binary search tree property Implement binary search trees Implement the TreeSort algorithm 2 A set of

More information

Q1 Q2 Q3 Q4 Q5 Q6 Total

Q1 Q2 Q3 Q4 Q5 Q6 Total Name: SSN: Computer Science Foundation Exam May 5, 006 Computer Science Section 1A Q1 Q Q3 Q4 Q5 Q6 Total KNW KNW KNW ANL,DSN KNW DSN You have to do all the 6 problems in this section of the exam. Partial

More information

Prelim 2. CS 2110, November 19, 2015, 7:30 PM Total. Sorting Invariants Max Score Grader

Prelim 2. CS 2110, November 19, 2015, 7:30 PM Total. Sorting Invariants Max Score Grader Prelim 2 CS 2110, November 19, 2015, 7:30 PM 1 2 3 4 5 6 Total Question True Short Complexity Searching Trees Graphs False Answer Sorting Invariants Max 20 15 13 14 17 21 100 Score Grader The exam is closed

More information

Trees. (Trees) Data Structures and Programming Spring / 28

Trees. (Trees) Data Structures and Programming Spring / 28 Trees (Trees) Data Structures and Programming Spring 2018 1 / 28 Trees A tree is a collection of nodes, which can be empty (recursive definition) If not empty, a tree consists of a distinguished node r

More information

Advanced Set Representation Methods

Advanced Set Representation Methods Advanced Set Representation Methods AVL trees. 2-3(-4) Trees. Union-Find Set ADT DSA - lecture 4 - T.U.Cluj-Napoca - M. Joldos 1 Advanced Set Representation. AVL Trees Problem with BSTs: worst case operation

More information

CSC Design and Analysis of Algorithms

CSC Design and Analysis of Algorithms CSC : Lecture 7 CSC - Design and Analysis of Algorithms Lecture 7 Transform and Conquer I Algorithm Design Technique CSC : Lecture 7 Transform and Conquer This group of techniques solves a problem by a

More information

9. The expected time for insertion sort for n keys is in which set? (All n! input permutations are equally likely.)

9. The expected time for insertion sort for n keys is in which set? (All n! input permutations are equally likely.) CSE 0 Name Test Spring 006 Last 4 Digits of Student ID # Multiple Choice. Write your answer to the LEFT of each problem. points each. Suppose f ( x) is a monotonically increasing function. Which of the

More information

Presentation for use with the textbook, Algorithm Design and Applications, by M. T. Goodrich and R. Tamassia, Wiley, Merge Sort & Quick Sort

Presentation for use with the textbook, Algorithm Design and Applications, by M. T. Goodrich and R. Tamassia, Wiley, Merge Sort & Quick Sort Presentation for use with the textbook, Algorithm Design and Applications, by M. T. Goodrich and R. Tamassia, Wiley, 2015 Merge Sort & Quick Sort 1 Divide-and-Conquer Divide-and conquer is a general algorithm

More information