Reasoning About Uncertainty

Size: px
Start display at page:

Download "Reasoning About Uncertainty"

Transcription

1 Reasoning About Uncertainty Graphical representation of causal relations (examples) Graphical models Inference in graphical models (introduction) 1 Jensen, 1996 Example 1: Icy Roads 2 1

2 Jensen, 1996 Example 2: Wet Grass 3 Jensen, 1996 Example 3: Burglary/Earthquake 4 2

3 Graph Connections Serial connection Diverging connection Converging connection 5 Serial Connection 6 3

4 Diverging Connection 7 Converging Connection 8 4

5 Jensen, 1996 Conditional Dependence 9 Graphical Models Directed graphs Undirected graphs Chain codes 10 5

6 Directed graphs represent causality encode independence and conditional independence orderedpair(v,d); D-set of directed edges X Y between vertices in V directed cycle (loop); acyclic & cyclic graphs path is a sequence of edges (each with endpoints); acyclic/cyclic/directed paths 11 Examples: Directed Graphs (cont ) 12 6

7 D-Separation Two variables A and B in a DAG are d-separated if for all paths between A and B there is an intermediate variable V such that either The connection is serial or diverging and the state of V is known or The connection converging and neither V nor any of Vs descendents have received evidence 13 Jensen, 1996 Examples of d-separation 14 7

8 Jensen, 1996 Examples of d-separation 15 Directed Global Markov Property The directed global Markov property, i.e., d- separation DS, is defined as: DG DS X Y Z if X and Y are d- separated by Z in DG. Example DG1 A C B; A C {B,D}; B D C; B D A; DG2 A C D; A C {B,D}; B D C; B D A; DG3 A D C; B A C; B D {C,A}; 16 8

9 Undirected Graphs An undirected graph (UG) is also known as a Markov random field An ordered pair(v,u); V is a set of vertices; U is a set of undirected edges X-Y between vertices. For disjoint sets of vertices X, Y and Z (Z may be empty), if there is no path from a variable X X to avariabley Y that does not include some variable in Z,thenX and Y aresaidtobe separated by Z. 17 Undirected Graphs (cont ) Examples: 18 9

10 Undirected Global Markov Property Theundirected global Markov property, i.e., separation U, is defined as: UG U X Y Z if X and Y are separated by Z in UG. Example UG1 A D C; A D {B,C}; B D C; A B C; A B {C,D}; UG2 A C B; A D {C,B}; A D B; A D C; D B C; Chain Graphs Achain graph (CG), admitting both directed and undirected edges, generalises a graphical model based on directed or undirected graphs A chain graph has no partially directed cycles, where a partially directed cycle,g,isasequence of n distinct edges E 1,,E n (n 3) with endpoints X i, X i+1 respectively, such that: i. X 1 X n+1 ii. i (1 i n)eitherx i X i+1 or X i X i+1, and iii. j (1 j n) such that X j X j+1. 10

11 Examples: Chain Graphs (cont ) (a) CG1 (b) CG2 (a) graphs containing partially directed cycles and (b) chain graphs Lauritzen-Wermuth-Frydenberg (LWF) global Markov property TheLWF global Markov property for chain graphs ( LWF), is then defined as: CG LWF X Y Z if X is separated from Y by Z in the undirected moral graph based on CG. Example CG1 A D C; A D {B,C}; B D C; A B C; A B {C,D}; CG2 A D C; A D {C,B}; A C B; A D B; D B C; 11

12 Chain Graphs (cont ) Acomplex in CG is a subgraph with the following form: X V 1 V n Y (n 1). Moralisation is needed for deriving the Markov property for chain graphs. Moralisation is achieved by adding the undirected edge X Y to a complex graph. A moral graph is the undirected graph created by moralizing all complexes in CG, and then replacing all directed edges with undirected edges. 23 Exact Inference in Graphical Models Directed graphs DAG, Bayesian network, belief network Representation of the joint probability using prior & conditional probabilities. Edges (arcs) & vertices (nodes) Causality Inference is represented graphically 24 12

13 Exact Inference in DAGs Example 1 Bayes theorem X)Y X) X,Y) Y)X Y) 25 Example 1 Bayes theorem (cont ) (Revision) Bayes theorem combines known (and observed) probabilities to compute unknown probability of interest. P ( A B) = B A) A) B) Bayes theorem can be formulated as: likelihoodx prior posterior = evidence 26 13

14 Example 1 Bayes theorem (cont ) Consider the first (left) model and let us assume that we are given X), Y X) and Y=y. We are interested in the posterior probability X Y=y). Employing the product rule of probability we derive the evidence (marginal distribution) Y)=Σ x Y X)X), and then use Bayes theorem to calculate: Y = y X ) X ) X Y = y) = Y = y) 27 Exact Inference in DAGs Example 2 conditional independence We assume the structure Z X Y for arbitrary edges and interested in computing Y Z=z) given Z,X), X) and Y,X). We can first derive the joint probability: 28 P ( Z, X ) = Z X ) X ) P ( Y, X ) = Y X ) X ) P ( X, Y, Z) = Z, X ) Y, X ) / X ) 14

15 Example 2 Conditional Independence (cont ) and then extract: P ( Y Z, X ) = X, Y, Z) Z, X ) Y = = Y X ) X ) Z X ) X ) Z, X ) 29 Example 2 Conditional Independence (cont ) The joint probability of different possible models can be factorised according to similar guidelines. For example, Z X Y can get different forms each is factorised differently: Z X Y: X,Y,Z)=X)Y X)Z X) Z X Y: X,Y,Z)=Y X)X Z)Z) Z X Y: X,Y,Z)=X Y)Z X)Y) 30 15

Machine Learning. Sourangshu Bhattacharya

Machine Learning. Sourangshu Bhattacharya Machine Learning Sourangshu Bhattacharya Bayesian Networks Directed Acyclic Graph (DAG) Bayesian Networks General Factorization Curve Fitting Re-visited Maximum Likelihood Determine by minimizing sum-of-squares

More information

Machine Learning. Lecture Slides for. ETHEM ALPAYDIN The MIT Press, h1p://

Machine Learning. Lecture Slides for. ETHEM ALPAYDIN The MIT Press, h1p:// Lecture Slides for INTRODUCTION TO Machine Learning ETHEM ALPAYDIN The MIT Press, 2010 alpaydin@boun.edu.tr h1p://www.cmpe.boun.edu.tr/~ethem/i2ml2e CHAPTER 16: Graphical Models Graphical Models Aka Bayesian

More information

PATTERN RECOGNITION AND MACHINE LEARNING CHAPTER 8: GRAPHICAL MODELS

PATTERN RECOGNITION AND MACHINE LEARNING CHAPTER 8: GRAPHICAL MODELS PATTERN RECOGNITION AND MACHINE LEARNING CHAPTER 8: GRAPHICAL MODELS Bayesian Networks Directed Acyclic Graph (DAG) Bayesian Networks General Factorization Bayesian Curve Fitting (1) Polynomial Bayesian

More information

Part II. C. M. Bishop PATTERN RECOGNITION AND MACHINE LEARNING CHAPTER 8: GRAPHICAL MODELS

Part II. C. M. Bishop PATTERN RECOGNITION AND MACHINE LEARNING CHAPTER 8: GRAPHICAL MODELS Part II C. M. Bishop PATTERN RECOGNITION AND MACHINE LEARNING CHAPTER 8: GRAPHICAL MODELS Converting Directed to Undirected Graphs (1) Converting Directed to Undirected Graphs (2) Add extra links between

More information

Chapter 2 PRELIMINARIES. 1. Random variables and conditional independence

Chapter 2 PRELIMINARIES. 1. Random variables and conditional independence Chapter 2 PRELIMINARIES In this chapter the notation is presented and the basic concepts related to the Bayesian network formalism are treated. Towards the end of the chapter, we introduce the Bayesian

More information

Computer Vision Group Prof. Daniel Cremers. 4. Probabilistic Graphical Models Directed Models

Computer Vision Group Prof. Daniel Cremers. 4. Probabilistic Graphical Models Directed Models Prof. Daniel Cremers 4. Probabilistic Graphical Models Directed Models The Bayes Filter (Rep.) (Bayes) (Markov) (Tot. prob.) (Markov) (Markov) 2 Graphical Representation (Rep.) We can describe the overall

More information

Computer Vision Group Prof. Daniel Cremers. 4. Probabilistic Graphical Models Directed Models

Computer Vision Group Prof. Daniel Cremers. 4. Probabilistic Graphical Models Directed Models Prof. Daniel Cremers 4. Probabilistic Graphical Models Directed Models The Bayes Filter (Rep.) (Bayes) (Markov) (Tot. prob.) (Markov) (Markov) 2 Graphical Representation (Rep.) We can describe the overall

More information

Bayesian Machine Learning - Lecture 6

Bayesian Machine Learning - Lecture 6 Bayesian Machine Learning - Lecture 6 Guido Sanguinetti Institute for Adaptive and Neural Computation School of Informatics University of Edinburgh gsanguin@inf.ed.ac.uk March 2, 2015 Today s lecture 1

More information

Graphical Models. Dmitrij Lagutin, T Machine Learning: Basic Principles

Graphical Models. Dmitrij Lagutin, T Machine Learning: Basic Principles Graphical Models Dmitrij Lagutin, dlagutin@cc.hut.fi T-61.6020 - Machine Learning: Basic Principles 12.3.2007 Contents Introduction to graphical models Bayesian networks Conditional independence Markov

More information

Probabilistic Graphical Models

Probabilistic Graphical Models Overview of Part One Probabilistic Graphical Models Part One: Graphs and Markov Properties Christopher M. Bishop Graphs and probabilities Directed graphs Markov properties Undirected graphs Examples Microsoft

More information

Cheng Soon Ong & Christian Walder. Canberra February June 2018

Cheng Soon Ong & Christian Walder. Canberra February June 2018 Cheng Soon Ong & Christian Walder Research Group and College of Engineering and Computer Science Canberra February June 2018 Outlines Overview Introduction Linear Algebra Probability Linear Regression

More information

Markov Equivalence in Bayesian Networks

Markov Equivalence in Bayesian Networks Markov Equivalence in Bayesian Networks Ildikó Flesch and eter Lucas Institute for Computing and Information Sciences University of Nijmegen Email: {ildiko,peterl}@cs.kun.nl Abstract robabilistic graphical

More information

COMP90051 Statistical Machine Learning

COMP90051 Statistical Machine Learning COMP90051 Statistical Machine Learning Semester 2, 2016 Lecturer: Trevor Cohn 21. Independence in PGMs; Example PGMs Independence PGMs encode assumption of statistical independence between variables. Critical

More information

D-Separation. b) the arrows meet head-to-head at the node, and neither the node, nor any of its descendants, are in the set C.

D-Separation. b) the arrows meet head-to-head at the node, and neither the node, nor any of its descendants, are in the set C. D-Separation Say: A, B, and C are non-intersecting subsets of nodes in a directed graph. A path from A to B is blocked by C if it contains a node such that either a) the arrows on the path meet either

More information

FMA901F: Machine Learning Lecture 6: Graphical Models. Cristian Sminchisescu

FMA901F: Machine Learning Lecture 6: Graphical Models. Cristian Sminchisescu FMA901F: Machine Learning Lecture 6: Graphical Models Cristian Sminchisescu Graphical Models Provide a simple way to visualize the structure of a probabilistic model and can be used to design and motivate

More information

Introduction to Bayesian networks

Introduction to Bayesian networks PhD seminar series Probabilistics in Engineering : Bayesian networks and Bayesian hierarchical analysis in engineering Conducted by Prof. Dr. Maes, Prof. Dr. Faber and Dr. Nishijima Introduction to Bayesian

More information

Bayesian Networks. A Bayesian network is a directed acyclic graph that represents causal relationships between random variables. Earthquake.

Bayesian Networks. A Bayesian network is a directed acyclic graph that represents causal relationships between random variables. Earthquake. Bayes Nets Independence With joint probability distributions we can compute many useful things, but working with joint PD's is often intractable. The naïve Bayes' approach represents one (boneheaded?)

More information

Extensions of Undirected and Acyclic, Directed Graphical Models

Extensions of Undirected and Acyclic, Directed Graphical Models Extensions of Undirected and Acyclic, Directed Graphical Models Abstract Thomas Richardson 1 Statistics Department, University of Washington (tsr@stat.washington.edu) The use of acyclic, directed graphs

More information

Lecture 5: Exact inference. Queries. Complexity of inference. Queries (continued) Bayesian networks can answer questions about the underlying

Lecture 5: Exact inference. Queries. Complexity of inference. Queries (continued) Bayesian networks can answer questions about the underlying given that Maximum a posteriori (MAP query: given evidence 2 which has the highest probability: instantiation of all other variables in the network,, Most probable evidence (MPE: given evidence, find an

More information

Lecture 4: Undirected Graphical Models

Lecture 4: Undirected Graphical Models Lecture 4: Undirected Graphical Models Department of Biostatistics University of Michigan zhenkewu@umich.edu http://zhenkewu.com/teaching/graphical_model 15 September, 2016 Zhenke Wu BIOSTAT830 Graphical

More information

Separators and Adjustment Sets in Markov Equivalent DAGs

Separators and Adjustment Sets in Markov Equivalent DAGs Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence (AAAI-16) Separators and Adjustment Sets in Markov Equivalent DAGs Benito van der Zander and Maciej Liśkiewicz Institute of Theoretical

More information

Factor Graphs and message passing

Factor Graphs and message passing Factor Graphs and message passing Carl Edward Rasmussen October 28th, 2016 Carl Edward Rasmussen Factor Graphs and message passing October 28th, 2016 1 / 13 Key concepts Factor graphs are a class of graphical

More information

CS242: Probabilistic Graphical Models Lecture 3: Factor Graphs & Variable Elimination

CS242: Probabilistic Graphical Models Lecture 3: Factor Graphs & Variable Elimination CS242: Probabilistic Graphical Models Lecture 3: Factor Graphs & Variable Elimination Instructor: Erik Sudderth Brown University Computer Science September 11, 2014 Some figures and materials courtesy

More information

CS 343: Artificial Intelligence

CS 343: Artificial Intelligence CS 343: Artificial Intelligence Bayes Nets: Inference Prof. Scott Niekum The University of Texas at Austin [These slides based on those of Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley.

More information

Lecture 5: Exact inference

Lecture 5: Exact inference Lecture 5: Exact inference Queries Inference in chains Variable elimination Without evidence With evidence Complexity of variable elimination which has the highest probability: instantiation of all other

More information

Modeling and Reasoning with Bayesian Networks. Adnan Darwiche University of California Los Angeles, CA

Modeling and Reasoning with Bayesian Networks. Adnan Darwiche University of California Los Angeles, CA Modeling and Reasoning with Bayesian Networks Adnan Darwiche University of California Los Angeles, CA darwiche@cs.ucla.edu June 24, 2008 Contents Preface 1 1 Introduction 1 1.1 Automated Reasoning........................

More information

ENGINEERS ACADEMY. 7. Given Boolean theorem. (a) A B A C B C A B A C. (b) AB AC BC AB BC. (c) AB AC BC A B A C B C.

ENGINEERS ACADEMY. 7. Given Boolean theorem. (a) A B A C B C A B A C. (b) AB AC BC AB BC. (c) AB AC BC A B A C B C. Digital Electronics Boolean Function QUESTION BANK. The Boolean equation Y = C + C + C can be simplified to (a) (c) A (B + C) (b) AC (d) C. The Boolean equation Y = (A + B) (A + B) can be simplified to

More information

Probabilistic Graphical Models

Probabilistic Graphical Models Overview of Part Two Probabilistic Graphical Models Part Two: Inference and Learning Christopher M. Bishop Exact inference and the junction tree MCMC Variational methods and EM Example General variational

More information

Graphical models are a lot like a circuit diagram they are written down to visualize and better understand a problem.

Graphical models are a lot like a circuit diagram they are written down to visualize and better understand a problem. Machine Learning (ML, F16) Lecture#15 (Tuesday, Nov. 1st) Lecturer: Byron Boots Graphical Models 1 Graphical Models Often, one is interested in representing a joint distribution P over a set of n random

More information

Graphical Models and Markov Blankets

Graphical Models and Markov Blankets Stephan Stahlschmidt Ladislaus von Bortkiewicz Chair of Statistics C.A.S.E. Center for Applied Statistics and Economics Humboldt-Universität zu Berlin Motivation 1-1 Why Graphical Models? Illustration

More information

6 : Factor Graphs, Message Passing and Junction Trees

6 : Factor Graphs, Message Passing and Junction Trees 10-708: Probabilistic Graphical Models 10-708, Spring 2018 6 : Factor Graphs, Message Passing and Junction Trees Lecturer: Kayhan Batmanghelich Scribes: Sarthak Garg 1 Factor Graphs Factor Graphs are graphical

More information

3 : Representation of Undirected GMs

3 : Representation of Undirected GMs 0-708: Probabilistic Graphical Models 0-708, Spring 202 3 : Representation of Undirected GMs Lecturer: Eric P. Xing Scribes: Nicole Rafidi, Kirstin Early Last Time In the last lecture, we discussed directed

More information

Bayesian Network & Anomaly Detection

Bayesian Network & Anomaly Detection Study Unit 6 Bayesian Network & Anomaly Detection ANL 309 Business Analytics Applications Introduction Supervised and unsupervised methods in fraud detection Methods of Bayesian Network and Anomaly Detection

More information

Statistical Techniques in Robotics (STR, S15) Lecture#06 (Wednesday, January 28)

Statistical Techniques in Robotics (STR, S15) Lecture#06 (Wednesday, January 28) Statistical Techniques in Robotics (STR, S15) Lecture#06 (Wednesday, January 28) Lecturer: Byron Boots Graphical Models 1 Graphical Models Often one is interested in representing a joint distribution P

More information

Machine Learning

Machine Learning Machine Learning 10-701 Tom M. Mitchell Machine Learning Department Carnegie Mellon University February 15, 2011 Today: Graphical models Inference Conditional independence and D-separation Learning from

More information

A New Approach For Convert Multiply-Connected Trees in Bayesian networks

A New Approach For Convert Multiply-Connected Trees in Bayesian networks A New Approach For Convert Multiply-Connected Trees in Bayesian networks 1 Hussein Baloochian, Alireza khantimoory, 2 Saeed Balochian 1 Islamic Azad university branch of zanjan 2 Islamic Azad university

More information

Introduction to information theory and coding - Lecture 1 on Graphical models

Introduction to information theory and coding - Lecture 1 on Graphical models Introduction to information theory and coding - Lecture 1 on Graphical models Louis Wehenkel Department of Electrical Engineering and Computer Science University of Liège Montefiore - Liège - October,

More information

Lecture 9: Undirected Graphical Models Machine Learning

Lecture 9: Undirected Graphical Models Machine Learning Lecture 9: Undirected Graphical Models Machine Learning Andrew Rosenberg March 5, 2010 1/1 Today Graphical Models Probabilities in Undirected Graphs 2/1 Undirected Graphs What if we allow undirected graphs?

More information

STA 4273H: Statistical Machine Learning

STA 4273H: Statistical Machine Learning STA 4273H: Statistical Machine Learning Russ Salakhutdinov Department of Statistics! rsalakhu@utstat.toronto.edu! http://www.utstat.utoronto.ca/~rsalakhu/ Sidney Smith Hall, Room 6002 Lecture 5 Inference

More information

NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS: The copyright law of the United States (title 17, U.S. Code) governs the making of photocopies or

NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS: The copyright law of the United States (title 17, U.S. Code) governs the making of photocopies or NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS: The copyright law of the United States (title 17, U.S. Code) governs the making of photocopies or other reproductions of copyrighted material. Any copying

More information

Workshop report 1. Daniels report is on website 2. Don t expect to write it based on listening to one project (we had 6 only 2 was sufficient

Workshop report 1. Daniels report is on website 2. Don t expect to write it based on listening to one project (we had 6 only 2 was sufficient Workshop report 1. Daniels report is on website 2. Don t expect to write it based on listening to one project (we had 6 only 2 was sufficient quality) 3. I suggest writing it on one presentation. 4. Include

More information

ECE 6504: Advanced Topics in Machine Learning Probabilistic Graphical Models and Large-Scale Learning

ECE 6504: Advanced Topics in Machine Learning Probabilistic Graphical Models and Large-Scale Learning ECE 6504: Advanced Topics in Machine Learning Probabilistic Graphical Models and Large-Scale Learning Topics Bayes Nets: Inference (Finish) Variable Elimination Graph-view of VE: Fill-edges, induced width

More information

Recall from last time. Lecture 4: Wrap-up of Bayes net representation. Markov networks. Markov blanket. Isolating a node

Recall from last time. Lecture 4: Wrap-up of Bayes net representation. Markov networks. Markov blanket. Isolating a node Recall from last time Lecture 4: Wrap-up of Bayes net representation. Markov networks Markov blanket, moral graph Independence maps and perfect maps Undirected graphical models (Markov networks) A Bayes

More information

Section 4.2 selected answers Math 131 Multivariate Calculus D Joyce, Spring 2014

Section 4.2 selected answers Math 131 Multivariate Calculus D Joyce, Spring 2014 4. Determine the nature of the critical points of Section 4. selected answers Math 11 Multivariate Calculus D Joyce, Spring 014 Exercises from section 4.: 6, 1 16.. Determine the nature of the critical

More information

2. Graphical Models. Undirected graphical models. Factor graphs. Bayesian networks. Conversion between graphical models. Graphical Models 2-1

2. Graphical Models. Undirected graphical models. Factor graphs. Bayesian networks. Conversion between graphical models. Graphical Models 2-1 Graphical Models 2-1 2. Graphical Models Undirected graphical models Factor graphs Bayesian networks Conversion between graphical models Graphical Models 2-2 Graphical models There are three families of

More information

Section 3.1: Nonseparable Graphs Cut vertex of a connected graph G: A vertex x G such that G x is not connected. Theorem 3.1, p. 57: Every connected

Section 3.1: Nonseparable Graphs Cut vertex of a connected graph G: A vertex x G such that G x is not connected. Theorem 3.1, p. 57: Every connected Section 3.1: Nonseparable Graphs Cut vertex of a connected graph G: A vertex x G such that G x is not connected. Theorem 3.1, p. 57: Every connected graph G with at least 2 vertices contains at least 2

More information

Philadelphia University Faculty of Information Technology Department of Computer Science. Computer Logic Design. By Dareen Hamoudeh.

Philadelphia University Faculty of Information Technology Department of Computer Science. Computer Logic Design. By Dareen Hamoudeh. Philadelphia University Faculty of Information Technology Department of Computer Science Computer Logic Design By Dareen Hamoudeh Dareen Hamoudeh 1 Canonical Forms (Standard Forms of Expression) Minterms

More information

Loopy Belief Propagation

Loopy Belief Propagation Loopy Belief Propagation Research Exam Kristin Branson September 29, 2003 Loopy Belief Propagation p.1/73 Problem Formalization Reasoning about any real-world problem requires assumptions about the structure

More information

Av. Prof. Mello Moraes, 2231, , São Paulo, SP - Brazil

Av. Prof. Mello Moraes, 2231, , São Paulo, SP - Brazil " Generalizing Variable Elimination in Bayesian Networks FABIO GAGLIARDI COZMAN Escola Politécnica, University of São Paulo Av Prof Mello Moraes, 31, 05508-900, São Paulo, SP - Brazil fgcozman@uspbr Abstract

More information

Machine Learning!!!!! Srihari. Chain Graph Models. Sargur Srihari

Machine Learning!!!!! Srihari. Chain Graph Models. Sargur Srihari Chain Graph Models Sargur Srihari srihari@cedar.buffalo.edu 1 Topics PDAGs or Chain Graphs Generalization of CRF to Chain Graphs Independencies in Chain Graphs Summary BN versus MN 2 Partially Directed

More information

Computer vision: models, learning and inference. Chapter 10 Graphical Models

Computer vision: models, learning and inference. Chapter 10 Graphical Models Computer vision: models, learning and inference Chapter 10 Graphical Models Independence Two variables x 1 and x 2 are independent if their joint probability distribution factorizes as Pr(x 1, x 2 )=Pr(x

More information

BOOLEAN ALGEBRA. 1. State & Verify Laws by using :

BOOLEAN ALGEBRA. 1. State & Verify Laws by using : BOOLEAN ALGEBRA. State & Verify Laws by using :. State and algebraically verify Absorption Laws. (2) Absorption law states that (i) X + XY = X and (ii) X(X + Y) = X (i) X + XY = X LHS = X + XY = X( + Y)

More information

Escola Politécnica, University of São Paulo Av. Prof. Mello Moraes, 2231, , São Paulo, SP - Brazil

Escola Politécnica, University of São Paulo Av. Prof. Mello Moraes, 2231, , São Paulo, SP - Brazil Generalizing Variable Elimination in Bayesian Networks FABIO GAGLIARDI COZMAN Escola Politécnica, University of São Paulo Av. Prof. Mello Moraes, 2231, 05508-900, São Paulo, SP - Brazil fgcozman@usp.br

More information

Belief propagation in a bucket-tree. Handouts, 275B Fall Rina Dechter. November 1, 2000

Belief propagation in a bucket-tree. Handouts, 275B Fall Rina Dechter. November 1, 2000 Belief propagation in a bucket-tree Handouts, 275B Fall-2000 Rina Dechter November 1, 2000 1 From bucket-elimination to tree-propagation The bucket-elimination algorithm, elim-bel, for belief updating

More information

Unit-IV Boolean Algebra

Unit-IV Boolean Algebra Unit-IV Boolean Algebra Boolean Algebra Chapter: 08 Truth table: Truth table is a table, which represents all the possible values of logical variables/statements along with all the possible results of

More information

OSU CS 536 Probabilistic Graphical Models. Loopy Belief Propagation and Clique Trees / Join Trees

OSU CS 536 Probabilistic Graphical Models. Loopy Belief Propagation and Clique Trees / Join Trees OSU CS 536 Probabilistic Graphical Models Loopy Belief Propagation and Clique Trees / Join Trees Slides from Kevin Murphy s Graphical Model Tutorial (with minor changes) Reading: Koller and Friedman Ch

More information

Node Aggregation for Distributed Inference in Bayesian Networks

Node Aggregation for Distributed Inference in Bayesian Networks Node Aggregation for Distributed Inference in Bayesian Networks Kuo-Chu Chang and Robert Fung Advanced Decision Systmes 1500 Plymouth Street Mountain View, California 94043-1230 Abstract This study describes

More information

Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science Algorithms for Inference Fall 2014

Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science Algorithms for Inference Fall 2014 Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science 6.438 Algorithms for Inference Fall 2014 1 Course Overview This course is about performing inference in complex

More information

Graphical Analysis of Value of Information in Decision Models

Graphical Analysis of Value of Information in Decision Models From: FLAIRS-01 Proceedings. Copyright 2001, AAAI (www.aaai.org). All rights reserved. Graphical Analysis of Value of Information in Decision Models Songsong Xu Kim-Leng Poh Department of lndustrial &

More information

Stat 5421 Lecture Notes Graphical Models Charles J. Geyer April 27, Introduction. 2 Undirected Graphs

Stat 5421 Lecture Notes Graphical Models Charles J. Geyer April 27, Introduction. 2 Undirected Graphs Stat 5421 Lecture Notes Graphical Models Charles J. Geyer April 27, 2016 1 Introduction Graphical models come in many kinds. There are graphical models where all the variables are categorical (Lauritzen,

More information

On the number of quasi-kernels in digraphs

On the number of quasi-kernels in digraphs On the number of quasi-kernels in digraphs Gregory Gutin Department of Computer Science Royal Holloway, University of London Egham, Surrey, TW20 0EX, UK gutin@dcs.rhbnc.ac.uk Khee Meng Koh Department of

More information

Section 10.1: Graphs and Graph Models. Introduction to Graphs Definition of a Graph Types of Graphs Examples of Graphs

Section 10.1: Graphs and Graph Models. Introduction to Graphs Definition of a Graph Types of Graphs Examples of Graphs Graphs Chapter 10 Section 10.1: Graphs and Graph Models Introduction to Graphs Definition of a Graph Types of Graphs Examples of Graphs a b c e d Introduction to Graphs Graphs are Discrete Structures that

More information

NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS: The copyright law of the United States (title 17, U.S. Code) governs the making of photocopies or

NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS: The copyright law of the United States (title 17, U.S. Code) governs the making of photocopies or NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS: The copyright law of the United States (title 17, U.S. Code) governs the making of photocopies or other reproductions of copyrighted material. Any copying

More information

Social science application of graphical models on mobility data

Social science application of graphical models on mobility data Social science application of graphical models on mobility data Summary of the PhD dissertation of Renáta Németh Supervisor: Tamás Rudas, DSc Department of Statistics Doctoral Program in Sociology Eötvös

More information

A note on the pairwise Markov condition in directed Markov fields

A note on the pairwise Markov condition in directed Markov fields TECHNICAL REPORT R-392 April 2012 A note on the pairwise Markov condition in directed Markov fields Judea Pearl University of California, Los Angeles Computer Science Department Los Angeles, CA, 90095-1596,

More information

On Sparse Gaussian Chain Graph Models

On Sparse Gaussian Chain Graph Models On Sparse Gaussian Chain Graph Models Calvin McCarter Machine Learning Department Carnegie Mellon University calvinm@cmu.edu Seyoung Kim Lane Center for Computational Biology Carnegie Mellon University

More information

Graphical Models. Pradeep Ravikumar Department of Computer Science The University of Texas at Austin

Graphical Models. Pradeep Ravikumar Department of Computer Science The University of Texas at Austin Graphical Models Pradeep Ravikumar Department of Computer Science The University of Texas at Austin Useful References Graphical models, exponential families, and variational inference. M. J. Wainwright

More information

Machine Learning

Machine Learning Machine Learning 10-601 Tom M. Mitchell Machine Learning Department Carnegie Mellon University February 25, 2015 Today: Graphical models Bayes Nets: Inference Learning EM Readings: Bishop chapter 8 Mitchell

More information

COS Lecture 13 Autonomous Robot Navigation

COS Lecture 13 Autonomous Robot Navigation COS 495 - Lecture 13 Autonomous Robot Navigation Instructor: Chris Clark Semester: Fall 2011 1 Figures courtesy of Siegwart & Nourbakhsh Control Structure Prior Knowledge Operator Commands Localization

More information

(1) Given the following system of linear equations, which depends on a parameter a R, 3x y + 5z = 2 4x + y + (a 2 14)z = a + 2

(1) Given the following system of linear equations, which depends on a parameter a R, 3x y + 5z = 2 4x + y + (a 2 14)z = a + 2 (1 Given the following system of linear equations, which depends on a parameter a R, x + 2y 3z = 4 3x y + 5z = 2 4x + y + (a 2 14z = a + 2 (a Classify the system of equations depending on the values of

More information

A Transformational Characterization of Markov Equivalence for Directed Maximal Ancestral Graphs

A Transformational Characterization of Markov Equivalence for Directed Maximal Ancestral Graphs A Transformational Characterization of Markov Equivalence for Directed Maximal Ancestral Graphs Jiji Zhang Philosophy Department Carnegie Mellon University Pittsburgh, PA 15213 jiji@andrew.cmu.edu Abstract

More information

Graphical Models. David M. Blei Columbia University. September 17, 2014

Graphical Models. David M. Blei Columbia University. September 17, 2014 Graphical Models David M. Blei Columbia University September 17, 2014 These lecture notes follow the ideas in Chapter 2 of An Introduction to Probabilistic Graphical Models by Michael Jordan. In addition,

More information

COMP90051 Statistical Machine Learning

COMP90051 Statistical Machine Learning COMP90051 Statistical Machine Learning Semester 2, 2016 Lecturer: Trevor Cohn 20. PGM Representation Next Lectures Representation of joint distributions Conditional/marginal independence * Directed vs

More information

Markov Random Fields

Markov Random Fields 3750 Machine earning ecture 4 Markov Random ields Milos auskrecht milos@cs.pitt.edu 5329 ennott quare 3750 dvanced Machine earning Markov random fields Probabilistic models with symmetric dependences.

More information

Part I: Sum Product Algorithm and (Loopy) Belief Propagation. What s wrong with VarElim. Forwards algorithm (filtering) Forwards-backwards algorithm

Part I: Sum Product Algorithm and (Loopy) Belief Propagation. What s wrong with VarElim. Forwards algorithm (filtering) Forwards-backwards algorithm OU 56 Probabilistic Graphical Models Loopy Belief Propagation and lique Trees / Join Trees lides from Kevin Murphy s Graphical Model Tutorial (with minor changes) eading: Koller and Friedman h 0 Part I:

More information

Lecture 3: Conditional Independence - Undirected

Lecture 3: Conditional Independence - Undirected CS598: Graphical Models, Fall 2016 Lecture 3: Conditional Independence - Undirected Lecturer: Sanmi Koyejo Scribe: Nate Bowman and Erin Carrier, Aug. 30, 2016 1 Review for the Bayes-Ball Algorithm Recall

More information

A Discovery Algorithm for Directed Cyclic Graphs

A Discovery Algorithm for Directed Cyclic Graphs A Discovery Algorithm for Directed Cyclic Graphs Thomas Richardson 1 Logic and Computation Programme CMU, Pittsburgh PA 15213 1. Introduction Directed acyclic graphs have been used fruitfully to represent

More information

CS 188: Artificial Intelligence

CS 188: Artificial Intelligence CS 188: Artificial Intelligence Bayes Nets: Inference Instructors: Dan Klein and Pieter Abbeel --- University of California, Berkeley [These slides were created by Dan Klein and Pieter Abbeel for CS188

More information

Conditional Random Fields : Theory and Application

Conditional Random Fields : Theory and Application Conditional Random Fields : Theory and Application Matt Seigel (mss46@cam.ac.uk) 3 June 2010 Cambridge University Engineering Department Outline The Sequence Classification Problem Linear Chain CRFs CRF

More information

UNIT 2 BOOLEAN ALGEBRA

UNIT 2 BOOLEAN ALGEBRA UNIT 2 BOOLEN LGEBR Spring 2 2 Contents Introduction Basic operations Boolean expressions and truth tables Theorems and laws Basic theorems Commutative, associative, and distributive laws Simplification

More information

Graphical Models & HMMs

Graphical Models & HMMs Graphical Models & HMMs Henrik I. Christensen Robotics & Intelligent Machines @ GT Georgia Institute of Technology, Atlanta, GA 30332-0280 hic@cc.gatech.edu Henrik I. Christensen (RIM@GT) Graphical Models

More information

Bayesian Classification Using Probabilistic Graphical Models

Bayesian Classification Using Probabilistic Graphical Models San Jose State University SJSU ScholarWorks Master's Projects Master's Theses and Graduate Research Spring 2014 Bayesian Classification Using Probabilistic Graphical Models Mehal Patel San Jose State University

More information

Introduction to Mobile Robotics SLAM Landmark-based FastSLAM

Introduction to Mobile Robotics SLAM Landmark-based FastSLAM Introduction to Mobile Robotics SLAM Landmark-based FastSLAM Wolfram Burgard, Cyrill Stachniss, Maren Bennewitz, Diego Tipaldi, Luciano Spinello Partial slide courtesy of Mike Montemerlo 1 The SLAM Problem

More information

Introduction to Hidden Markov models

Introduction to Hidden Markov models 1/38 Introduction to Hidden Markov models Mark Johnson Macquarie University September 17, 2014 2/38 Outline Sequence labelling Hidden Markov Models Finding the most probable label sequence Higher-order

More information

CS242: Probabilistic Graphical Models Lecture 2B: Loopy Belief Propagation & Junction Trees

CS242: Probabilistic Graphical Models Lecture 2B: Loopy Belief Propagation & Junction Trees CS242: Probabilistic Graphical Models Lecture 2B: Loopy Belief Propagation & Junction Trees Professor Erik Sudderth Brown University Computer Science September 22, 2016 Some figures and materials courtesy

More information

Graphical Models Part 1-2 (Reading Notes)

Graphical Models Part 1-2 (Reading Notes) Graphical Models Part 1-2 (Reading Notes) Wednesday, August 3 2011, 2:35 PM Notes for the Reading of Chapter 8 Graphical Models of the book Pattern Recognition and Machine Learning (PRML) by Chris Bishop

More information

Testing Independencies in Bayesian Networks with i-separation

Testing Independencies in Bayesian Networks with i-separation Proceedings of the Twenty-Ninth International Florida Artificial Intelligence Research Society Conference Testing Independencies in Bayesian Networks with i-separation Cory J. Butz butz@cs.uregina.ca University

More information

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 20, NO. 9, SEPTEMBER

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 20, NO. 9, SEPTEMBER IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 20, NO. 9, SEPTEMBER 2011 2401 Probabilistic Image Modeling With an Extended Chain Graph for Human Activity Recognition and Image Segmentation Lei Zhang, Member,

More information

Exploring Localization In Bayesian Networks For Large Expert Systems

Exploring Localization In Bayesian Networks For Large Expert Systems 344 Exploring Localization In Bayesian Networks For Large Expert Systems Yang Xiang, David Poole t and Michael P. Beddoes Expert Systems Laboratory, Centre for Systems Science Simon Fraser University,

More information

Junction tree propagation - BNDG 4-4.6

Junction tree propagation - BNDG 4-4.6 Junction tree propagation - BNDG 4-4. Finn V. Jensen and Thomas D. Nielsen Junction tree propagation p. 1/2 Exact Inference Message Passing in Join Trees More sophisticated inference technique; used in

More information

Directed Graphical Models

Directed Graphical Models Copyright c 2008 2010 John Lafferty, Han Liu, and Larry Wasserman Do Not Distribute Chapter 18 Directed Graphical Models Graphs give a powerful way of representing independence relations and computing

More information

Expectation Propagation

Expectation Propagation Expectation Propagation Erik Sudderth 6.975 Week 11 Presentation November 20, 2002 Introduction Goal: Efficiently approximate intractable distributions Features of Expectation Propagation (EP): Deterministic,

More information

Graphical Probability Models for Inference and Decision Making

Graphical Probability Models for Inference and Decision Making Graphical Probability Models for Inference and Decision Making Unit 4: Inference in Graphical Models The Junction Tree Algorithm Instructor: Kathryn Blackmond Laskey Unit 4 (v2) - 1 - Learning Objectives

More information

Computer Vision Group Prof. Daniel Cremers. 4a. Inference in Graphical Models

Computer Vision Group Prof. Daniel Cremers. 4a. Inference in Graphical Models Group Prof. Daniel Cremers 4a. Inference in Graphical Models Inference on a Chain (Rep.) The first values of µ α and µ β are: The partition function can be computed at any node: Overall, we have O(NK 2

More information

CS 343: Artificial Intelligence

CS 343: Artificial Intelligence CS 343: Artificial Intelligence Bayes Nets: Independence Prof. Scott Niekum The University of Texas at Austin [These slides based on those of Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley.

More information

Causality in Communication: The Agent-Encapsulated Bayesian Network Model

Causality in Communication: The Agent-Encapsulated Bayesian Network Model Causality in Communication: The Agent-Encapsulated Bayesian Network Model Scott Langevin Oculus Info, Inc. Toronto, Ontario, Canada Marco Valtorta mgv@cse.sc.edu University of South Carolina, Columbia,

More information

DSAS Laboratory no 4. Laboratory 4. Logic forms

DSAS Laboratory no 4. Laboratory 4. Logic forms Laboratory 4 Logic forms 4.1 Laboratory work goals Going from Boolean functions to Boolean forms. Logic forms equivalence. Boolean forms simplification. Shannon s theorems. Representation in NAND and NOR

More information

Recognizing Interval Bigraphs by Forbidden Patterns

Recognizing Interval Bigraphs by Forbidden Patterns Recognizing Interval Bigraphs by Forbidden Patterns Arash Rafiey Simon Fraser University, Vancouver, Canada, and Indiana State University, IN, USA arashr@sfu.ca, arash.rafiey@indstate.edu Abstract Let

More information

Mean Field and Variational Methods finishing off

Mean Field and Variational Methods finishing off Readings: K&F: 10.1, 10.5 Mean Field and Variational Methods finishing off Graphical Models 10708 Carlos Guestrin Carnegie Mellon University November 5 th, 2008 10-708 Carlos Guestrin 2006-2008 1 10-708

More information

Today. Logistic Regression. Decision Trees Redux. Graphical Models. Maximum Entropy Formulation. Now using Information Theory

Today. Logistic Regression. Decision Trees Redux. Graphical Models. Maximum Entropy Formulation. Now using Information Theory Today Logistic Regression Maximum Entropy Formulation Decision Trees Redux Now using Information Theory Graphical Models Representing conditional dependence graphically 1 Logistic Regression Optimization

More information