A Breeze through SAS options to Enter a Zero-filled row Kajal Tahiliani, ICON Clinical Research, Warrington, PA

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "A Breeze through SAS options to Enter a Zero-filled row Kajal Tahiliani, ICON Clinical Research, Warrington, PA"

Transcription

1 ABSTRACT: A Breeze through SAS options to Enter a Zero-filled row Kajal Tahiliani, ICON Clinical Research, Warrington, PA Programmers often need to summarize data into tables as per template. But study data might not always have all the data combinations as required in the template. In such cases we need add rows that contain zeroes for data combinations that do not exist in the data and insert them into our results. This paper discusses the different methods to add rows containing zeroes. INTRODUCTION: Look at the template for a Demographics table (Table 1) below. Looks familiar? As programmers we often program tables like this. Here, we summarize the number of subjects within four race categories and Treatment group. Table 1: Demographics Table Often, the data does not have all the data combinations as required in the template as shown in the example data (Table 2) below. Here, we can see that we have subjects for all races for the group but subject in only one race for the group. Table 2: Example Data. In such cases we need rows containing zero to complete the display. Adding a zero row always seems like an unnecessary chore. This paper discusses the different methods in SAS for displaying all combinations when they are not present in the source data.

2 METHODS: (1) DUMMY DATASET METHOD In the Dummy Dataset Method results from Proc Freq or Proc Means and merged with a dummy dataset. A dummy dataset is a dataset which contains all data combinations as required in the table. As a result, we get a dataset with all data combinations as in the table template. COUNT COUNT 1 1 Asian 1 Asian 1 1 Asian Asian Asian Figure 1: Schematic Diagram showing the Dummy Dataset Method. Advantage: Straight Forward Method. Disadvantages: Need to make an extra Dummy dataset. The Dummy dataset is not data-driven. Creation of dummy dataset can be complex when many combinations of categories are required.

3 (2) PROC FREQ USING SPARSE OPTION: Proc Freq with SPARSE option outputs one record for each possible combination of values of the variables in the tables statement. It also automatically adds 0 in the count column for the combinations added by sparse. Syntax: proc freq data = dataset noprint; table trt * race / sparse out = dataset1 list missing ; run; COUNT * Note Asian category is not present in the final dataset because it is not present in the actual data Figure 2: Schematic Diagram showing the Proc Freq using SPARSE option Method. Advantages: Eliminates the extra steps needed to make a dummy dataset and the corresponding merge step. Makes the program more efficient than dummy dataset. Data-driven. Disadvantages: There must be at least one occurrence of the required value in the variable for SPARSE to create a full summary. Cannot be used reliably on interim data since the next cut-off data might be different.

4 (3) PROC MEANS USING COMPLETETYPES OPTION: Proc Means with COMPLETETYPES option is similar to the SPARSE option used in Proc Freq. It outputs one record for each possible combination of values of the variables in the class statement and automatically adds a 0 in the N column of the resultant output. Syntax: proc means data = dataset completetypes; class trt race; output out = aemean n = N; run; N * Note Asian category is not present in the final dataset because it is not present in the actual data Figure 3: Schematic Diagram showing the Proc Means using COMPLETETYPES option Method. Advantages: Eliminates the extra steps needed to make a dummy dataset and the corresponding merge step. Makes the program more efficient than dummy dataset. Data-driven. Disadvantages: There must be at least one occurrence of the required value in the variable for COMPLETETYPES to create a full summary. Cannot be used reliably on interim data since the next data might be different.

5 (4) PROC MEANS WITH COMPLETETYPES and PRELOADFMT OPTION: Proc Means with PRELOADFMT in combination with COMPLETETYPES option creates the output with all the possible combinations based on a format even if the combination doesn't exist in the input dataset. This method needs a format, completetypes in the proc means statement and preloadfmt in the class statement as shown below. proc format; value racef 1 = '' 2 = ' 3 = 'Asian' 4= '' ; quit; Syntax: proc means data = dm completetypes; class trt racen / preloadfmt; format racen racef.; output out = meanplf n = N; run; N 1 1 Asian Asian 0 0 * Note Asian category has been added to the final dataset due to PRELOADFMT Figure 4: Schematic Diagram showing the Proc Means using COMPLETETYPES and PRELOADFMT option Method. Advantages: There is no requirement to have at least one occurrence of a value in the data. Can be reliably used on all data.

6 Disadvantage: Need to create formats before using the PRELOADFMT option if the formats do not exist already. CONCLUSION: If you have data that is not going to change and there is one occurrence of each variable category then SPARSE or COMPLETETYPES option would be adequate. However, in most situations the actual data is dynamic, therefore using proc means with COMPLETETYPES and PRELOADFMT option provides the most complete data-driven solution. REFERENCES: Peter R. Welbrock. ACKNOWLEDGEMENT: SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the USA and other countries. indicates USA registration. brand and product names are registered trademarks or trademarks of their respective companies. I would like to sincerely thank Mr. Tony Pisegna for his constant support and encouragement. CONTACT INFORMATION: The author can be contacted at: Kajal Tahiliani ICON Clinical Research 2800 Kelly Rd, Suite 200 Warrington, PA Tel :

Checking for Duplicates Wendi L. Wright

Checking for Duplicates Wendi L. Wright Checking for Duplicates Wendi L. Wright ABSTRACT This introductory level paper demonstrates a quick way to find duplicates in a dataset (with both simple and complex keys). It discusses what to do when

More information

%MAKE_IT_COUNT: An Example Macro for Dynamic Table Programming Britney Gilbert, Juniper Tree Consulting, Porter, Oklahoma

%MAKE_IT_COUNT: An Example Macro for Dynamic Table Programming Britney Gilbert, Juniper Tree Consulting, Porter, Oklahoma Britney Gilbert, Juniper Tree Consulting, Porter, Oklahoma ABSTRACT Today there is more pressure on programmers to deliver summary outputs faster without sacrificing quality. By using just a few programming

More information

One Project, Two Teams: The Unblind Leading the Blind

One Project, Two Teams: The Unblind Leading the Blind ABSTRACT PharmaSUG 2017 - Paper BB01 One Project, Two Teams: The Unblind Leading the Blind Kristen Reece Harrington, Rho, Inc. In the pharmaceutical world, there are instances where multiple independent

More information

Using Proc Freq for Manageable Data Summarization

Using Proc Freq for Manageable Data Summarization 1 CC27 Using Proc Freq for Manageable Data Summarization Curtis Wolf, DataCeutics, Inc. A SIMPLE BUT POWERFUL PROC The Frequency procedure can be very useful for getting a general sense of the contents

More information

Let Hash SUMINC Count For You Joseph Hinson, Accenture Life Sciences, Berwyn, PA, USA

Let Hash SUMINC Count For You Joseph Hinson, Accenture Life Sciences, Berwyn, PA, USA ABSTRACT PharmaSUG 2014 - Paper CC02 Let Hash SUMINC Count For You Joseph Hinson, Accenture Life Sciences, Berwyn, PA, USA Counting of events is inevitable in clinical programming and is easily accomplished

More information

A SAS Macro for Generating Informative Cumulative/Point-wise Bar Charts

A SAS Macro for Generating Informative Cumulative/Point-wise Bar Charts Paper PO16 A SAS Macro for Generating Informative Cumulative/Point-wise Bar Charts Xuejing Mao, Eli Lilly and Company, Indianapolis, IN Mario Widel, Eli Lilly and Company, Indianapolis, IN ABSTRACT Bar

More information

An Alternate Way to Create the Standard SDTM Domains

An Alternate Way to Create the Standard SDTM Domains PharmaSUG 2018 - Paper DS-12 ABSTRACT An Alternate Way to Create the Standard SDTM Domains Sunil Kumar Pusarla, Omeros Corporation Sponsors who initiate clinical trials after 2016-12-17 are required to

More information

A Few Quick and Efficient Ways to Compare Data

A Few Quick and Efficient Ways to Compare Data A Few Quick and Efficient Ways to Compare Data Abraham Pulavarti, ICON Clinical Research, North Wales, PA ABSTRACT In the fast paced environment of a clinical research organization, a SAS programmer has

More information

Using PROC SQL to Generate Shift Tables More Efficiently

Using PROC SQL to Generate Shift Tables More Efficiently ABSTRACT SESUG Paper 218-2018 Using PROC SQL to Generate Shift Tables More Efficiently Jenna Cody, IQVIA Shift tables display the change in the frequency of subjects across specified categories from baseline

More information

PharmaSUG Paper TT11

PharmaSUG Paper TT11 PharmaSUG 2014 - Paper TT11 What is the Definition of Global On-Demand Reporting within the Pharmaceutical Industry? Eric Kammer, Novartis Pharmaceuticals Corporation, East Hanover, NJ ABSTRACT It is not

More information

CC13 An Automatic Process to Compare Files. Simon Lin, Merck & Co., Inc., Rahway, NJ Huei-Ling Chen, Merck & Co., Inc., Rahway, NJ

CC13 An Automatic Process to Compare Files. Simon Lin, Merck & Co., Inc., Rahway, NJ Huei-Ling Chen, Merck & Co., Inc., Rahway, NJ CC13 An Automatic Process to Compare Files Simon Lin, Merck & Co., Inc., Rahway, NJ Huei-Ling Chen, Merck & Co., Inc., Rahway, NJ ABSTRACT Comparing different versions of output files is often performed

More information

An Efficient Method to Create Titles for Multiple Clinical Reports Using Proc Format within A Do Loop Youying Yu, PharmaNet/i3, West Chester, Ohio

An Efficient Method to Create Titles for Multiple Clinical Reports Using Proc Format within A Do Loop Youying Yu, PharmaNet/i3, West Chester, Ohio PharmaSUG 2012 - Paper CC12 An Efficient Method to Create Titles for Multiple Clinical Reports Using Proc Format within A Do Loop Youying Yu, PharmaNet/i3, West Chester, Ohio ABSTRACT Do you know how to

More information

Ditch the Data Memo: Using Macro Variables and Outer Union Corresponding in PROC SQL to Create Data Set Summary Tables Andrea Shane MDRC, Oakland, CA

Ditch the Data Memo: Using Macro Variables and Outer Union Corresponding in PROC SQL to Create Data Set Summary Tables Andrea Shane MDRC, Oakland, CA ABSTRACT Ditch the Data Memo: Using Macro Variables and Outer Union Corresponding in PROC SQL to Create Data Set Summary Tables Andrea Shane MDRC, Oakland, CA Data set documentation is essential to good

More information

Using PROC SQL to Calculate FIRSTOBS David C. Tabano, Kaiser Permanente, Denver, CO

Using PROC SQL to Calculate FIRSTOBS David C. Tabano, Kaiser Permanente, Denver, CO Using PROC SQL to Calculate FIRSTOBS David C. Tabano, Kaiser Permanente, Denver, CO ABSTRACT The power of SAS programming can at times be greatly improved using PROC SQL statements for formatting and manipulating

More information

PROC REPORT AN INTRODUCTION

PROC REPORT AN INTRODUCTION Table Generation Using the PROC REPORT Feature Edward R. Smith, Senior Scientific Programmer Covance Periapproval Services Inc, Radnor, PA ABSTRACT The PROC REPORT procedure is a powerful report generation

More information

Using Templates Created by the SAS/STAT Procedures

Using Templates Created by the SAS/STAT Procedures Paper 081-29 Using Templates Created by the SAS/STAT Procedures Yanhong Huang, Ph.D. UMDNJ, Newark, NJ Jianming He, Solucient, LLC., Berkeley Heights, NJ ABSTRACT SAS procedures provide a large quantity

More information

ABSTRACT INTRODUCTION PROBLEM: TOO MUCH INFORMATION? math nrt scr. ID School Grade Gender Ethnicity read nrt scr

ABSTRACT INTRODUCTION PROBLEM: TOO MUCH INFORMATION? math nrt scr. ID School Grade Gender Ethnicity read nrt scr ABSTRACT A strategy for understanding your data: Binary Flags and PROC MEANS Glen Masuda, SRI International, Menlo Park, CA Tejaswini Tiruke, SRI International, Menlo Park, CA Many times projects have

More information

PharmaSUG 2013 CC26 Automating the Labeling of X- Axis Sanjiv Ramalingam, Vertex Pharmaceuticals, Inc., Cambridge, MA

PharmaSUG 2013 CC26 Automating the Labeling of X- Axis Sanjiv Ramalingam, Vertex Pharmaceuticals, Inc., Cambridge, MA PharmaSUG 2013 CC26 Automating the Labeling of X- Axis Sanjiv Ramalingam, Vertex Pharmaceuticals, Inc., Cambridge, MA ABSTRACT Labeling of the X-axis usually involves a tedious axis statement specifying

More information

Choosing the Right Technique to Merge Large Data Sets Efficiently Qingfeng Liang, Community Care Behavioral Health Organization, Pittsburgh, PA

Choosing the Right Technique to Merge Large Data Sets Efficiently Qingfeng Liang, Community Care Behavioral Health Organization, Pittsburgh, PA Choosing the Right Technique to Merge Large Data Sets Efficiently Qingfeng Liang, Community Care Behavioral Health Organization, Pittsburgh, PA ABSTRACT This paper outlines different SAS merging techniques

More information

Clinical Data Visualization using TIBCO Spotfire and SAS

Clinical Data Visualization using TIBCO Spotfire and SAS ABSTRACT SESUG Paper RIV107-2017 Clinical Data Visualization using TIBCO Spotfire and SAS Ajay Gupta, PPD, Morrisville, USA In Pharmaceuticals/CRO industries, you may receive requests from stakeholders

More information

Give me EVERYTHING! A macro to combine the CONTENTS procedure output and formats. Lynn Mullins, PPD, Cincinnati, Ohio

Give me EVERYTHING! A macro to combine the CONTENTS procedure output and formats. Lynn Mullins, PPD, Cincinnati, Ohio PharmaSUG 2014 - Paper CC43 Give me EVERYTHING! A macro to combine the CONTENTS procedure output and formats. Lynn Mullins, PPD, Cincinnati, Ohio ABSTRACT The PROC CONTENTS output displays SAS data set

More information

Mapping Clinical Data to a Standard Structure: A Table Driven Approach

Mapping Clinical Data to a Standard Structure: A Table Driven Approach ABSTRACT Paper AD15 Mapping Clinical Data to a Standard Structure: A Table Driven Approach Nancy Brucken, i3 Statprobe, Ann Arbor, MI Paul Slagle, i3 Statprobe, Ann Arbor, MI Clinical Research Organizations

More information

Easy CSR In-Text Table Automation, Oh My

Easy CSR In-Text Table Automation, Oh My PharmaSUG 2018 - Paper BB-09 ABSTRACT Easy CSR In-Text Table Automation, Oh My Janet Stuelpner, SAS Institute Your medical writers are about to embark on creating the narrative for the clinical study report

More information

Sorting big datasets. Do we really need it? Daniil Shliakhov, Experis Clinical, Kharkiv, Ukraine

Sorting big datasets. Do we really need it? Daniil Shliakhov, Experis Clinical, Kharkiv, Ukraine PharmaSUG 2015 - Paper QT21 Sorting big datasets. Do we really need it? Daniil Shliakhov, Experis Clinical, Kharkiv, Ukraine ABSTRACT Very often working with big data causes difficulties for SAS programmers.

More information

Get SAS sy with PROC SQL Amie Bissonett, Pharmanet/i3, Minneapolis, MN

Get SAS sy with PROC SQL Amie Bissonett, Pharmanet/i3, Minneapolis, MN PharmaSUG 2012 - Paper TF07 Get SAS sy with PROC SQL Amie Bissonett, Pharmanet/i3, Minneapolis, MN ABSTRACT As a data analyst for genetic clinical research, I was often working with familial data connecting

More information

Indenting with Style

Indenting with Style ABSTRACT Indenting with Style Bill Coar, Axio Research, Seattle, WA Within the pharmaceutical industry, many SAS programmers rely heavily on Proc Report. While it is used extensively for summary tables

More information

PharmaSUG Paper PO22

PharmaSUG Paper PO22 PharmaSUG 2015 - Paper PO22 Challenges in Developing ADSL with Baseline Data Hongyu Liu, Vertex Pharmaceuticals Incorporated, Boston, MA Hang Pang, Vertex Pharmaceuticals Incorporated, Boston, MA ABSTRACT

More information

Getting it Done with PROC TABULATE

Getting it Done with PROC TABULATE ABSTRACT Getting it Done with PROC TABULATE Michael J. Williams, ICON Clinical Research, San Francisco, CA The task of displaying statistical summaries of different types of variables in a single table

More information

Data Manipulations Using Arrays and DO Loops Patricia Hall and Jennifer Waller, Medical College of Georgia, Augusta, GA

Data Manipulations Using Arrays and DO Loops Patricia Hall and Jennifer Waller, Medical College of Georgia, Augusta, GA Paper SBC-123 Data Manipulations Using Arrays and DO Loops Patricia Hall and Jennifer Waller, Medical College of Georgia, Augusta, GA ABSTRACT Using public databases for data analysis presents a unique

More information

PharmaSUG Paper PO21

PharmaSUG Paper PO21 PharmaSUG 2015 - Paper PO21 Evaluating SDTM SUPP Domain For AdaM - Trash Can Or Buried Treasure Xiaopeng Li, Celerion, Lincoln, NE Yi Liu, Celerion, Lincoln, NE Chun Feng, Celerion, Lincoln, NE ABSTRACT

More information

PharmaSUG Paper SP09

PharmaSUG Paper SP09 PharmaSUG 2013 - Paper SP09 SAS 9.3: Better graphs, Easier lives for SAS programmers, PK scientists and pharmacometricians Alice Zong, Janssen Research & Development, LLC, Spring House, PA ABSTRACT Data

More information

Validation Summary using SYSINFO

Validation Summary using SYSINFO Validation Summary using SYSINFO Srinivas Vanam Mahipal Vanam Shravani Vanam Percept Pharma Services, Bridgewater, NJ ABSTRACT This paper presents a macro that produces a Validation Summary using SYSINFO

More information

Quick and Efficient Way to Check the Transferred Data Divyaja Padamati, Eliassen Group Inc., North Carolina.

Quick and Efficient Way to Check the Transferred Data Divyaja Padamati, Eliassen Group Inc., North Carolina. ABSTRACT PharmaSUG 2016 - Paper QT03 Quick and Efficient Way to Check the Transferred Data Divyaja Padamati, Eliassen Group Inc., North Carolina. Consistency, quality and timelines are the three milestones

More information

Customized Flowcharts Using SAS Annotation Abhinav Srivastva, PaxVax Inc., Redwood City, CA

Customized Flowcharts Using SAS Annotation Abhinav Srivastva, PaxVax Inc., Redwood City, CA ABSTRACT Customized Flowcharts Using SAS Annotation Abhinav Srivastva, PaxVax Inc., Redwood City, CA Data visualization is becoming a trend in all sectors where critical business decisions or assessments

More information

Using GSUBMIT command to customize the interface in SAS Xin Wang, Fountain Medical Technology Co., ltd, Nanjing, China

Using GSUBMIT command to customize the interface in SAS Xin Wang, Fountain Medical Technology Co., ltd, Nanjing, China PharmaSUG China 2015 - Paper PO71 Using GSUBMIT command to customize the interface in SAS Xin Wang, Fountain Medical Technology Co., ltd, Nanjing, China One of the reasons that SAS is widely used as the

More information

A Format to Make the _TYPE_ Field of PROC MEANS Easier to Interpret Matt Pettis, Thomson West, Eagan, MN

A Format to Make the _TYPE_ Field of PROC MEANS Easier to Interpret Matt Pettis, Thomson West, Eagan, MN Paper 045-29 A Format to Make the _TYPE_ Field of PROC MEANS Easier to Interpret Matt Pettis, Thomson West, Eagan, MN ABSTRACT: PROC MEANS analyzes datasets according to the variables listed in its Class

More information

Automate Clinical Trial Data Issue Checking and Tracking

Automate Clinical Trial Data Issue Checking and Tracking PharmaSUG 2018 - Paper AD-31 ABSTRACT Automate Clinical Trial Data Issue Checking and Tracking Dale LeSueur and Krishna Avula, Regeneron Pharmaceuticals Inc. Well organized and properly cleaned data are

More information

Creating Forest Plots Using SAS/GRAPH and the Annotate Facility

Creating Forest Plots Using SAS/GRAPH and the Annotate Facility PharmaSUG2011 Paper TT12 Creating Forest Plots Using SAS/GRAPH and the Annotate Facility Amanda Tweed, Millennium: The Takeda Oncology Company, Cambridge, MA ABSTRACT Forest plots have become common in

More information

Automated Creation of Submission-Ready Artifacts Silas McKee, Accenture, Pennsylvania, USA Lourdes Devenney, Accenture, Pennsylvania, USA

Automated Creation of Submission-Ready Artifacts Silas McKee, Accenture, Pennsylvania, USA Lourdes Devenney, Accenture, Pennsylvania, USA Paper DH06 Automated Creation of Submission-Ready Artifacts Silas McKee, Accenture, Pennsylvania, USA Lourdes Devenney, Accenture, Pennsylvania, USA ABSTRACT Despite significant progress towards the standardization

More information

Making the most of SAS Jobs in LSAF

Making the most of SAS Jobs in LSAF PharmaSUG 2018 - Paper AD-26 Making the most of SAS Jobs in LSAF Sonali Garg, Alexion; Greg Weber, DataCeutics ABSTRACT SAS Life Science Analytics Framework (LSAF) provides the ability to have a 21 CFR

More information

Uncommon Techniques for Common Variables

Uncommon Techniques for Common Variables Paper 11863-2016 Uncommon Techniques for Common Variables Christopher J. Bost, MDRC, New York, NY ABSTRACT If a variable occurs in more than one data set being merged, the last value (from the variable

More information

%ANYTL: A Versatile Table/Listing Macro

%ANYTL: A Versatile Table/Listing Macro Paper AD09-2009 %ANYTL: A Versatile Table/Listing Macro Yang Chen, Forest Research Institute, Jersey City, NJ ABSTRACT Unlike traditional table macros, %ANTL has only 3 macro parameters which correspond

More information

Standard Safety Visualization Set-up Using Spotfire

Standard Safety Visualization Set-up Using Spotfire Paper SD08 Standard Safety Visualization Set-up Using Spotfire Michaela Mertes, F. Hoffmann-La Roche, Ltd., Basel, Switzerland ABSTRACT Stakeholders are requesting real-time access to clinical data to

More information

Reducing SAS Dataset Merges with Data Driven Formats

Reducing SAS Dataset Merges with Data Driven Formats Paper CT01 Reducing SAS Dataset Merges with Data Driven Formats Paul Grimsey, Roche Products Ltd, Welwyn Garden City, UK ABSTRACT Merging different data sources is necessary in the creation of analysis

More information

USING PROC TABULATE AND LAG(n) FUNCTION FOR RATES OF CHANGE Khoi To, Office of Planning and Decision Support, Virginia Commonwealth University

USING PROC TABULATE AND LAG(n) FUNCTION FOR RATES OF CHANGE Khoi To, Office of Planning and Decision Support, Virginia Commonwealth University SAS 5581-2016 USING PROC TABULATE AND LAG(n) FUNCTION FOR RATES OF CHANGE Khoi To, Office of Planning and Decision Support, Virginia Commonwealth University ABSTRACT For SAS users, PROC TABULATE and PROC

More information

Data Edit-checks Integration using ODS Tagset Niraj J. Pandya, Element Technologies Inc., NJ Vinodh Paida, Impressive Systems Inc.

Data Edit-checks Integration using ODS Tagset Niraj J. Pandya, Element Technologies Inc., NJ Vinodh Paida, Impressive Systems Inc. PharmaSUG2011 - Paper DM03 Data Edit-checks Integration using ODS Tagset Niraj J. Pandya, Element Technologies Inc., NJ Vinodh Paida, Impressive Systems Inc., TX ABSTRACT In the Clinical trials data analysis

More information

Hash Objects for Everyone

Hash Objects for Everyone SESUG 2015 Paper BB-83 Hash Objects for Everyone Jack Hall, OptumInsight ABSTRACT The introduction of Hash Objects into the SAS toolbag gives programmers a powerful way to improve performance, especially

More information

Using PROC REPORT to Cross-Tabulate Multiple Response Items Patrick Thornton, SRI International, Menlo Park, CA

Using PROC REPORT to Cross-Tabulate Multiple Response Items Patrick Thornton, SRI International, Menlo Park, CA Using PROC REPORT to Cross-Tabulate Multiple Response Items Patrick Thornton, SRI International, Menlo Park, CA ABSTRACT This paper describes for an intermediate SAS user the use of PROC REPORT to create

More information

%EventChart: A Macro to Visualize Data with Multiple Timed Events

%EventChart: A Macro to Visualize Data with Multiple Timed Events %EventChart: A Macro to Visualize Data with Multiple Timed Events Andrew Peng and J. Jack Lee, MD Anderson Cancer Center, Houston, TX ABSTRACT An event chart is a tool to visualize timeline data with multiple

More information

PROC MEANS for Disaggregating Statistics in SAS : One Input Data Set and One Output Data Set with Everything You Need

PROC MEANS for Disaggregating Statistics in SAS : One Input Data Set and One Output Data Set with Everything You Need ABSTRACT Paper PO 133 PROC MEANS for Disaggregating Statistics in SAS : One Input Data Set and One Output Data Set with Everything You Need Imelda C. Go, South Carolina Department of Education, Columbia,

More information

Submission-Ready Define.xml Files Using SAS Clinical Data Integration Melissa R. Martinez, SAS Institute, Cary, NC USA

Submission-Ready Define.xml Files Using SAS Clinical Data Integration Melissa R. Martinez, SAS Institute, Cary, NC USA PharmaSUG 2016 - Paper SS12 Submission-Ready Define.xml Files Using SAS Clinical Data Integration Melissa R. Martinez, SAS Institute, Cary, NC USA ABSTRACT SAS Clinical Data Integration simplifies the

More information

The Proc Transpose Cookbook

The Proc Transpose Cookbook ABSTRACT PharmaSUG 2017 - Paper TT13 The Proc Transpose Cookbook Douglas Zirbel, Wells Fargo and Co. Proc TRANSPOSE rearranges columns and rows of SAS datasets, but its documentation and behavior can be

More information

Creating output datasets using SQL (Structured Query Language) only Andrii Stakhniv, Experis Clinical, Ukraine

Creating output datasets using SQL (Structured Query Language) only Andrii Stakhniv, Experis Clinical, Ukraine ABSTRACT PharmaSUG 2015 Paper QT22 Andrii Stakhniv, Experis Clinical, Ukraine PROC SQL is one of the most powerful procedures in SAS. With this tool we can easily manipulate data and create a large number

More information

Reproducibly Random Values William Garner, Gilead Sciences, Inc., Foster City, CA Ting Bai, Gilead Sciences, Inc., Foster City, CA

Reproducibly Random Values William Garner, Gilead Sciences, Inc., Foster City, CA Ting Bai, Gilead Sciences, Inc., Foster City, CA ABSTRACT PharmaSUG 2015 - Paper QT24 Reproducibly Random Values William Garner, Gilead Sciences, Inc., Foster City, CA Ting Bai, Gilead Sciences, Inc., Foster City, CA For questionnaire data, multiple

More information

Advanced Visualization using TIBCO Spotfire and SAS

Advanced Visualization using TIBCO Spotfire and SAS PharmaSUG 2018 - Paper DV-04 ABSTRACT Advanced Visualization using TIBCO Spotfire and SAS Ajay Gupta, PPD, Morrisville, USA In Pharmaceuticals/CRO industries, you may receive requests from stakeholders

More information

An Efficient Solution to Efficacy ADaM Design and Implementation

An Efficient Solution to Efficacy ADaM Design and Implementation PharmaSUG 2017 - Paper AD05 An Efficient Solution to Efficacy ADaM Design and Implementation Chengxin Li, Pfizer Consumer Healthcare, Madison, NJ, USA Zhongwei Zhou, Pfizer Consumer Healthcare, Madison,

More information

The Power of Combining Data with the PROC SQL

The Power of Combining Data with the PROC SQL ABSTRACT Paper CC-09 The Power of Combining Data with the PROC SQL Stacey Slone, University of Kentucky Markey Cancer Center Combining two data sets which contain a common identifier with a MERGE statement

More information

Automation of SDTM Programming in Oncology Disease Response Domain Yiwen Wang, Yu Cheng, Ju Chen Eli Lilly and Company, China

Automation of SDTM Programming in Oncology Disease Response Domain Yiwen Wang, Yu Cheng, Ju Chen Eli Lilly and Company, China ABSTRACT Study Data Tabulation Model (SDTM) is an evolving global standard which is widely used for regulatory submissions. The automation of SDTM programming is essential to maximize the programming efficiency

More information

Quality Control of Clinical Data Listings with Proc Compare

Quality Control of Clinical Data Listings with Proc Compare ABSTRACT Quality Control of Clinical Data Listings with Proc Compare Robert Bikwemu, Pharmapace, Inc., San Diego, CA Nicole Wallstedt, Pharmapace, Inc., San Diego, CA Checking clinical data listings with

More information

Hypothesis Testing: An SQL Analogy

Hypothesis Testing: An SQL Analogy Hypothesis Testing: An SQL Analogy Leroy Bracken, Boulder Creek, CA Paul D Sherman, San Jose, CA ABSTRACT This paper is all about missing data. Do you ever know something about someone but don't know who

More information

SAS Macro Technique for Embedding and Using Metadata in Web Pages. DataCeutics, Inc., Pottstown, PA

SAS Macro Technique for Embedding and Using Metadata in Web Pages. DataCeutics, Inc., Pottstown, PA Paper AD11 SAS Macro Technique for Embedding and Using Metadata in Web Pages Paul Gilbert, Troy A. Ruth, Gregory T. Weber DataCeutics, Inc., Pottstown, PA ABSTRACT This paper will present a technique to

More information

A Side of Hash for You To Dig Into

A Side of Hash for You To Dig Into A Side of Hash for You To Dig Into Shan Ali Rasul, Indigo Books & Music Inc, Toronto, Ontario, Canada. ABSTRACT Within the realm of Customer Relationship Management (CRM) there is always a need for segmenting

More information

How to Keep Multiple Formats in One Variable after Transpose Mindy Wang

How to Keep Multiple Formats in One Variable after Transpose Mindy Wang How to Keep Multiple Formats in One Variable after Transpose Mindy Wang Abstract In clinical trials and many other research fields, proc transpose are used very often. When many variables with their individual

More information

Not Just Merge - Complex Derivation Made Easy by Hash Object

Not Just Merge - Complex Derivation Made Easy by Hash Object ABSTRACT PharmaSUG 2015 - Paper BB18 Not Just Merge - Complex Derivation Made Easy by Hash Object Lu Zhang, PPD, Beijing, China Hash object is known as a data look-up technique widely used in data steps

More information

A Tool to Compare Different Data Transfers Jun Wang, FMD K&L, Inc., Nanjing, China

A Tool to Compare Different Data Transfers Jun Wang, FMD K&L, Inc., Nanjing, China PharmaSUG China 2018 Paper 64 A Tool to Compare Different Data Transfers Jun Wang, FMD K&L, Inc., Nanjing, China ABSTRACT For an ongoing study, especially for middle-large size studies, regular or irregular

More information

Multiple Graphical and Tabular Reports on One Page, Multiple Ways to Do It Niraj J Pandya, CT, USA

Multiple Graphical and Tabular Reports on One Page, Multiple Ways to Do It Niraj J Pandya, CT, USA Paper TT11 Multiple Graphical and Tabular Reports on One Page, Multiple Ways to Do It Niraj J Pandya, CT, USA ABSTRACT Creating different kind of reports for the presentation of same data sounds a normal

More information

Application Interface for executing a batch of SAS Programs and Checking Logs Sneha Sarmukadam, inventiv Health Clinical, Pune, India

Application Interface for executing a batch of SAS Programs and Checking Logs Sneha Sarmukadam, inventiv Health Clinical, Pune, India PharmaSUG 2013 - Paper AD16 Application Interface for executing a batch of SAS Programs and Checking Logs Sneha Sarmukadam, inventiv Health Clinical, Pune, India ABSTRACT The most convenient way to execute

More information

A Practical and Efficient Approach in Generating AE (Adverse Events) Tables within a Clinical Study Environment

A Practical and Efficient Approach in Generating AE (Adverse Events) Tables within a Clinical Study Environment A Practical and Efficient Approach in Generating AE (Adverse Events) Tables within a Clinical Study Environment Abstract Jiannan Hu Vertex Pharmaceuticals, Inc. When a clinical trial is at the stage of

More information

Interactive Programming Using Task in SAS Studio

Interactive Programming Using Task in SAS Studio ABSTRACT PharmaSUG 2018 - Paper QT-10 Interactive Programming Using Task in SAS Studio Suwen Li, Hoffmann-La Roche Ltd., Mississauga, ON SAS Studio is a web browser-based application with visual point-and-click

More information

IF there is a Better Way than IF-THEN

IF there is a Better Way than IF-THEN PharmaSUG 2018 - Paper QT-17 IF there is a Better Way than IF-THEN Bob Tian, Anni Weng, KMK Consulting Inc. ABSTRACT In this paper, the author compares different methods for implementing piecewise constant

More information

It s Not All Relative: SAS/Graph Annotate Coordinate Systems

It s Not All Relative: SAS/Graph Annotate Coordinate Systems Paper TU05 It s Not All Relative: SAS/Graph Annotate Coordinate Systems Rick Edwards, PPD Inc, Wilmington, NC ABSTRACT This paper discusses the SAS/Graph Annotation coordinate systems and how a combination

More information

A Quick and Gentle Introduction to PROC SQL

A Quick and Gentle Introduction to PROC SQL ABSTRACT Paper B2B 9 A Quick and Gentle Introduction to PROC SQL Shane Rosanbalm, Rho, Inc. Sam Gillett, Rho, Inc. If you are afraid of SQL, it is most likely because you haven t been properly introduced.

More information

Basic SAS Hash Programming Techniques Applied in Our Daily Work in Clinical Trials Data Analysis

Basic SAS Hash Programming Techniques Applied in Our Daily Work in Clinical Trials Data Analysis PharmaSUG China 2018 Paper 18 Basic SAS Hash Programming Techniques Applied in Our Daily Work in Clinical Trials Data Analysis ABSTRACT Fanyu Li, MSD, Beijing, China With the development of SAS programming

More information

Omitting Records with Invalid Default Values

Omitting Records with Invalid Default Values Paper 7720-2016 Omitting Records with Invalid Default Values Lily Yu, Statistics Collaborative Inc. ABSTRACT Many databases include default values that are set inappropriately. These default values may

More information

Matt Downs and Heidi Christ-Schmidt Statistics Collaborative, Inc., Washington, D.C.

Matt Downs and Heidi Christ-Schmidt Statistics Collaborative, Inc., Washington, D.C. Paper 82-25 Dynamic data set selection and project management using SAS 6.12 and the Windows NT 4.0 file system Matt Downs and Heidi Christ-Schmidt Statistics Collaborative, Inc., Washington, D.C. ABSTRACT

More information

Paper An Automated Reporting Macro to Create Cell Index An Enhanced Revisit. Shi-Tao Yeh, GlaxoSmithKline, King of Prussia, PA

Paper An Automated Reporting Macro to Create Cell Index An Enhanced Revisit. Shi-Tao Yeh, GlaxoSmithKline, King of Prussia, PA ABSTRACT Paper 236-28 An Automated Reporting Macro to Create Cell Index An Enhanced Revisit When generating tables from SAS PROC TABULATE or PROC REPORT to summarize data, sometimes it is necessary to

More information

PharmaSUG China 2018 Paper AD-62

PharmaSUG China 2018 Paper AD-62 PharmaSUG China 2018 Paper AD-62 Decomposition and Reconstruction of TLF Shells - A Simple, Fast and Accurate Shell Designer Chengeng Tian, dmed Biopharmaceutical Co., Ltd., Shanghai, China ABSTRACT Table/graph

More information

Producing Summary Tables in SAS Enterprise Guide

Producing Summary Tables in SAS Enterprise Guide Producing Summary Tables in SAS Enterprise Guide Lora D. Delwiche, University of California, Davis, CA Susan J. Slaughter, Avocet Solutions, Davis, CA ABSTRACT This paper shows, step-by-step, how to use

More information

ABSTRACT INTRODUCTION WORK FLOW AND PROGRAM SETUP

ABSTRACT INTRODUCTION WORK FLOW AND PROGRAM SETUP A SAS Macro Tool for Selecting Differentially Expressed Genes from Microarray Data Huanying Qin, Laia Alsina, Hui Xu, Elisa L. Priest Baylor Health Care System, Dallas, TX ABSTRACT DNA Microarrays measure

More information

PharmaSUG Paper PO12

PharmaSUG Paper PO12 PharmaSUG 2015 - Paper PO12 ABSTRACT Utilizing SAS for Cross-Report Verification in a Clinical Trials Setting Daniel Szydlo, Fred Hutchinson Cancer Research Center, Seattle, WA Iraj Mohebalian, Fred Hutchinson

More information

How to Create Data-Driven Lists

How to Create Data-Driven Lists Paper 9540-2016 How to Create Data-Driven Lists Kate Burnett-Isaacs, Statistics Canada ABSTRACT As SAS programmers we often want our code or program logic to be driven by the data at hand, rather than

More information

Reverse-engineer a Reference Curve: Capturing Tabular Data from Graphical Output Brian Fairfield-Carter, ICON Clinical Research, Redwood City, CA

Reverse-engineer a Reference Curve: Capturing Tabular Data from Graphical Output Brian Fairfield-Carter, ICON Clinical Research, Redwood City, CA Paper CC23 Reverse-engineer a Reference Curve: Capturing Tabular Data from Graphical Output Brian Fairfield-Carter, ICON Clinical Research, Redwood City, CA ABSTRACT The pharmaceutical industry is a competitive

More information

CFB: A Programming Pattern for Creating Change from Baseline Datasets Lei Zhang, Celgene Corporation, Summit, NJ

CFB: A Programming Pattern for Creating Change from Baseline Datasets Lei Zhang, Celgene Corporation, Summit, NJ Paper TT13 CFB: A Programming Pattern for Creating Change from Baseline Datasets Lei Zhang, Celgene Corporation, Summit, NJ ABSTRACT In many clinical studies, Change from Baseline analysis is frequently

More information

Regaining Some Control Over ODS RTF Pagination When Using Proc Report Gary E. Moore, Moore Computing Services, Inc., Little Rock, Arkansas

Regaining Some Control Over ODS RTF Pagination When Using Proc Report Gary E. Moore, Moore Computing Services, Inc., Little Rock, Arkansas PharmaSUG 2015 - Paper QT40 Regaining Some Control Over ODS RTF Pagination When Using Proc Report Gary E. Moore, Moore Computing Services, Inc., Little Rock, Arkansas ABSTRACT When creating RTF files using

More information

Setting the Percentage in PROC TABULATE

Setting the Percentage in PROC TABULATE SESUG Paper 193-2017 Setting the Percentage in PROC TABULATE David Franklin, QuintilesIMS, Cambridge, MA ABSTRACT PROC TABULATE is a very powerful procedure which can do statistics and frequency counts

More information

Remember to always check your simple SAS function code! Yingqiu Yvette Liu, Merck & Co. Inc., North Wales, PA

Remember to always check your simple SAS function code! Yingqiu Yvette Liu, Merck & Co. Inc., North Wales, PA PharmaSUG 2016 - Paper QT24 Remember to always check your simple SAS function code! Yingqiu Yvette Liu, Merck & Co. Inc., North Wales, PA ABSTRACT In our daily programming work we may not get expected

More information

Tales from the Help Desk 6: Solutions to Common SAS Tasks

Tales from the Help Desk 6: Solutions to Common SAS Tasks SESUG 2015 ABSTRACT Paper BB-72 Tales from the Help Desk 6: Solutions to Common SAS Tasks Bruce Gilsen, Federal Reserve Board, Washington, DC In 30 years as a SAS consultant at the Federal Reserve Board,

More information

A Fully Automated Approach to Concatenate RTF outputs and Create TOC Zhiping Yan, Covance, Beijing, China Lugang Xie, Merck, Princeton, US

A Fully Automated Approach to Concatenate RTF outputs and Create TOC Zhiping Yan, Covance, Beijing, China Lugang Xie, Merck, Princeton, US PharmaSUG China 2015 - Paper 28X-B9F7B4B9P8 A Fully Automated Approach to Concatenate RTF outputs and Create TOC Zhiping Yan, Covance, Beijing, China Lugang Xie, Merck, Princeton, US ABSTRACT Statistical

More information

Easing into Data Exploration, Reporting, and Analytics Using SAS Enterprise Guide

Easing into Data Exploration, Reporting, and Analytics Using SAS Enterprise Guide Paper 809-2017 Easing into Data Exploration, Reporting, and Analytics Using SAS Enterprise Guide ABSTRACT Marje Fecht, Prowerk Consulting Whether you have been programming in SAS for years, are new to

More information

A SAS Macro Utility to Modify and Validate RTF Outputs for Regional Analyses Jagan Mohan Achi, PPD, Austin, TX Joshua N. Winters, PPD, Rochester, NY

A SAS Macro Utility to Modify and Validate RTF Outputs for Regional Analyses Jagan Mohan Achi, PPD, Austin, TX Joshua N. Winters, PPD, Rochester, NY PharmaSUG 2014 - Paper BB14 A SAS Macro Utility to Modify and Validate RTF Outputs for Regional Analyses Jagan Mohan Achi, PPD, Austin, TX Joshua N. Winters, PPD, Rochester, NY ABSTRACT Clinical Study

More information

Real Time Clinical Trial Oversight with SAS

Real Time Clinical Trial Oversight with SAS PharmaSUG 2017 - Paper DA01 Real Time Clinical Trial Oversight with SAS Ashok Gunuganti, Trevena ABSTRACT A clinical trial is an expensive and complex undertaking with multiple teams working together to

More information

Pruning the SASLOG Digging into the Roots of NOTEs, WARNINGs, and ERRORs

Pruning the SASLOG Digging into the Roots of NOTEs, WARNINGs, and ERRORs Pruning the SASLOG Digging into the Roots of NOTEs, WARNINGs, and ERRORs Andrew T. Kuligowski Nielsen Media Research ABSTRACT "Look at your SASLOG." You hear it from instructors of courses related to the

More information

Quick Data Definitions Using SQL, REPORT and PRINT Procedures Bradford J. Danner, PharmaNet/i3, Tennessee

Quick Data Definitions Using SQL, REPORT and PRINT Procedures Bradford J. Danner, PharmaNet/i3, Tennessee ABSTRACT PharmaSUG2012 Paper CC14 Quick Data Definitions Using SQL, REPORT and PRINT Procedures Bradford J. Danner, PharmaNet/i3, Tennessee Prior to undertaking analysis of clinical trial data, in addition

More information

Data Standardisation, Clinical Data Warehouse and SAS Standard Programs

Data Standardisation, Clinical Data Warehouse and SAS Standard Programs Paper number: AD03 Data Standardisation, Clinical Data Warehouse and SAS Standard Programs Jean-Marc Ferran, Standardisation Manager, MSc 1 Mikkel Traun, Functional Architect, MSc 1 Pia Hjulskov Kristensen,

More information

SAS Macro Dynamics - From Simple Basics to Powerful Invocations Rick Andrews, Office of the Actuary, CMS, Baltimore, MD

SAS Macro Dynamics - From Simple Basics to Powerful Invocations Rick Andrews, Office of the Actuary, CMS, Baltimore, MD Paper BB-7 SAS Macro Dynamics - From Simple Basics to Powerful Invocations Rick Andrews, Office of the Actuary, CMS, Baltimore, MD ABSTRACT The SAS Macro Facility offers a mechanism for expanding and customizing

More information

Cleaning up your SAS log: Note Messages

Cleaning up your SAS log: Note Messages Paper 9541-2016 Cleaning up your SAS log: Note Messages ABSTRACT Jennifer Srivastava, Quintiles Transnational Corporation, Durham, NC As a SAS programmer, you probably spend some of your time reading and

More information

SAS Clinical Data Integration 2.4

SAS Clinical Data Integration 2.4 SAS Clinical Data Integration 2.4 User s Guide SAS Documentation The correct bibliographic citation for this manual is as follows: SAS Institute Inc. 2013. SAS Clinical Data Integration 2.4: User's Guide.

More information

PharmaSUG Paper TT10 Creating a Customized Graph for Adverse Event Incidence and Duration Sanjiv Ramalingam, Octagon Research Solutions Inc.

PharmaSUG Paper TT10 Creating a Customized Graph for Adverse Event Incidence and Duration Sanjiv Ramalingam, Octagon Research Solutions Inc. Abstract PharmaSUG 2011 - Paper TT10 Creating a Customized Graph for Adverse Event Incidence and Duration Sanjiv Ramalingam, Octagon Research Solutions Inc. Adverse event (AE) analysis is a critical part

More information

There s No Such Thing as Normal Clinical Trials Data, or Is There? Daphne Ewing, Octagon Research Solutions, Inc., Wayne, PA

There s No Such Thing as Normal Clinical Trials Data, or Is There? Daphne Ewing, Octagon Research Solutions, Inc., Wayne, PA Paper HW04 There s No Such Thing as Normal Clinical Trials Data, or Is There? Daphne Ewing, Octagon Research Solutions, Inc., Wayne, PA ABSTRACT Clinical Trials data comes in all shapes and sizes depending

More information

Tips & Techniques with PROC MEANS

Tips & Techniques with PROC MEANS Tips & Techniques with PROC MEANS Andrew H. Karp Sierra Information Services, Inc. Sonoma, California USA PROC MEANS (and its "sister," PROC SUMMARY) have been BASE SAS Software procedures for a long time.

More information