CS473: Course Review CS-473. Luo Si Department of Computer Science Purdue University

Size: px
Start display at page:

Download "CS473: Course Review CS-473. Luo Si Department of Computer Science Purdue University"

Transcription

1 CS473: CS-473 Course Review Luo Si Department of Computer Science Purdue University

2 Basic Concepts of IR: Outline Basic Concepts of Information Retrieval: Task definition of Ad-hoc IR Terminologies and concepts Overview of retrieval models Text representation Indexing Text preprocessing Evaluation Evaluation methodology Evaluation metrics

3 Ad-hoc IR: Terminologies Terminologies: Query Representative data of user s information need: text (default) and other media Document Data candidate to satisfy user s information need: text (default) and other media Database Collection Corpus A set of documents Corpora A set of databases Valuable corpora from TREC (Text Retrieval Evaluation Conference)

4 Some core concepts of IR Information Need Representation Query Retrieval Model Indexed Objects Retrieved Objects Representation Returned Results Evaluation/Feedback

5 Text Representation: Indexing Statistical Properties of Text Zipf s law: relate a term s frequency to its rank Rank all terms with their frequencies in descending order, for a term at a specific rank (e.g., r) collects and calculates f r : term frequency Zipf s law (by observation): p A/ r A 0.1 r p r fr N : relative term frequency Total number of words fr A So pr rfr AN log( r) log( fr ) log( AN) N r So Rank X Frequency = Constant

6 Text Representation: Text Preprocessing Text Preprocessing: extract representative index terms Parse query/document for useful structure E.g., title, anchor text, link, tag in xml.. Tokenization For most western languages, words separated by spaces; deal with punctuation, capitalization, hyphenation For Chinese, Japanese: more complex word segmentation Remove stopwords: (remove the, is,..., existing standard list) Morphological analysis (e.g., stemming): Stemming: determine stem form of given inflected forms Other: extract phrases; decompounding for some European languages

7 Evaluation Evaluation criteria Effectiveness Favor returned document ranked lists with more relevant documents at the top Objective measures Recall and Precision Mean-average precision Rank based precision For documents in a subset of a ranked lists, if we know the truth Precision= Relevant docs retrieved Retrieved docs Recall= Relevant docs retrieved Relevant docs

8 Evaluation Pooling Strategy Retrieve documents using multiple methods Judge top n documents from each method Whole retrieved set is the union of top retrieved documents from all methods Problems: the judged relevant documents may not be complete It is possible to estimate size of true relevant documents by randomly sampling

9 Evaluation Single value metrics Mean average precision Calculate precision at each relevant document; average over all precision values 11-point interpolated average precision Calculate precision at standard recall points (e.g., 10%, 20%...); smooth the values; estimate 0 % by interpolation Average the results Rank based precision Calculate precision at top ranked documents (e.g., 5, 10, 15 ) Desirable when users care more for top ranked documents

10 Evaluation Sample Results

11 Retrieval Models: Outline Retrieval Models Exact-match retrieval method Unranked Boolean retrieval method Ranked Boolean retrieval method Best-match retrieval method Vector space retrieval method Latent semantic indexing

12 Retrieval Models: Unranked Boolean Unranked Boolean: Exact match method Selection Model Retrieve a document iff it matches the precise query Often return unranked documents (or with chronological order) Operators Logical Operators: AND OR, NOT Approximately operators: #1(white house) (i.e., within one word distance, phrase) #sen(iraq weapon) (i.e., within a sentence) String matching operators: Wildcard (e.g., ind* for india and indonesia) Field operators: title(information and retrieval)

13 Retrieval Models: Unranked Boolean Advantages: Work well if user knows exactly what to retrieve Predicable; easy to explain Very efficient Disadvantages: It is difficult to design the query; high recall and low precision for loose query; low recall and high precision for strict query Results are unordered; hard to find useful ones Users may be too optimistic for strict queries. A few very relevant but a lot more are missing

14 Retrieval Models: Ranked Boolean Ranked Boolean: Exact match Similar as unranked Boolean but documents are ordered by some criterion Reflect importance of document by its words Retrieve docs from Wall Street Journal Collection Query: (Thailand AND stock AND market) Which word is more important? Many stock and market, but fewer Thailand. Fewer may be more indicative Term Frequency (TF): Number of occurrence in query/doc; larger number means more important Total number of docs Inversed Document Frequency (IDF): Number of docs Larger means more important contain a term There are many variants of TF, IDF: e.g., consider document length

15 Retrieval Models: Ranked Boolean Ranked Boolean: Calculate doc score Term evidence: Evidence from term i occurred in doc j: (tf ij ) and (tf ij *idf i ) AND weight: minimum of argument weights OR weight: maximum of argument weights Min=0.2 AND Max=0.6 OR Term evidence Query: (Thailand AND stock AND market)

16 Retrieval Models: Ranked Boolean Advantages: All advantages from unranked Boolean algorithm Works well when query is precise; predictive; efficient Results in a ranked list (not a full list); easier to browse and find the most relevant ones than Boolean Rank criterion is flexible: e.g., different variants of term evidence Disadvantages: Still an exact match (document selection) model: inverse correlation for recall and precision of strict and loose queries Predictability makes user overestimate retrieval quality

17 Retrieval Models: Vector Space Model Vector space model Any text object can be represented by a term vector Documents, queries, passages, sentences A query can be seen as a short document Similarity is determined by distance in the vector space Example: cosine of the angle between two vectors The SMART system Developed at Cornell University: Still quite popular

18 Retrieval Models: Vector Space Model Vector representation Java D 3 D1 Query D 2 Sun Starbucks

19 Retrieval Models: Vector Space Model Give two vectors of query and document query as document as calculate the similarity q ( q1, q2,..., q n ) d ( d, d,..., d ) j j 1 j 2 jn Cosine similarity: Angle between vectors sim( q, d j) cos( ( q, d j)) ( qd, j ) q d j cos( ( qd, j )) qd q d q d... q d q d q d... q d q d q d q... q d... d j 1 j,1 2 j,2 j j, n 1 j,1 2 j,2 j j, n n j1 jn

20 Retrieval Models: Vector Space Model Vector Coefficients The coefficients (vector elements) represent term evidence/ term importance It is derived from several elements Document term weight: Evidence of the term in the document/query Collection term weight: Importance of term from observation of collection Length normalization: Reduce document length bias Naming convention for coefficients: q. d DCL. DCL k j, k First triple represents query term; second for document term

21 Retrieval Models: Vector Space Model Common vector weight components: lnc.ltc: widely used term weight l : log(tf)+1 n : no weight/normalization t : log(n/df) c : cosine normalization q d 1 j1 q 2 d j2 q d.. q j n d jn log( tf ( k) 1 log( tf ( k) 1 2 log( tf q ( k) 1 log( tf j ( k) 1 k k q k j N log df ( k) N log df ( k) 2

22 Retrieval Models: Vector Space Model Advantages: Best match method; it does not need a precise query Generated ranked lists; easy to explore the results Simplicity: easy to implement Effectiveness: often works well Flexibility: can utilize different types of term weighting methods Used in a wide range of IR tasks: retrieval, classification, summarization, content-based filtering

23 Retrieval Models: Vector Space Model Disadvantages: Hard to choose the dimension of the vector ( basic concept ); terms may not be the best choice Assume independent relationship among terms Heuristic for choosing vector operations Choose of term weights Choose of similarity function Assume a query and a document can be treated in the same way

24 Retrieval Models: Latent Semantic Indexing Latent Semantic Indexing (LSI): Explore correlation between terms and documents Two terms are correlated (may share similar semantic concepts) if they often co-occur Two documents are correlated (share similar topics) if they have many common words Latent Semantic Indexing (LSI): Associate each term and document with a small number of semantic concepts/topics

25 Query Expansion: Outline Query Expansion via Relevant Feedback Relevance Feedback Blind/Pseudo Relevance Feedback Query Expansion via External Resources Thesaurus Industrial Chemical Thesaurus, Medical Subject Headings (MeSH) Semantic network WordNet

26 Query Expansion: Relevance Feedback Vector Space Model Goal: Move new query close to relevant documents and far away from irrelevant documents Approach: New query is a weighted average of original query, and relevant and non-relevant document vectors q 1 1 ' q i i (Rocchio formula) R d NR d d R d NR i i

27 Web Search Spam Detection Content spam; link spam; Source size estimation Capture-Recapture Model What is the assumption? How to calculate? Duplicate detection

28 Text Categorization (I) Outline Introduction to the task of text categorization Manual v.s. automatic text categorization Text categorization applications Evaluation of text categorization K nearest neighbor text categorization method

29 Text Categorization Automatic text categorization Learn algorithm to automatically assign predefined categories to text documents /objects automatic or semi-automatic Procedures Training: Given a set of categories and labeled document examples; learn a method to map a document to correct category (categories) Testing: Predict the category (categories) of a new document Automatic or semi-automatic categorization can significantly reduce the manual efforts

30 K-Nearest Neighbor Classifier Idea: find your language by what language your neighbors speak (k=1) (k=5) Use K nearest neighbors to vote

31 K Nearest Neighbor: Technical Elements Document representation Document distance measure: closer documents should have similar labels; neighbors speak the same language Number of nearest neighbors (value of K) Decision threshold

32 K Nearest Neighbor: Framework Training data Test data Scoring Function Classification: D {(x M x R i ŷ(x), y i )}, 1 k x x D i k i (x) R M sim(x,,docs, The neighbor hood is 1 if y(x) ˆ t 0 0 otherwise x i )y i y i {0,1} D k D Document Representation: X i uses tf.idf weighting for each dimension

33 Content Based Filtering Filtering Information Needs are Stable System should make a delivery decision on the fly when a document arrives User Profile: Filtering System

34 Content Based Filtering Filtering Information Needs are Stable System should make a delivery decision on the fly when a document arrives User profile are built by some initialization information and the historical feedback information from a user (e.g., relevant concept extracted from relevant documents) The delivery decision is made by analyzing the content information of a document

35 Three Main Problems in CBF Three problems Initialization: Initialize the user profile with several key words or very few examples Delivery Decision Making: new documents -> yes/no based on current user profile Learning: utilize relevance feedback information from users to update user profile (only on recommended documents)

36 Collaborative Filtering Outline Introduction to collaborative filtering Main framework Memory-based collaborative filtering approach Model-based collaborative filtering approach Aspect model & Two-way clustering model Flexible mixture model Decouple model Unified filtering by combining content and collaborative filtering

37 Federated Search Outline Introduction to federated search Main research problems Resource Representation Resource Selection Results Merging A unified utility maximization framework for federated search Modeling search engine effectiveness

38 Federated Search Components of a Federated Search System and Two Important Applications Engine 1 Engine 2 Engine 3 Engine Engine N (1) Resource Representation (2) Resource Selection (3) Results Merging Information source recommendation: Recommend information sources for users text queries (e.g., completeplanet.com): Steps 1 and 2 Federated document retrieval: Also search selected sources and merge individual ranked lists into a single list: Steps 1, 2 and 3

39 Clustering Document clustering Motivations Document representations Success criteria Clustering algorithms K-means Model-based clustering (EM clustering)

40 Link Analysis Outline The characteristics of Web structure (small world) Hub & Authority Algorithms Authority Value, Hubness Value Page Rank Algorithm (Page Rank Value) Relation with the computation of eigenvector

Information Retrieval: Retrieval Models

Information Retrieval: Retrieval Models CS473: Web Information Retrieval & Management CS-473 Web Information Retrieval & Management Information Retrieval: Retrieval Models Luo Si Department of Computer Science Purdue University Retrieval Models

More information

CS54701: Information Retrieval

CS54701: Information Retrieval CS54701: Information Retrieval Basic Concepts 19 January 2016 Prof. Chris Clifton 1 Text Representation: Process of Indexing Remove Stopword, Stemming, Phrase Extraction etc Document Parser Extract useful

More information

Information Retrieval. CS630 Representing and Accessing Digital Information. What is a Retrieval Model? Basic IR Processes

Information Retrieval. CS630 Representing and Accessing Digital Information. What is a Retrieval Model? Basic IR Processes CS630 Representing and Accessing Digital Information Information Retrieval: Retrieval Models Information Retrieval Basics Data Structures and Access Indexing and Preprocessing Retrieval Models Thorsten

More information

Information Retrieval. (M&S Ch 15)

Information Retrieval. (M&S Ch 15) Information Retrieval (M&S Ch 15) 1 Retrieval Models A retrieval model specifies the details of: Document representation Query representation Retrieval function Determines a notion of relevance. Notion

More information

Chapter 6: Information Retrieval and Web Search. An introduction

Chapter 6: Information Retrieval and Web Search. An introduction Chapter 6: Information Retrieval and Web Search An introduction Introduction n Text mining refers to data mining using text documents as data. n Most text mining tasks use Information Retrieval (IR) methods

More information

CS47300: Web Information Search and Management

CS47300: Web Information Search and Management CS47300: Web Information Search and Management Prof. Chris Clifton 27 August 2018 Material adapted from course created by Dr. Luo Si, now leading Alibaba research group 1 AD-hoc IR: Basic Process Information

More information

Chapter 27 Introduction to Information Retrieval and Web Search

Chapter 27 Introduction to Information Retrieval and Web Search Chapter 27 Introduction to Information Retrieval and Web Search Copyright 2011 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Chapter 27 Outline Information Retrieval (IR) Concepts Retrieval

More information

In = number of words appearing exactly n times N = number of words in the collection of words A = a constant. For example, if N=100 and the most

In = number of words appearing exactly n times N = number of words in the collection of words A = a constant. For example, if N=100 and the most In = number of words appearing exactly n times N = number of words in the collection of words A = a constant. For example, if N=100 and the most common word appears 10 times then A = rn*n/n = 1*10/100

More information

Information Retrieval

Information Retrieval Information Retrieval CSC 375, Fall 2016 An information retrieval system will tend not to be used whenever it is more painful and troublesome for a customer to have information than for him not to have

More information

Text Categorization (I)

Text Categorization (I) CS473 CS-473 Text Categorization (I) Luo Si Department of Computer Science Purdue University Text Categorization (I) Outline Introduction to the task of text categorization Manual v.s. automatic text categorization

More information

CS34800 Information Systems

CS34800 Information Systems CS34800 Information Systems Information Retrieval Prof. Chris Clifton 14 November 2016 1 Why Information Retrieval: Information Overload: The world produces between 1 and 2 exabytes (10 18 bytes) of unique

More information

CS 6320 Natural Language Processing

CS 6320 Natural Language Processing CS 6320 Natural Language Processing Information Retrieval Yang Liu Slides modified from Ray Mooney s (http://www.cs.utexas.edu/users/mooney/ir-course/slides/) 1 Introduction of IR System components, basic

More information

Multimedia Information Systems

Multimedia Information Systems Multimedia Information Systems Samson Cheung EE 639, Fall 2004 Lecture 6: Text Information Retrieval 1 Digital Video Library Meta-Data Meta-Data Similarity Similarity Search Search Analog Video Archive

More information

Information Retrieval

Information Retrieval Natural Language Processing SoSe 2014 Information Retrieval Dr. Mariana Neves June 18th, 2014 (based on the slides of Dr. Saeedeh Momtazi) Outline Introduction Indexing Block 2 Document Crawling Text Processing

More information

vector space retrieval many slides courtesy James Amherst

vector space retrieval many slides courtesy James Amherst vector space retrieval many slides courtesy James Allan@umass Amherst 1 what is a retrieval model? Model is an idealization or abstraction of an actual process Mathematical models are used to study the

More information

Boolean Model. Hongning Wang

Boolean Model. Hongning Wang Boolean Model Hongning Wang CS@UVa Abstraction of search engine architecture Indexed corpus Crawler Ranking procedure Doc Analyzer Doc Representation Query Rep Feedback (Query) Evaluation User Indexer

More information

Outline. Possible solutions. The basic problem. How? How? Relevance Feedback, Query Expansion, and Inputs to Ranking Beyond Similarity

Outline. Possible solutions. The basic problem. How? How? Relevance Feedback, Query Expansion, and Inputs to Ranking Beyond Similarity Outline Relevance Feedback, Query Expansion, and Inputs to Ranking Beyond Similarity Lecture 10 CS 410/510 Information Retrieval on the Internet Query reformulation Sources of relevance for feedback Using

More information

Information Retrieval

Information Retrieval Natural Language Processing SoSe 2015 Information Retrieval Dr. Mariana Neves June 22nd, 2015 (based on the slides of Dr. Saeedeh Momtazi) Outline Introduction Indexing Block 2 Document Crawling Text Processing

More information

Instructor: Stefan Savev

Instructor: Stefan Savev LECTURE 2 What is indexing? Indexing is the process of extracting features (such as word counts) from the documents (in other words: preprocessing the documents). The process ends with putting the information

More information

Natural Language Processing

Natural Language Processing Natural Language Processing Information Retrieval Potsdam, 14 June 2012 Saeedeh Momtazi Information Systems Group based on the slides of the course book Outline 2 1 Introduction 2 Indexing Block Document

More information

Representation/Indexing (fig 1.2) IR models - overview (fig 2.1) IR models - vector space. Weighting TF*IDF. U s e r. T a s k s

Representation/Indexing (fig 1.2) IR models - overview (fig 2.1) IR models - vector space. Weighting TF*IDF. U s e r. T a s k s Summary agenda Summary: EITN01 Web Intelligence and Information Retrieval Anders Ardö EIT Electrical and Information Technology, Lund University March 13, 2013 A Ardö, EIT Summary: EITN01 Web Intelligence

More information

VALLIAMMAI ENGINEERING COLLEGE SRM Nagar, Kattankulathur DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING QUESTION BANK VII SEMESTER

VALLIAMMAI ENGINEERING COLLEGE SRM Nagar, Kattankulathur DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING QUESTION BANK VII SEMESTER VALLIAMMAI ENGINEERING COLLEGE SRM Nagar, Kattankulathur 603 203 DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING QUESTION BANK VII SEMESTER CS6007-INFORMATION RETRIEVAL Regulation 2013 Academic Year 2018

More information

ΕΠΛ660. Ανάκτηση µε το µοντέλο διανυσµατικού χώρου

ΕΠΛ660. Ανάκτηση µε το µοντέλο διανυσµατικού χώρου Ανάκτηση µε το µοντέλο διανυσµατικού χώρου Σηµερινό ερώτηµα Typically we want to retrieve the top K docs (in the cosine ranking for the query) not totally order all docs in the corpus can we pick off docs

More information

Relevance Feedback and Query Reformulation. Lecture 10 CS 510 Information Retrieval on the Internet Thanks to Susan Price. Outline

Relevance Feedback and Query Reformulation. Lecture 10 CS 510 Information Retrieval on the Internet Thanks to Susan Price. Outline Relevance Feedback and Query Reformulation Lecture 10 CS 510 Information Retrieval on the Internet Thanks to Susan Price IR on the Internet, Spring 2010 1 Outline Query reformulation Sources of relevance

More information

Mining Web Data. Lijun Zhang

Mining Web Data. Lijun Zhang Mining Web Data Lijun Zhang zlj@nju.edu.cn http://cs.nju.edu.cn/zlj Outline Introduction Web Crawling and Resource Discovery Search Engine Indexing and Query Processing Ranking Algorithms Recommender Systems

More information

Midterm Exam Search Engines ( / ) October 20, 2015

Midterm Exam Search Engines ( / ) October 20, 2015 Student Name: Andrew ID: Seat Number: Midterm Exam Search Engines (11-442 / 11-642) October 20, 2015 Answer all of the following questions. Each answer should be thorough, complete, and relevant. Points

More information

Manning Chapter: Text Retrieval (Selections) Text Retrieval Tasks. Vorhees & Harman (Bulkpack) Evaluation The Vector Space Model Advanced Techniques

Manning Chapter: Text Retrieval (Selections) Text Retrieval Tasks. Vorhees & Harman (Bulkpack) Evaluation The Vector Space Model Advanced Techniques Text Retrieval Readings Introduction Manning Chapter: Text Retrieval (Selections) Text Retrieval Tasks Vorhees & Harman (Bulkpack) Evaluation The Vector Space Model Advanced Techniues 1 2 Text Retrieval:

More information

Automatic Summarization

Automatic Summarization Automatic Summarization CS 769 Guest Lecture Andrew B. Goldberg goldberg@cs.wisc.edu Department of Computer Sciences University of Wisconsin, Madison February 22, 2008 Andrew B. Goldberg (CS Dept) Summarization

More information

Mining Web Data. Lijun Zhang

Mining Web Data. Lijun Zhang Mining Web Data Lijun Zhang zlj@nju.edu.cn http://cs.nju.edu.cn/zlj Outline Introduction Web Crawling and Resource Discovery Search Engine Indexing and Query Processing Ranking Algorithms Recommender Systems

More information

Chapter 4. Processing Text

Chapter 4. Processing Text Chapter 4 Processing Text Processing Text Modifying/Converting documents to index terms Convert the many forms of words into more consistent index terms that represent the content of a document What are

More information

Chapter 2. Architecture of a Search Engine

Chapter 2. Architecture of a Search Engine Chapter 2 Architecture of a Search Engine Search Engine Architecture A software architecture consists of software components, the interfaces provided by those components and the relationships between them

More information

Introduction to Information Retrieval

Introduction to Information Retrieval Introduction to Information Retrieval (Supplementary Material) Zhou Shuigeng March 23, 2007 Advanced Distributed Computing 1 Text Databases and IR Text databases (document databases) Large collections

More information

Federated Text Search

Federated Text Search CS54701 Federated Text Search Luo Si Department of Computer Science Purdue University Abstract Outline Introduction to federated search Main research problems Resource Representation Resource Selection

More information

James Mayfield! The Johns Hopkins University Applied Physics Laboratory The Human Language Technology Center of Excellence!

James Mayfield! The Johns Hopkins University Applied Physics Laboratory The Human Language Technology Center of Excellence! James Mayfield! The Johns Hopkins University Applied Physics Laboratory The Human Language Technology Center of Excellence! (301) 219-4649 james.mayfield@jhuapl.edu What is Information Retrieval? Evaluation

More information

Department of Computer Science and Engineering B.E/B.Tech/M.E/M.Tech : B.E. Regulation: 2013 PG Specialisation : _

Department of Computer Science and Engineering B.E/B.Tech/M.E/M.Tech : B.E. Regulation: 2013 PG Specialisation : _ COURSE DELIVERY PLAN - THEORY Page 1 of 6 Department of Computer Science and Engineering B.E/B.Tech/M.E/M.Tech : B.E. Regulation: 2013 PG Specialisation : _ LP: CS6007 Rev. No: 01 Date: 27/06/2017 Sub.

More information

CS54701: Information Retrieval

CS54701: Information Retrieval CS54701: Information Retrieval Federated Search 10 March 2016 Prof. Chris Clifton Outline Federated Search Introduction to federated search Main research problems Resource Representation Resource Selection

More information

Information Retrieval CS Lecture 06. Razvan C. Bunescu School of Electrical Engineering and Computer Science

Information Retrieval CS Lecture 06. Razvan C. Bunescu School of Electrical Engineering and Computer Science Information Retrieval CS 6900 Lecture 06 Razvan C. Bunescu School of Electrical Engineering and Computer Science bunescu@ohio.edu Boolean Retrieval vs. Ranked Retrieval Many users (professionals) prefer

More information

Introduction to Information Retrieval

Introduction to Information Retrieval Introduction to Information Retrieval Mohsen Kamyar چهارمین کارگاه ساالنه آزمایشگاه فناوری و وب بهمن ماه 1391 Outline Outline in classic categorization Information vs. Data Retrieval IR Models Evaluation

More information

Information Retrieval. Information Retrieval and Web Search

Information Retrieval. Information Retrieval and Web Search Information Retrieval and Web Search Introduction to IR models and methods Information Retrieval The indexing and retrieval of textual documents. Searching for pages on the World Wide Web is the most recent

More information

CS371R: Final Exam Dec. 18, 2017

CS371R: Final Exam Dec. 18, 2017 CS371R: Final Exam Dec. 18, 2017 NAME: This exam has 11 problems and 16 pages. Before beginning, be sure your exam is complete. In order to maximize your chance of getting partial credit, show all of your

More information

CS47300: Web Information Search and Management

CS47300: Web Information Search and Management CS47300: Web Information Search and Management Federated Search Prof. Chris Clifton 13 November 2017 Federated Search Outline Introduction to federated search Main research problems Resource Representation

More information

Chapter 3 - Text. Management and Retrieval

Chapter 3 - Text. Management and Retrieval Prof. Dr.-Ing. Stefan Deßloch AG Heterogene Informationssysteme Geb. 36, Raum 329 Tel. 0631/205 3275 dessloch@informatik.uni-kl.de Chapter 3 - Text Management and Retrieval Literature: Baeza-Yates, R.;

More information

Information Retrieval and Web Search

Information Retrieval and Web Search Information Retrieval and Web Search Introduction to IR models and methods Rada Mihalcea (Some of the slides in this slide set come from IR courses taught at UT Austin and Stanford) Information Retrieval

More information

Information Retrieval

Information Retrieval Multimedia Computing: Algorithms, Systems, and Applications: Information Retrieval and Search Engine By Dr. Yu Cao Department of Computer Science The University of Massachusetts Lowell Lowell, MA 01854,

More information

Basic Tokenizing, Indexing, and Implementation of Vector-Space Retrieval

Basic Tokenizing, Indexing, and Implementation of Vector-Space Retrieval Basic Tokenizing, Indexing, and Implementation of Vector-Space Retrieval 1 Naïve Implementation Convert all documents in collection D to tf-idf weighted vectors, d j, for keyword vocabulary V. Convert

More information

Retrieval Evaluation. Hongning Wang

Retrieval Evaluation. Hongning Wang Retrieval Evaluation Hongning Wang CS@UVa What we have learned so far Indexed corpus Crawler Ranking procedure Research attention Doc Analyzer Doc Rep (Index) Query Rep Feedback (Query) Evaluation User

More information

Vector Space Scoring Introduction to Information Retrieval INF 141/ CS 121 Donald J. Patterson

Vector Space Scoring Introduction to Information Retrieval INF 141/ CS 121 Donald J. Patterson Vector Space Scoring Introduction to Information Retrieval INF 141/ CS 121 Donald J. Patterson Content adapted from Hinrich Schütze http://www.informationretrieval.org Spamming indices This was invented

More information

VK Multimedia Information Systems

VK Multimedia Information Systems VK Multimedia Information Systems Mathias Lux, mlux@itec.uni-klu.ac.at This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Results Exercise 01 Exercise 02 Retrieval

More information

TEXT MINING APPLICATION PROGRAMMING

TEXT MINING APPLICATION PROGRAMMING TEXT MINING APPLICATION PROGRAMMING MANU KONCHADY CHARLES RIVER MEDIA Boston, Massachusetts Contents Preface Acknowledgments xv xix Introduction 1 Originsof Text Mining 4 Information Retrieval 4 Natural

More information

A Content Vector Model for Text Classification

A Content Vector Model for Text Classification A Content Vector Model for Text Classification Eric Jiang Abstract As a popular rank-reduced vector space approach, Latent Semantic Indexing (LSI) has been used in information retrieval and other applications.

More information

Introduction p. 1 What is the World Wide Web? p. 1 A Brief History of the Web and the Internet p. 2 Web Data Mining p. 4 What is Data Mining? p.

Introduction p. 1 What is the World Wide Web? p. 1 A Brief History of the Web and the Internet p. 2 Web Data Mining p. 4 What is Data Mining? p. Introduction p. 1 What is the World Wide Web? p. 1 A Brief History of the Web and the Internet p. 2 Web Data Mining p. 4 What is Data Mining? p. 6 What is Web Mining? p. 6 Summary of Chapters p. 8 How

More information

University of Virginia Department of Computer Science. CS 4501: Information Retrieval Fall 2015

University of Virginia Department of Computer Science. CS 4501: Information Retrieval Fall 2015 University of Virginia Department of Computer Science CS 4501: Information Retrieval Fall 2015 5:00pm-6:15pm, Monday, October 26th Name: ComputingID: This is a closed book and closed notes exam. No electronic

More information

CS54701: Information Retrieval

CS54701: Information Retrieval CS54701: Information Retrieval Basic Concepts 14 January 2016 Prof. Chris Clifton Administrivia Course web page is active https://www.cs.purdue.edu/~clifton/cs54701/ Piazza is active Course discussion

More information

Exam IST 441 Spring 2014

Exam IST 441 Spring 2014 Exam IST 441 Spring 2014 Last name: Student ID: First name: I acknowledge and accept the University Policies and the Course Policies on Academic Integrity This 100 point exam determines 30% of your grade.

More information

Ad-hoc IR: Introduction. Ad-hoc IR: Introduction. Basic Concepts of IR: Outline. Content Based Filtering Filtering. Ad-hoc IR: Terminologies

Ad-hoc IR: Introduction. Ad-hoc IR: Introduction. Basic Concepts of IR: Outline. Content Based Filtering Filtering. Ad-hoc IR: Terminologies CS490W: Web Information Search & Management Ad-hoc IR: Introduction CS-490W Web Information Search & Management Basic Concepts of Information Retrieval Ad-hoc Information Retrieval: Search a collection

More information

CLUSTERING, TIERED INDEXES AND TERM PROXIMITY WEIGHTING IN TEXT-BASED RETRIEVAL

CLUSTERING, TIERED INDEXES AND TERM PROXIMITY WEIGHTING IN TEXT-BASED RETRIEVAL STUDIA UNIV. BABEŞ BOLYAI, INFORMATICA, Volume LVII, Number 4, 2012 CLUSTERING, TIERED INDEXES AND TERM PROXIMITY WEIGHTING IN TEXT-BASED RETRIEVAL IOAN BADARINZA AND ADRIAN STERCA Abstract. In this paper

More information

Department of Electronic Engineering FINAL YEAR PROJECT REPORT

Department of Electronic Engineering FINAL YEAR PROJECT REPORT Department of Electronic Engineering FINAL YEAR PROJECT REPORT BEngCE-2007/08-HCS-HCS-03-BECE Natural Language Understanding for Query in Web Search 1 Student Name: Sit Wing Sum Student ID: Supervisor:

More information

Information Retrieval

Information Retrieval Information Retrieval Suan Lee - Information Retrieval - 06 Scoring, Term Weighting and the Vector Space Model 1 Recap of lecture 5 Collection and vocabulary statistics: Heaps and Zipf s laws Dictionary

More information

Clustering Results. Result List Example. Clustering Results. Information Retrieval

Clustering Results. Result List Example. Clustering Results. Information Retrieval Information Retrieval INFO 4300 / CS 4300! Presenting Results Clustering Clustering Results! Result lists often contain documents related to different aspects of the query topic! Clustering is used to

More information

Based on Raymond J. Mooney s slides

Based on Raymond J. Mooney s slides Instance Based Learning Based on Raymond J. Mooney s slides University of Texas at Austin 1 Example 2 Instance-Based Learning Unlike other learning algorithms, does not involve construction of an explicit

More information

CHAPTER 3 INFORMATION RETRIEVAL BASED ON QUERY EXPANSION AND LATENT SEMANTIC INDEXING

CHAPTER 3 INFORMATION RETRIEVAL BASED ON QUERY EXPANSION AND LATENT SEMANTIC INDEXING 43 CHAPTER 3 INFORMATION RETRIEVAL BASED ON QUERY EXPANSION AND LATENT SEMANTIC INDEXING 3.1 INTRODUCTION This chapter emphasizes the Information Retrieval based on Query Expansion (QE) and Latent Semantic

More information

Information Retrieval and Web Search

Information Retrieval and Web Search Information Retrieval and Web Search Relevance Feedback. Query Expansion Instructor: Rada Mihalcea Intelligent Information Retrieval 1. Relevance feedback - Direct feedback - Pseudo feedback 2. Query expansion

More information

Query Refinement and Search Result Presentation

Query Refinement and Search Result Presentation Query Refinement and Search Result Presentation (Short) Queries & Information Needs A query can be a poor representation of the information need Short queries are often used in search engines due to the

More information

Text classification II CE-324: Modern Information Retrieval Sharif University of Technology

Text classification II CE-324: Modern Information Retrieval Sharif University of Technology Text classification II CE-324: Modern Information Retrieval Sharif University of Technology M. Soleymani Fall 2015 Some slides have been adapted from: Profs. Manning, Nayak & Raghavan (CS-276, Stanford)

More information

Feature selection. LING 572 Fei Xia

Feature selection. LING 572 Fei Xia Feature selection LING 572 Fei Xia 1 Creating attribute-value table x 1 x 2 f 1 f 2 f K y Choose features: Define feature templates Instantiate the feature templates Dimensionality reduction: feature selection

More information

Part I: Data Mining Foundations

Part I: Data Mining Foundations Table of Contents 1. Introduction 1 1.1. What is the World Wide Web? 1 1.2. A Brief History of the Web and the Internet 2 1.3. Web Data Mining 4 1.3.1. What is Data Mining? 6 1.3.2. What is Web Mining?

More information

String Vector based KNN for Text Categorization

String Vector based KNN for Text Categorization 458 String Vector based KNN for Text Categorization Taeho Jo Department of Computer and Information Communication Engineering Hongik University Sejong, South Korea tjo018@hongik.ac.kr Abstract This research

More information

This lecture: IIR Sections Ranked retrieval Scoring documents Term frequency Collection statistics Weighting schemes Vector space scoring

This lecture: IIR Sections Ranked retrieval Scoring documents Term frequency Collection statistics Weighting schemes Vector space scoring This lecture: IIR Sections 6.2 6.4.3 Ranked retrieval Scoring documents Term frequency Collection statistics Weighting schemes Vector space scoring 1 Ch. 6 Ranked retrieval Thus far, our queries have all

More information

Introduction to Information Retrieval

Introduction to Information Retrieval Introduction Inverted index Processing Boolean queries Course overview Introduction to Information Retrieval http://informationretrieval.org IIR 1: Boolean Retrieval Hinrich Schütze Institute for Natural

More information

Information Retrieval CS Lecture 01. Razvan C. Bunescu School of Electrical Engineering and Computer Science

Information Retrieval CS Lecture 01. Razvan C. Bunescu School of Electrical Engineering and Computer Science Information Retrieval CS 6900 Razvan C. Bunescu School of Electrical Engineering and Computer Science bunescu@ohio.edu Information Retrieval Information Retrieval (IR) is finding material of an unstructured

More information

Shrey Patel B.E. Computer Engineering, Gujarat Technological University, Ahmedabad, Gujarat, India

Shrey Patel B.E. Computer Engineering, Gujarat Technological University, Ahmedabad, Gujarat, India International Journal of Scientific Research in Computer Science, Engineering and Information Technology 2018 IJSRCSEIT Volume 3 Issue 3 ISSN : 2456-3307 Some Issues in Application of NLP to Intelligent

More information

Text Analytics (Text Mining)

Text Analytics (Text Mining) CSE 6242 / CX 4242 Text Analytics (Text Mining) Concepts and Algorithms Duen Horng (Polo) Chau Georgia Tech Some lectures are partly based on materials by Professors Guy Lebanon, Jeffrey Heer, John Stasko,

More information

Knowledge Discovery and Data Mining 1 (VO) ( )

Knowledge Discovery and Data Mining 1 (VO) ( ) Knowledge Discovery and Data Mining 1 (VO) (707.003) Data Matrices and Vector Space Model Denis Helic KTI, TU Graz Nov 6, 2014 Denis Helic (KTI, TU Graz) KDDM1 Nov 6, 2014 1 / 55 Big picture: KDDM Probability

More information

Natural Language Processing Basics. Yingyu Liang University of Wisconsin-Madison

Natural Language Processing Basics. Yingyu Liang University of Wisconsin-Madison Natural Language Processing Basics Yingyu Liang University of Wisconsin-Madison Natural language Processing (NLP) The processing of the human languages by computers One of the oldest AI tasks One of the

More information

60-538: Information Retrieval

60-538: Information Retrieval 60-538: Information Retrieval September 7, 2017 1 / 48 Outline 1 what is IR 2 3 2 / 48 Outline 1 what is IR 2 3 3 / 48 IR not long time ago 4 / 48 5 / 48 now IR is mostly about search engines there are

More information

Relevance of a Document to a Query

Relevance of a Document to a Query Relevance of a Document to a Query Computing the relevance of a document to a query has four parts: 1. Computing the significance of a word within document D. 2. Computing the significance of word to document

More information

CS377: Database Systems Text data and information. Li Xiong Department of Mathematics and Computer Science Emory University

CS377: Database Systems Text data and information. Li Xiong Department of Mathematics and Computer Science Emory University CS377: Database Systems Text data and information retrieval Li Xiong Department of Mathematics and Computer Science Emory University Outline Information Retrieval (IR) Concepts Text Preprocessing Inverted

More information

Optimal Query. Assume that the relevant set of documents C r. 1 N C r d j. d j. Where N is the total number of documents.

Optimal Query. Assume that the relevant set of documents C r. 1 N C r d j. d j. Where N is the total number of documents. Optimal Query Assume that the relevant set of documents C r are known. Then the best query is: q opt 1 C r d j C r d j 1 N C r d j C r d j Where N is the total number of documents. Note that even this

More information

CS490W. Text Clustering. Luo Si. Department of Computer Science Purdue University

CS490W. Text Clustering. Luo Si. Department of Computer Science Purdue University CS490W Text Clustering Luo Si Department of Computer Science Purdue University [Borrows slides from Chris Manning, Ray Mooney and Soumen Chakrabarti] Clustering Document clustering Motivations Document

More information

Building Test Collections. Donna Harman National Institute of Standards and Technology

Building Test Collections. Donna Harman National Institute of Standards and Technology Building Test Collections Donna Harman National Institute of Standards and Technology Cranfield 2 (1962-1966) Goal: learn what makes a good indexing descriptor (4 different types tested at 3 levels of

More information

modern database systems lecture 4 : information retrieval

modern database systems lecture 4 : information retrieval modern database systems lecture 4 : information retrieval Aristides Gionis Michael Mathioudakis spring 2016 in perspective structured data relational data RDBMS MySQL semi-structured data data-graph representation

More information

Information Retrieval. hussein suleman uct cs

Information Retrieval. hussein suleman uct cs Information Management Information Retrieval hussein suleman uct cs 303 2004 Introduction Information retrieval is the process of locating the most relevant information to satisfy a specific information

More information

Text Analytics (Text Mining)

Text Analytics (Text Mining) CSE 6242 / CX 4242 Apr 1, 2014 Text Analytics (Text Mining) Concepts and Algorithms Duen Horng (Polo) Chau Georgia Tech Some lectures are partly based on materials by Professors Guy Lebanon, Jeffrey Heer,

More information

Information Retrieval and Web Search

Information Retrieval and Web Search Information Retrieval and Web Search IR Evaluation and IR Standard Text Collections Instructor: Rada Mihalcea Some slides in this section are adapted from lectures by Prof. Ray Mooney (UT) and Prof. Razvan

More information

Social Media Computing

Social Media Computing Social Media Computing Lecture 4: Introduction to Information Retrieval and Classification Lecturer: Aleksandr Farseev E-mail: farseev@u.nus.edu Slides: http://farseev.com/ainlfruct.html At the beginning,

More information

Bing Liu. Web Data Mining. Exploring Hyperlinks, Contents, and Usage Data. With 177 Figures. Springer

Bing Liu. Web Data Mining. Exploring Hyperlinks, Contents, and Usage Data. With 177 Figures. Springer Bing Liu Web Data Mining Exploring Hyperlinks, Contents, and Usage Data With 177 Figures Springer Table of Contents 1. Introduction 1 1.1. What is the World Wide Web? 1 1.2. A Brief History of the Web

More information

dr.ir. D. Hiemstra dr. P.E. van der Vet

dr.ir. D. Hiemstra dr. P.E. van der Vet dr.ir. D. Hiemstra dr. P.E. van der Vet Abstract Over the last 20 years genomics research has gained a lot of interest. Every year millions of articles are published and stored in databases. Researchers

More information

A Machine Learning Approach for Information Retrieval Applications. Luo Si. Department of Computer Science Purdue University

A Machine Learning Approach for Information Retrieval Applications. Luo Si. Department of Computer Science Purdue University A Machine Learning Approach for Information Retrieval Applications Luo Si Department of Computer Science Purdue University Why Information Retrieval: Information Overload: Since the introduction of digital

More information

Information Retrieval. Techniques for Relevance Feedback

Information Retrieval. Techniques for Relevance Feedback Information Retrieval Techniques for Relevance Feedback Introduction An information need may be epressed using different keywords (synonymy) impact on recall eamples: ship vs boat, aircraft vs airplane

More information

Tag-based Social Interest Discovery

Tag-based Social Interest Discovery Tag-based Social Interest Discovery Xin Li / Lei Guo / Yihong (Eric) Zhao Yahoo!Inc 2008 Presented by: Tuan Anh Le (aletuan@vub.ac.be) 1 Outline Introduction Data set collection & Pre-processing Architecture

More information

Problem 1: Complexity of Update Rules for Logistic Regression

Problem 1: Complexity of Update Rules for Logistic Regression Case Study 1: Estimating Click Probabilities Tackling an Unknown Number of Features with Sketching Machine Learning for Big Data CSE547/STAT548, University of Washington Emily Fox January 16 th, 2014 1

More information

CSCI 5417 Information Retrieval Systems. Jim Martin!

CSCI 5417 Information Retrieval Systems. Jim Martin! CSCI 5417 Information Retrieval Systems Jim Martin! Lecture 7 9/13/2011 Today Review Efficient scoring schemes Approximate scoring Evaluating IR systems 1 Normal Cosine Scoring Speedups... Compute the

More information

Web Search Engine Question Answering

Web Search Engine Question Answering Web Search Engine Question Answering Reena Pindoria Supervisor Dr Steve Renals Com3021 07/05/2003 This report is submitted in partial fulfilment of the requirement for the degree of Bachelor of Science

More information

Reading group on Ontologies and NLP:

Reading group on Ontologies and NLP: Reading group on Ontologies and NLP: Machine Learning27th infebruary Automated 2014 1 / 25 Te Reading group on Ontologies and NLP: Machine Learning in Automated Text Categorization, by Fabrizio Sebastianini.

More information

Document Searching Engine Using Term Similarity Vector Space Model on English and Indonesian Document

Document Searching Engine Using Term Similarity Vector Space Model on English and Indonesian Document Document Searching Engine Using Term Similarity Vector Space Model on English and Indonesian Document Andreas Handojo, Adi Wibowo, Yovita Ria Informatics Engineering Department Faculty of Industrial Technology,

More information

Basic techniques. Text processing; term weighting; vector space model; inverted index; Web Search

Basic techniques. Text processing; term weighting; vector space model; inverted index; Web Search Basic techniques Text processing; term weighting; vector space model; inverted index; Web Search Overview Indexes Query Indexing Ranking Results Application Documents User Information analysis Query processing

More information

Clustering Web Documents using Hierarchical Method for Efficient Cluster Formation

Clustering Web Documents using Hierarchical Method for Efficient Cluster Formation Clustering Web Documents using Hierarchical Method for Efficient Cluster Formation I.Ceema *1, M.Kavitha *2, G.Renukadevi *3, G.sripriya *4, S. RajeshKumar #5 * Assistant Professor, Bon Secourse College

More information

CS47300: Web Information Search and Management

CS47300: Web Information Search and Management CS47300: Web Information Search and Management Query Expansion Prof. Chris Clifton 28 September 2018 Material adapted from course created by Dr. Luo Si, now leading Alibaba research group Idea: Query Expansion

More information

Exam in course TDT4215 Web Intelligence - Solutions and guidelines - Wednesday June 4, 2008 Time:

Exam in course TDT4215 Web Intelligence - Solutions and guidelines - Wednesday June 4, 2008 Time: English Student no:... Page 1 of 14 Contact during the exam: Geir Solskinnsbakk Phone: 735 94218/ 93607988 Exam in course TDT4215 Web Intelligence - Solutions and guidelines - Wednesday June 4, 2008 Time:

More information

Estimating Embedding Vectors for Queries

Estimating Embedding Vectors for Queries Estimating Embedding Vectors for Queries Hamed Zamani Center for Intelligent Information Retrieval College of Information and Computer Sciences University of Massachusetts Amherst Amherst, MA 01003 zamani@cs.umass.edu

More information