Rollback-Recovery p Σ Σ

Size: px
Start display at page:

Download "Rollback-Recovery p Σ Σ"

Transcription

1 Uncoordinated Checkpointing Rollback-Recovery p Σ Σ Easy to understand No synchronization overhead Flexible can choose when to checkpoint To recover from a crash: go back to last checkpoint restart m 8 m 8

2 m 8

3

4 How to Avoid the Domino Effect Coordinated Checkpointing No independence Synchronization Overhead Easy Garbage Collection Communication Induced Checkpointing : detect dangerous communication patterns and checkpoint appropriately Less synchronization Less independence Complex

5 Coordinated checkpoint for every output commit High overhead if frequent I/O with external environment

6 Distributed Checkpointing at a Glance Message Logging Can avoid domino effect Works with coordinated checkpoint Independent + Simplicity + Autonomy + Scalability - Domino effect Coordinated + Consistent states + Good performance + Garbage Collection - Scalability Communicationinduced + Consistent states + Autonomy + Scalability - None is true Works with uncoordinated checkpoint Can reduce cost of output commit How Message Logging Works Logging Message Determinants To tolerate crash failures: periodically checkpoint application state; log on stable storage determinants of non-deterministic events executed after checkpointed state. Determinants for message delivery events: message m = <m.dest, m.rsn, m.data> receive sequence number Recovery: restore latest checkpointed state; replay non-deterministic events according to determinants

7 Logging Message Determinants Pessimistic Logging Determinants for message delivery events: message m = <m.dest, m.rsn, m.data> logs synchronously to stable storage the determinants of and receive sequence number before sending. Or alternatively: message m = <m.dest, m.rsn, m.source, m.ssn> Never creates orphans pointer to the message data may incur blocking straightforward recovery Sender Based Logging Optimistic Logging (Johnson and Zwaenepoel, FTCS 87) 2 sends Message log is maintained in volatile storage at the sender. A message m is logged in two steps: logging determinants. If fails before logging the i) before sending m, the sender logs its content: m is partially logged determinants of and, ii) the receiver tells the sender the receive sequence number of m, and the sender adds this information to its log: m is fully logged. becomes an orphan. q p m partially logged (m.data, m.ssn) m fully logged (ACK, m.rsn) (m.ssn, m.rsn) q blocks? Eliminates orphans during recovery non-blocking during failure-free executions rollback of correct processes complex recovery q knows m is fully logged

8 Causal Logging No blocking in failure-free executions No orphans No additional messages Tolerates multiple concurrent failures Keeps determinant in volatile memory Localized output commit Given a message m sent from m.source to m.dest, Depend(m): Log(m): { p P (p = m.dest) and p delivered m ( e p :(deliver m.dest (m) e p )) set of processes with a copy of the determinant of m in their volatile memory p orphan of a set C of crashed processes: (p C) m :(Log(m) C p Depend(m)) } The No-Orphans Consistency Condition No orphans after crash C if: m :(Log(m) C) (Depend(m) C) No orphans after any C if: m :(Depend(m) Log(m)) The Consistency Condition m :( stable(m) (Depend(m) Log(m))) Optimistic and Pessimistic No orphans after crash C if: m :(Log(m) C) (Depend(m) C) Optimistic weakens it to: m :(Log(m) C) (Depend(m) C) No orphans after any crash if: m :( stable(m) (Depend(m) Log(m))) Pessimistic strengthens it to: m :( stable(m) Depend(m) 1)

9 Causal Message Logging No orphans after any crash of size at most f if: m :( stable(m) (Depend(m) Log(m))) An Example Causal Logging: m :( stable(m) (Depend(m) Log(m))) If f = 1, stable(m) Log(m) 2 Causal strengthens it to: m : ( stable(m) ( (Depend(m) Log(m)) (Depend(m) =Log(m)) )) <#,# > <# >

Hypervisor-based Fault-tolerance. Where should RC be implemented? The Hypervisor as a State Machine. The Architecture. In hardware

Hypervisor-based Fault-tolerance. Where should RC be implemented? The Hypervisor as a State Machine. The Architecture. In hardware Where should RC be implemented? In hardware sensitive to architecture changes At the OS level state transitions hard to track and coordinate At the application level requires sophisticated application

More information

Message Logging: Pessimistic, Optimistic, Causal, and Optimal

Message Logging: Pessimistic, Optimistic, Causal, and Optimal IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 24, NO. 2, FEBRUARY 1998 149 Message Logging: Pessimistic, Optimistic, Causal, and Optimal Lorenzo Alvisi and Keith Marzullo Abstract Message-logging protocols

More information

Three Models. 1. Time Order 2. Distributed Algorithms 3. Nature of Distributed Systems1. DEPT. OF Comp Sc. and Engg., IIT Delhi

Three Models. 1. Time Order 2. Distributed Algorithms 3. Nature of Distributed Systems1. DEPT. OF Comp Sc. and Engg., IIT Delhi DEPT. OF Comp Sc. and Engg., IIT Delhi Three Models 1. CSV888 - Distributed Systems 1. Time Order 2. Distributed Algorithms 3. Nature of Distributed Systems1 Index - Models to study [2] 1. LAN based systems

More information

Failure Models. Fault Tolerance. Failure Masking by Redundancy. Agreement in Faulty Systems

Failure Models. Fault Tolerance. Failure Masking by Redundancy. Agreement in Faulty Systems Fault Tolerance Fault cause of an error that might lead to failure; could be transient, intermittent, or permanent Fault tolerance a system can provide its services even in the presence of faults Requirements

More information

a resilient process in which the crash of a process is translated into intermittent unavailability of that process. All message-logging protocols requ

a resilient process in which the crash of a process is translated into intermittent unavailability of that process. All message-logging protocols requ Message Logging: Pessimistic, Optimistic, Causal and Optimal Lorenzo Alvisi The University of Texas at Austin Department of Computer Sciences Austin, TX Keith Marzullo y University of California, San Diego

More information

A Survey of Rollback-Recovery Protocols in Message-Passing Systems

A Survey of Rollback-Recovery Protocols in Message-Passing Systems A Survey of Rollback-Recovery Protocols in Message-Passing Systems Mootaz Elnozahy * Lorenzo Alvisi Yi-Min Wang David B. Johnson June 1999 CMU-CS-99-148 (A revision of CMU-CS-96-181) School of Computer

More information

Checkpointing HPC Applications

Checkpointing HPC Applications Checkpointing HC Applications Thomas Ropars thomas.ropars@imag.fr Université Grenoble Alpes 2016 1 Failures in supercomputers Fault tolerance is a serious problem Systems with millions of components Failures

More information

Today CSCI Recovery techniques. Recovery. Recovery CAP Theorem. Instructor: Abhishek Chandra

Today CSCI Recovery techniques. Recovery. Recovery CAP Theorem. Instructor: Abhishek Chandra Today CSCI 5105 Recovery CAP Theorem Instructor: Abhishek Chandra 2 Recovery Operations to be performed to move from an erroneous state to an error-free state Backward recovery: Go back to a previous correct

More information

Fault Tolerance Part II. CS403/534 Distributed Systems Erkay Savas Sabanci University

Fault Tolerance Part II. CS403/534 Distributed Systems Erkay Savas Sabanci University Fault Tolerance Part II CS403/534 Distributed Systems Erkay Savas Sabanci University 1 Reliable Group Communication Reliable multicasting: A message that is sent to a process group should be delivered

More information

Today: Fault Tolerance. Reliable One-One Communication

Today: Fault Tolerance. Reliable One-One Communication Today: Fault Tolerance Reliable communication Distributed commit Two phase commit Three phase commit Failure recovery Checkpointing Message logging Lecture 17, page 1 Reliable One-One Communication Issues

More information

CSE 5306 Distributed Systems

CSE 5306 Distributed Systems CSE 5306 Distributed Systems Fault Tolerance Jia Rao http://ranger.uta.edu/~jrao/ 1 Failure in Distributed Systems Partial failure Happens when one component of a distributed system fails Often leaves

More information

CSE 5306 Distributed Systems. Fault Tolerance

CSE 5306 Distributed Systems. Fault Tolerance CSE 5306 Distributed Systems Fault Tolerance 1 Failure in Distributed Systems Partial failure happens when one component of a distributed system fails often leaves other components unaffected A failure

More information

Page 1 FAULT TOLERANT SYSTEMS. Coordinated Checkpointing. Time-Based Synchronization. A Coordinated Checkpointing Algorithm

Page 1 FAULT TOLERANT SYSTEMS. Coordinated Checkpointing. Time-Based Synchronization. A Coordinated Checkpointing Algorithm FAULT TOLERANT SYSTEMS Coordinated http://www.ecs.umass.edu/ece/koren/faulttolerantsystems Chapter 6 II Uncoordinated checkpointing may lead to domino effect or to livelock Example: l P wants to take a

More information

Fault Tolerance. Distributed Systems IT332

Fault Tolerance. Distributed Systems IT332 Fault Tolerance Distributed Systems IT332 2 Outline Introduction to fault tolerance Reliable Client Server Communication Distributed commit Failure recovery 3 Failures, Due to What? A system is said to

More information

Rollback-Recovery Protocols for Send-Deterministic Applications. Amina Guermouche, Thomas Ropars, Elisabeth Brunet, Marc Snir and Franck Cappello

Rollback-Recovery Protocols for Send-Deterministic Applications. Amina Guermouche, Thomas Ropars, Elisabeth Brunet, Marc Snir and Franck Cappello Rollback-Recovery Protocols for Send-Deterministic Applications Amina Guermouche, Thomas Ropars, Elisabeth Brunet, Marc Snir and Franck Cappello Fault Tolerance in HPC Systems is Mandatory Resiliency is

More information

David B. Johnson. Willy Zwaenepoel. Rice University. Houston, Texas. or the constraints of real-time applications [6, 7].

David B. Johnson. Willy Zwaenepoel. Rice University. Houston, Texas. or the constraints of real-time applications [6, 7]. Sender-Based Message Logging David B. Johnson Willy Zwaenepoel Department of Computer Science Rice University Houston, Texas Abstract Sender-based message logging isanewlow-overhead mechanism for providing

More information

Fault-Tolerant Computer Systems ECE 60872/CS Recovery

Fault-Tolerant Computer Systems ECE 60872/CS Recovery Fault-Tolerant Computer Systems ECE 60872/CS 59000 Recovery Saurabh Bagchi School of Electrical & Computer Engineering Purdue University Slides based on ECE442 at the University of Illinois taught by Profs.

More information

Distributed Recovery with K-Optimistic Logging. Yi-Min Wang Om P. Damani Vijay K. Garg

Distributed Recovery with K-Optimistic Logging. Yi-Min Wang Om P. Damani Vijay K. Garg Distributed Recovery with K-Optimistic Logging Yi-Min Wang Om P. Damani Vijay K. Garg Abstract Fault-tolerance techniques based on checkpointing and message logging have been increasingly used in real-world

More information

FAULT TOLERANT SYSTEMS

FAULT TOLERANT SYSTEMS FAULT TOLERANT SYSTEMS http://www.ecs.umass.edu/ece/koren/faulttolerantsystems Part 17 - Checkpointing II Chapter 6 - Checkpointing Part.17.1 Coordinated Checkpointing Uncoordinated checkpointing may lead

More information

Chapter 8 Fault Tolerance

Chapter 8 Fault Tolerance DISTRIBUTED SYSTEMS Principles and Paradigms Second Edition ANDREW S. TANENBAUM MAARTEN VAN STEEN Chapter 8 Fault Tolerance Fault Tolerance Basic Concepts Being fault tolerant is strongly related to what

More information

Novel Log Management for Sender-based Message Logging

Novel Log Management for Sender-based Message Logging Novel Log Management for Sender-based Message Logging JINHO AHN College of Natural Sciences, Kyonggi University Department of Computer Science San 94-6 Yiuidong, Yeongtonggu, Suwonsi Gyeonggido 443-760

More information

Nonblocking and Orphan-Free Message Logging. Cornell University Department of Computer Science. Ithaca NY USA. Abstract

Nonblocking and Orphan-Free Message Logging. Cornell University Department of Computer Science. Ithaca NY USA. Abstract Nonblocking and Orphan-Free Message Logging Protocols Lorenzo Alvisi y Bruce Hoppe Keith Marzullo z Cornell University Department of Computer Science Ithaca NY 14853 USA Abstract Currently existing message

More information

A SURVEY AND PERFORMANCE ANALYSIS OF CHECKPOINTING AND RECOVERY SCHEMES FOR MOBILE COMPUTING SYSTEMS

A SURVEY AND PERFORMANCE ANALYSIS OF CHECKPOINTING AND RECOVERY SCHEMES FOR MOBILE COMPUTING SYSTEMS International Journal of Computer Science and Communication Vol. 2, No. 1, January-June 2011, pp. 89-95 A SURVEY AND PERFORMANCE ANALYSIS OF CHECKPOINTING AND RECOVERY SCHEMES FOR MOBILE COMPUTING SYSTEMS

More information

MESSAGE INDUCED SOFT CHEKPOINTING FOR RECOVERY IN MOBILE ENVIRONMENTS

MESSAGE INDUCED SOFT CHEKPOINTING FOR RECOVERY IN MOBILE ENVIRONMENTS MESSAGE INDUCED SOFT CHEKPOINTING FOR RECOVERY IN MOBILE ENVIRONMENTS Ruchi Tuli 1 & Parveen Kumar 2 1 Research Scholar, Singhania University, Pacheri Bari (Rajasthan) India 2 Professor, Meerut Institute

More information

Distributed Systems Principles and Paradigms. Chapter 08: Fault Tolerance

Distributed Systems Principles and Paradigms. Chapter 08: Fault Tolerance Distributed Systems Principles and Paradigms Maarten van Steen VU Amsterdam, Dept. Computer Science Room R4.20, steen@cs.vu.nl Chapter 08: Fault Tolerance Version: December 2, 2010 2 / 65 Contents Chapter

More information

A Review of Checkpointing Fault Tolerance Techniques in Distributed Mobile Systems

A Review of Checkpointing Fault Tolerance Techniques in Distributed Mobile Systems A Review of Checkpointing Fault Tolerance Techniques in Distributed Mobile Systems Rachit Garg 1, Praveen Kumar 2 1 Singhania University, Department of Computer Science & Engineering, Pacheri Bari (Rajasthan),

More information

Distributed Systems Principles and Paradigms

Distributed Systems Principles and Paradigms Distributed Systems Principles and Paradigms Chapter 07 (version 16th May 2006) Maarten van Steen Vrije Universiteit Amsterdam, Faculty of Science Dept. Mathematics and Computer Science Room R4.20. Tel:

More information

CprE Fault Tolerance. Dr. Yong Guan. Department of Electrical and Computer Engineering & Information Assurance Center Iowa State University

CprE Fault Tolerance. Dr. Yong Guan. Department of Electrical and Computer Engineering & Information Assurance Center Iowa State University Fault Tolerance Dr. Yong Guan Department of Electrical and Computer Engineering & Information Assurance Center Iowa State University Outline for Today s Talk Basic Concepts Process Resilience Reliable

More information

The Cost of Recovery in Message Logging Protocols

The Cost of Recovery in Message Logging Protocols 160 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 12, NO. 2, MARCH/APRIL 2000 The Cost of Recovery in Message Logging Protocols Sriram Rao, Lorenzo Alvisi, and Harrick M. Vin AbstractÐPast

More information

Today: Fault Tolerance. Failure Masking by Redundancy

Today: Fault Tolerance. Failure Masking by Redundancy Today: Fault Tolerance Agreement in presence of faults Two army problem Byzantine generals problem Reliable communication Distributed commit Two phase commit Three phase commit Failure recovery Checkpointing

More information

Fault Tolerance. Basic Concepts

Fault Tolerance. Basic Concepts COP 6611 Advanced Operating System Fault Tolerance Chi Zhang czhang@cs.fiu.edu Dependability Includes Availability Run time / total time Basic Concepts Reliability The length of uninterrupted run time

More information

Chapter 8 Fault Tolerance

Chapter 8 Fault Tolerance DISTRIBUTED SYSTEMS Principles and Paradigms Second Edition ANDREW S. TANENBAUM MAARTEN VAN STEEN Chapter 8 Fault Tolerance 1 Fault Tolerance Basic Concepts Being fault tolerant is strongly related to

More information

Fault Tolerance. Goals: transparent: mask (i.e., completely recover from) all failures, or predictable: exhibit a well defined failure behavior

Fault Tolerance. Goals: transparent: mask (i.e., completely recover from) all failures, or predictable: exhibit a well defined failure behavior Fault Tolerance Causes of failure: process failure machine failure network failure Goals: transparent: mask (i.e., completely recover from) all failures, or predictable: exhibit a well defined failure

More information

Lecture 21: Logging Schemes /645 Database Systems (Fall 2017) Carnegie Mellon University Prof. Andy Pavlo

Lecture 21: Logging Schemes /645 Database Systems (Fall 2017) Carnegie Mellon University Prof. Andy Pavlo Lecture 21: Logging Schemes 15-445/645 Database Systems (Fall 2017) Carnegie Mellon University Prof. Andy Pavlo Crash Recovery Recovery algorithms are techniques to ensure database consistency, transaction

More information

Chapter 5: Distributed Systems: Fault Tolerance. Fall 2013 Jussi Kangasharju

Chapter 5: Distributed Systems: Fault Tolerance. Fall 2013 Jussi Kangasharju Chapter 5: Distributed Systems: Fault Tolerance Fall 2013 Jussi Kangasharju Chapter Outline n Fault tolerance n Process resilience n Reliable group communication n Distributed commit n Recovery 2 Basic

More information

Fault Tolerance. Distributed Systems. September 2002

Fault Tolerance. Distributed Systems. September 2002 Fault Tolerance Distributed Systems September 2002 Basics A component provides services to clients. To provide services, the component may require the services from other components a component may depend

More information

G1 m G2 Attack at dawn? e e e e 1 S 1 = {0} End of round 1 End of round 2 2 S 2 = {1} {1} {0,1} decide -1 3 S 3 = {1} { 0,1} {0,1} decide -1 white hats are loyal or good guys black hats are traitor

More information

MYE017 Distributed Systems. Kostas Magoutis

MYE017 Distributed Systems. Kostas Magoutis MYE017 Distributed Systems Kostas Magoutis magoutis@cse.uoi.gr http://www.cse.uoi.gr/~magoutis Basic Reliable-Multicasting Schemes A simple solution to reliable multicasting when all receivers are known

More information

On the Relevance of Communication Costs of Rollback-Recovery Protocols

On the Relevance of Communication Costs of Rollback-Recovery Protocols On the Relevance of Communication Costs of Rollback-Recovery Protocols E.N. Elnozahy June 1995 CMU-CS-95-167 School of Computer Science Carnegie Mellon University Pittsburgh, PA 15213 To appear in the

More information

Fault Tolerance Causes of failure: process failure machine failure network failure Goals: transparent: mask (i.e., completely recover from) all

Fault Tolerance Causes of failure: process failure machine failure network failure Goals: transparent: mask (i.e., completely recover from) all Fault Tolerance Causes of failure: process failure machine failure network failure Goals: transparent: mask (i.e., completely recover from) all failures or predictable: exhibit a well defined failure behavior

More information

Failure Tolerance. Distributed Systems Santa Clara University

Failure Tolerance. Distributed Systems Santa Clara University Failure Tolerance Distributed Systems Santa Clara University Distributed Checkpointing Distributed Checkpointing Capture the global state of a distributed system Chandy and Lamport: Distributed snapshot

More information

Parallel and Distributed Systems. Programming Models. Why Parallel or Distributed Computing? What is a parallel computer?

Parallel and Distributed Systems. Programming Models. Why Parallel or Distributed Computing? What is a parallel computer? Parallel and Distributed Systems Instructor: Sandhya Dwarkadas Department of Computer Science University of Rochester What is a parallel computer? A collection of processing elements that communicate and

More information

Distributed Systems Principles and Paradigms

Distributed Systems Principles and Paradigms Distributed Systems Principles and Paradigms Chapter 08 (version October 5, 2007) Maarten van Steen Vrije Universiteit Amsterdam, Faculty of Science Dept. Mathematics and Computer Science Room R4.20. Tel:

More information

Distributed Systems Principles and Paradigms

Distributed Systems Principles and Paradigms Distributed Systems Principles and Paradigms Chapter 08 (version October 5, 2007) Maarten van Steen Vrije Universiteit Amsterdam, Faculty of Science Dept. Mathematics and Computer Science Room R4.20. Tel:

More information

HydEE: Failure Containment without Event Logging for Large Scale Send-Deterministic MPI Applications

HydEE: Failure Containment without Event Logging for Large Scale Send-Deterministic MPI Applications HydEE: Failure Containment without Event Logging for Large Scale Send-Deterministic MPI Applications Amina Guermouche, Thomas Ropars, Marc Snir, Franck Cappello To cite this version: Amina Guermouche,

More information

A Hierarchical Checkpointing Protocol for Parallel Applications in Cluster Federations

A Hierarchical Checkpointing Protocol for Parallel Applications in Cluster Federations A Hierarchical Checkpointing Protocol for Parallel Applications in Cluster Federations Sébastien Monnet IRISA Sebastien.Monnet@irisa.fr Christine Morin IRISA/INRIA Christine.Morin@irisa.fr Ramamurthy Badrinath

More information

International Journal of Distributed and Parallel systems (IJDPS) Vol.1, No.1, September

International Journal of Distributed and Parallel systems (IJDPS) Vol.1, No.1, September DESIGN AND PERFORMANCE ANALYSIS OF COORDINATED CHECKPOINTING ALGORITHMS FOR DISTRIBUTED MOBILE SYSTEMS Surender Kumar 1,R.K. Chauhan 2 and Parveen Kumar 3 1 Deptt. of I.T, Haryana College of Tech. & Mgmt.

More information

NFSv4 as the Building Block for Fault Tolerant Applications

NFSv4 as the Building Block for Fault Tolerant Applications NFSv4 as the Building Block for Fault Tolerant Applications Alexandros Batsakis Overview Goal: To provide support for recoverability and application fault tolerance through the NFSv4 file system Motivation:

More information

Fault Tolerance 1/64

Fault Tolerance 1/64 Fault Tolerance 1/64 Fault Tolerance Fault tolerance is the ability of a distributed system to provide its services even in the presence of faults. A distributed system should be able to recover automatically

More information

Last Class Carnegie Mellon Univ. Dept. of Computer Science /615 - DB Applications

Last Class Carnegie Mellon Univ. Dept. of Computer Science /615 - DB Applications Last Class Carnegie Mellon Univ. Dept. of Computer Science 15-415/615 - DB Applications Basic Timestamp Ordering Optimistic Concurrency Control Multi-Version Concurrency Control C. Faloutsos A. Pavlo Lecture#23:

More information

MYE017 Distributed Systems. Kostas Magoutis

MYE017 Distributed Systems. Kostas Magoutis MYE017 Distributed Systems Kostas Magoutis magoutis@cse.uoi.gr http://www.cse.uoi.gr/~magoutis Message reception vs. delivery The logical organization of a distributed system to distinguish between message

More information

Outline. Purpose of this paper. Purpose of this paper. Transaction Review. Outline. Aries: A Transaction Recovery Method

Outline. Purpose of this paper. Purpose of this paper. Transaction Review. Outline. Aries: A Transaction Recovery Method Outline Aries: A Transaction Recovery Method Presented by Haoran Song Discussion by Hoyt Purpose of this paper Computer system is crashed as easily as other devices. Disk burned Software Errors Fires or

More information

Consistent Logical Checkpointing. Nitin H. Vaidya. Texas A&M University. Phone: Fax:

Consistent Logical Checkpointing. Nitin H. Vaidya. Texas A&M University. Phone: Fax: Consistent Logical Checkpointing Nitin H. Vaidya Department of Computer Science Texas A&M University College Station, TX 77843-3112 hone: 409-845-0512 Fax: 409-847-8578 E-mail: vaidya@cs.tamu.edu Technical

More information

Uncoordinated Checkpointing Without Domino Effect for Send-Deterministic MPI Applications

Uncoordinated Checkpointing Without Domino Effect for Send-Deterministic MPI Applications Uncoordinated Checkpointing Without Domino Effect for Send-Deterministic MPI Applications Amina Guermouche, Thomas Ropars, Elisabeth Brunet, Marc Snir, Franck Cappello To cite this version: Amina Guermouche,

More information

Distributed recovery for senddeterministic. Tatiana V. Martsinkevich, Thomas Ropars, Amina Guermouche, Franck Cappello

Distributed recovery for senddeterministic. Tatiana V. Martsinkevich, Thomas Ropars, Amina Guermouche, Franck Cappello Distributed recovery for senddeterministic HPC applications Tatiana V. Martsinkevich, Thomas Ropars, Amina Guermouche, Franck Cappello 1 Fault-tolerance in HPC applications Number of cores on one CPU and

More information

Today: Fault Tolerance. Replica Management

Today: Fault Tolerance. Replica Management Today: Fault Tolerance Failure models Agreement in presence of faults Two army problem Byzantine generals problem Reliable communication Distributed commit Two phase commit Three phase commit Failure recovery

More information

Parallel & Distributed Systems group

Parallel & Distributed Systems group How to Recover Efficiently and Asynchronously when Optimism Fails Om P Damani Vijay K Garg TR TR-PDS-1995-014 August 1995 PRAESIDIUM THE DISCIPLINA CIVITATIS UNIVERSITYOFTEXAS AT AUSTIN Parallel & Distributed

More information

Uncoordinated Checkpointing Without Domino Effect for Send-Deterministic MPI Applications

Uncoordinated Checkpointing Without Domino Effect for Send-Deterministic MPI Applications Uncoordinated Checkpointing Without Domino Effect for Send-Deterministic MPI Applications Amina Guermouche, Thomas Ropars, Elisabeth Brunet, Marc Snir, Franck Cappello INRIA Saclay-Île de France, F-91893

More information

Novel low-overhead roll-forward recovery scheme for distributed systems

Novel low-overhead roll-forward recovery scheme for distributed systems Novel low-overhead roll-forward recovery scheme for distributed systems B. Gupta, S. Rahimi and Z. Liu Abstract: An efficient roll-forward checkpointing/recovery scheme for distributed systems has been

More information

tolerance. In any system of thousands or millions of computers, the likelihood of multiple failures is high. Many of the current applications that uti

tolerance. In any system of thousands or millions of computers, the likelihood of multiple failures is high. Many of the current applications that uti Scalable Causal Message Logging for Wide-Area Environments Karan Bhatia 1, Keith Marzullo 2, and Lorenzo Alvisi 3 1 Advanced Technology Group, Entropia Inc. San Diego, CA 92121 karan@entropia.com http://www.entropia.com/

More information

Scalable Replay with Partial-Order Dependencies for Message-Logging Fault Tolerance

Scalable Replay with Partial-Order Dependencies for Message-Logging Fault Tolerance Scalable Replay with Partial-Order Dependencies for Message-Logging Fault Tolerance Jonathan Lifflander*, Esteban Meneses, Harshitha Menon*, Phil Miller*, Sriram Krishnamoorthy, Laxmikant V. Kale* jliffl2@illinois.edu,

More information

0 0 % Department of Computer Science Rice University P.O. Box 1892 Houston, Texas

0 0 % Department of Computer Science Rice University P.O. Box 1892 Houston, Texas I This paper will appear in the Journal of Algorithms (September 1990). N 04 SDTIC" ELECTE MAY 30 1990 Recovery in Distributed Systems Using Optimistic Message Logging and Checkpointing* David B. Johnson

More information

What is checkpoint. Checkpoint libraries. Where to checkpoint? Why we need it? When to checkpoint? Who need checkpoint?

What is checkpoint. Checkpoint libraries. Where to checkpoint? Why we need it? When to checkpoint? Who need checkpoint? What is Checkpoint libraries Bosilca George bosilca@cs.utk.edu Saving the state of a program at a certain point so that it can be restarted from that point at a later time or on a different machine. interruption

More information

Recoverability. Kathleen Durant PhD CS3200

Recoverability. Kathleen Durant PhD CS3200 Recoverability Kathleen Durant PhD CS3200 1 Recovery Manager Recovery manager ensures the ACID principles of atomicity and durability Atomicity: either all actions in a transaction are done or none are

More information

Optimistic Recovery in Distributed Systems

Optimistic Recovery in Distributed Systems Optimistic Recovery in Distributed Systems ROBERT E. STROM and SHAULA YEMINI IBM Thomas J. Watson Research Center Optimistic Recovery is a new technique supporting application-independent transparent recovery

More information

DATABASE DESIGN I - 1DL300

DATABASE DESIGN I - 1DL300 DATABASE DESIGN I - 1DL300 Spring 2011 An introductory course on database systems http://www.it.uu.se/edu/course/homepage/dbastekn/vt10/ Manivasakan Sabesan Uppsala Database Laboratory Department of Information

More information

arxiv:cs/ v1 [cs.dc] 1 Jan 2005

arxiv:cs/ v1 [cs.dc] 1 Jan 2005 A Survey of Fault-Tolerance and Fault-Recovery Techniques in Parallel Systems arxiv:cs/0501002v1 [cs.dc] 1 Jan 2005 Michael Treaster National Center for Supercomputing Applications (NCSA) University of

More information

Clock and Time. THOAI NAM Faculty of Information Technology HCMC University of Technology

Clock and Time. THOAI NAM Faculty of Information Technology HCMC University of Technology Clock and Time THOAI NAM Faculty of Information Technology HCMC University of Technology Using some slides of Prashant Shenoy, UMass Computer Science Chapter 3: Clock and Time Time ordering and clock synchronization

More information

Kevin Skadron. 18 April Abstract. higher rate of failure requires eective fault-tolerance. Asynchronous consistent checkpointing oers a

Kevin Skadron. 18 April Abstract. higher rate of failure requires eective fault-tolerance. Asynchronous consistent checkpointing oers a Asynchronous Checkpointing for PVM Requires Message-Logging Kevin Skadron 18 April 1994 Abstract Distributed computing using networked workstations oers cost-ecient parallel computing, but the higher rate

More information

Fault Tolerance. o Basic Concepts o Process Resilience o Reliable Client-Server Communication o Reliable Group Communication. o Distributed Commit

Fault Tolerance. o Basic Concepts o Process Resilience o Reliable Client-Server Communication o Reliable Group Communication. o Distributed Commit Fault Tolerance o Basic Concepts o Process Resilience o Reliable Client-Server Communication o Reliable Group Communication o Distributed Commit -1 Distributed Commit o A more general problem of atomic

More information

Checkpointing and Rollback Recovery in Distributed Systems: Existing Solutions, Open Issues and Proposed Solutions

Checkpointing and Rollback Recovery in Distributed Systems: Existing Solutions, Open Issues and Proposed Solutions Checkpointing and Rollback Recovery in Distributed Systems: Existing Solutions, Open Issues and Proposed Solutions D. Manivannan Department of Computer Science University of Kentucky Lexington, KY 40506

More information

Recovering from a Crash. Three-Phase Commit

Recovering from a Crash. Three-Phase Commit Recovering from a Crash If INIT : abort locally and inform coordinator If Ready, contact another process Q and examine Q s state Lecture 18, page 23 Three-Phase Commit Two phase commit: problem if coordinator

More information

Lightweight Logging for Lazy Release Consistent Distributed Shared Memory

Lightweight Logging for Lazy Release Consistent Distributed Shared Memory Lightweight Logging for Lazy Release Consistent Distributed Shared Memory Manuel Costa, Paulo Guedes, Manuel Sequeira, Nuno Neves, Miguel Castro IST - INESC R. Alves Redol 9, 1000 Lisboa PORTUGAL {msc,

More information

The Performance of Coordinated and Independent Checkpointing

The Performance of Coordinated and Independent Checkpointing The Performance of inated and Independent Checkpointing Luis Moura Silva João Gabriel Silva Departamento Engenharia Informática Universidade de Coimbra, Polo II P-3030 - Coimbra PORTUGAL Email: luis@dei.uc.pt

More information

Process groups and message ordering

Process groups and message ordering Process groups and message ordering If processes belong to groups, certain algorithms can be used that depend on group properties membership create ( name ), kill ( name ) join ( name, process ), leave

More information

FAULT TOLERANT SYSTEMS

FAULT TOLERANT SYSTEMS FAULT TOLERANT SYSTEMS http://www.ecs.umass.edu/ece/koren/faulttolerantsystems Part 16 - Checkpointing I Chapter 6 - Checkpointing Part.16.1 Failure During Program Execution Computers today are much faster,

More information

Some Thoughts on Distributed Recovery. (preliminary version) Nitin H. Vaidya. Texas A&M University. Phone:

Some Thoughts on Distributed Recovery. (preliminary version) Nitin H. Vaidya. Texas A&M University. Phone: Some Thoughts on Distributed Recovery (preliminary version) Nitin H. Vaidya Department of Computer Science Texas A&M University College Station, TX 77843-3112 Phone: 409-845-0512 Fax: 409-847-8578 E-mail:

More information

Fault Tolerance. Chapter 7

Fault Tolerance. Chapter 7 Fault Tolerance Chapter 7 Basic Concepts Dependability Includes Availability Reliability Safety Maintainability Failure Models Type of failure Crash failure Omission failure Receive omission Send omission

More information

Introduction. Storage Failure Recovery Logging Undo Logging Redo Logging ARIES

Introduction. Storage Failure Recovery Logging Undo Logging Redo Logging ARIES Introduction Storage Failure Recovery Logging Undo Logging Redo Logging ARIES Volatile storage Main memory Cache memory Nonvolatile storage Stable storage Online (e.g. hard disk, solid state disk) Transaction

More information

A Consensus-based Fault-Tolerant Event Logger for High Performance Applications

A Consensus-based Fault-Tolerant Event Logger for High Performance Applications A Consensus-based Fault-Tolerant Event Logger for High Performance Applications Edson Tavares de Camargo and Elias P. Duarte Jr. and Fernando Pedone Federal University of Paraná (UFPR), Department of Informatics,

More information

APPLICATION-TRANSPARENT ERROR-RECOVERY TECHNIQUES FOR MULTICOMPUTERS

APPLICATION-TRANSPARENT ERROR-RECOVERY TECHNIQUES FOR MULTICOMPUTERS Proceedings of the Fourth onference on Hypercubes, oncurrent omputers, and Applications Monterey, alifornia, pp. 103-108, March 1989. APPLIATION-TRANSPARENT ERROR-REOVERY TEHNIQUES FOR MULTIOMPUTERS Tiffany

More information

CS 541 Database Systems. Recovery Managers

CS 541 Database Systems. Recovery Managers CS 541 Database Systems Recovery Managers 1 Recovery Managers Depending upon whether or not undo, redo operations may be needed, there are four types of RMs: Undo/Redo; No-Undo/Redo; Undo/No- Redo; and

More information

Carnegie Mellon Univ. Dept. of Computer Science /615 - DB Applications. Last Class. Today s Class. Faloutsos/Pavlo CMU /615

Carnegie Mellon Univ. Dept. of Computer Science /615 - DB Applications. Last Class. Today s Class. Faloutsos/Pavlo CMU /615 Carnegie Mellon Univ. Dept. of Computer Science 15-415/615 - DB Applications C. Faloutsos A. Pavlo Lecture#23: Crash Recovery Part 1 (R&G ch. 18) Last Class Basic Timestamp Ordering Optimistic Concurrency

More information

Basic concepts in fault tolerance Masking failure by redundancy Process resilience Reliable communication. Distributed commit.

Basic concepts in fault tolerance Masking failure by redundancy Process resilience Reliable communication. Distributed commit. Basic concepts in fault tolerance Masking failure by redundancy Process resilience Reliable communication One-one communication One-many communication Distributed commit Two phase commit Failure recovery

More information

Low-overhead Protocols for Fault-tolerant File Sharing

Low-overhead Protocols for Fault-tolerant File Sharing Low-overhead Protocols for Fault-tolerant File Sharing Lorenzo Alvisi Sriram Rao Harrick M. Vin Department of Computer Sciences The University of Texas at Austin Austin, Texas 78712-1188, USA Abstract

More information

Chapter 17: Recovery System

Chapter 17: Recovery System Chapter 17: Recovery System! Failure Classification! Storage Structure! Recovery and Atomicity! Log-Based Recovery! Shadow Paging! Recovery With Concurrent Transactions! Buffer Management! Failure with

More information

Failure Classification. Chapter 17: Recovery System. Recovery Algorithms. Storage Structure

Failure Classification. Chapter 17: Recovery System. Recovery Algorithms. Storage Structure Chapter 17: Recovery System Failure Classification! Failure Classification! Storage Structure! Recovery and Atomicity! Log-Based Recovery! Shadow Paging! Recovery With Concurrent Transactions! Buffer Management!

More information

Fault Tolerance. Fall 2008 Jussi Kangasharju

Fault Tolerance. Fall 2008 Jussi Kangasharju Fault Tolerance Fall 2008 Jussi Kangasharju Chapter Outline Fault tolerance Process resilience Reliable group communication Distributed commit Recovery 2 Basic Concepts Dependability includes Availability

More information

Impact of Event Logger on Causal Message Logging Protocols for Fault Tolerant MPI

Impact of Event Logger on Causal Message Logging Protocols for Fault Tolerant MPI Impact of Event Logger on Causal Message Logging Protocols for Fault Tolerant MPI Lemarinier Pierre, Bouteiller Aurelien, Herault Thomas, Krawezik Geraud, Cappello Franck To cite this version: Lemarinier

More information

Outline. Failure Types

Outline. Failure Types Outline Database Tuning Nikolaus Augsten University of Salzburg Department of Computer Science Database Group 1 Unit 10 WS 2013/2014 Adapted from Database Tuning by Dennis Shasha and Philippe Bonnet. Nikolaus

More information

CS 4604: Introduc0on to Database Management Systems. B. Aditya Prakash Lecture #19: Logging and Recovery 1

CS 4604: Introduc0on to Database Management Systems. B. Aditya Prakash Lecture #19: Logging and Recovery 1 CS 4604: Introduc0on to Database Management Systems B. Aditya Prakash Lecture #19: Logging and Recovery 1 General Overview Preliminaries Write-Ahead Log - main ideas (Shadow paging) Write-Ahead Log: ARIES

More information

Transaction Management. Pearson Education Limited 1995, 2005

Transaction Management. Pearson Education Limited 1995, 2005 Chapter 20 Transaction Management 1 Chapter 20 - Objectives Function and importance of transactions. Properties of transactions. Concurrency Control Deadlock and how it can be resolved. Granularity of

More information

Heckaton. SQL Server's Memory Optimized OLTP Engine

Heckaton. SQL Server's Memory Optimized OLTP Engine Heckaton SQL Server's Memory Optimized OLTP Engine Agenda Introduction to Hekaton Design Consideration High Level Architecture Storage and Indexing Query Processing Transaction Management Transaction Durability

More information

Optimistic Concurrency Control. April 18, 2018

Optimistic Concurrency Control. April 18, 2018 Optimistic Concurrency Control April 18, 2018 1 Serializability Executing transactions serially wastes resources Interleaving transactions creates correctness errors Give transactions the illusion of isolation

More information

Today: Fault Tolerance. Fault Tolerance

Today: Fault Tolerance. Fault Tolerance Today: Fault Tolerance Agreement in presence of faults Two army problem Byzantine generals problem Reliable communication Distributed commit Two phase commit Three phase commit Paxos Failure recovery Checkpointing

More information

Concurrency Control & Recovery

Concurrency Control & Recovery Transaction Management Overview CS 186, Fall 2002, Lecture 23 R & G Chapter 18 There are three side effects of acid. Enhanced long term memory, decreased short term memory, and I forget the third. - Timothy

More information

ARIES (& Logging) April 2-4, 2018

ARIES (& Logging) April 2-4, 2018 ARIES (& Logging) April 2-4, 2018 1 What does it mean for a transaction to be committed? 2 If commit returns successfully, the transaction is recorded completely (atomicity) left the database in a stable

More information

Chapter 14: Recovery System

Chapter 14: Recovery System Chapter 14: Recovery System Chapter 14: Recovery System Failure Classification Storage Structure Recovery and Atomicity Log-Based Recovery Remote Backup Systems Failure Classification Transaction failure

More information

Advanced Memory Management

Advanced Memory Management Advanced Memory Management Main Points Applications of memory management What can we do with ability to trap on memory references to individual pages? File systems and persistent storage Goals Abstractions

More information

Distributed Systems Fault Tolerance

Distributed Systems Fault Tolerance Distributed Systems Fault Tolerance [] Fault Tolerance. Basic concepts - terminology. Process resilience groups and failure masking 3. Reliable communication reliable client-server communication reliable

More information