Akka. Developing SEDA Based Applications

Size: px
Start display at page:

Download "Akka. Developing SEDA Based Applications"

Transcription

1 Akka Developing SEDA Based Applications

2 Me Ben Senior Software Engineer at Localytics

3 Localytics Real time mobile analytics platform 40M+ events per day and growing rapidly 3x growth over the past 3 months Heavy users of Scala/Akka/NoSql We are hiring (seriously, come talk to me)

4 Localytics How to keep up with our growth?

5 Actor Model Lock free approach to concurrency No shared state between actors Asynchronous message passing Mailboxes to buffer incoming messages

6 Akka Configurable Dispatchers Mailboxes Fault Tolerant Supervisors

7 Akka Performant

8 SEDA Staged Event Driven Architecture "Decomposes a complex, event-driven application into a set of stages connected by queues." 1 "The most fundamental aspect of the SEDA architecture is the programming model that supports stage-level backpressure and load management."

9 Backpressure Whats the big deal?

10 Backpressure Manditory to prevent OutOfMemoryError Messages backup in memory faster than they can be processed Cassandra was seriously bitten by this Less crappy failure mode when swamped with inserts than "run out of memory and gc-storm to death" (CASSANDRA-401) Add backpressure to StorageProxy (CASSANDRA-685)

11 Backpressure Mailboxes case class UnboundedMailbox(val blocking: Boolean = false) extends MailboxType case class BoundedMailbox( val blocking: Boolean = false, val capacity: Int = { if (Dispatchers.MAILBOX_CAPACITY < 0) Int.MaxValue else Dispatchers.MAILBOX_CAPACITY }, val pushtimeout: Duration = Dispatchers.MAILBOX_PUSH_TIME_OUT ) extends MailboxType Backpressure Mailbox BoundedMailbox(false, QUEUE_SIZE, Duration(-1, "millis"))

12 Stages How do we decompose the problem?

13 Stages One actor class per stage Shared dispatcher Individually tunable I/O Bound CPU Bound Easier to reason about Code reuse

14 Dispatchers ThreadBasedDispatcher Binds one actor to its own thread ExecutorBasedEventDrivenDispatcher Must be shared between actors ExecutorBasedEventDrivenWorkStealingDispatcher Must be shared between actors of the same type

15 Queues SEDA has a queue per stage model Akka actors have their own mailbox How do we evenly distribute work?

16 Work Stealing ExecutorBasedEventDrivenWorkStealingDispatcher "Actors of the same type can be set up to share this dispatcher and during execution time the different actors will steal messages from other actors if they have less messages to process"

17 Work Stealing Really a work "donating" dispatcher "I have implemented a work stealing dispatcher for Akka actors. Although its called "work stealing" the implementation actually behaves more as "work donating" because the victim actor takes the initiative. I.e. it actually donates work to its thief, rather than having the thief steal work from the victim."

18 Work Stealing Doesn't that conflict with blocking mailboxes?

19 Work Stealing Sending actor will block on the receiving actors mailbox before it can "donate" Might be fixed in Akka 1.1 I a test of his latest changes

20 Load Balancing Can we distribute work on the sender side?

21 Load Balancing Routing.loadBalancerActor() Creates a new actor that forwards messages in a load balancing fashion InfiniteIterator CyclicIterator SmallestMailboxFirstIterator

22 Load Balancing Doesn't the load balancer need a blocking mailbox?

23 Load Balancing Can't easily change the load balancer's mailbox Use SmallestMailboxFirstIterator directly new SmallestMailboxFirstIterator(List(actor, actor, actor))

24 Fault Tolerance Supervisors Restarts actors Stops after x times within y milliseconds Restart Strategies OneForOne AllForOne

25 Fault Tolerance Great for transient issues Network failures Not great for permanent issues OutOfMemoryError

26 // Sending a message val actors = new SmallestMailboxFirstIterator(actorsFor(classOf[MyActor]).toList) def actor = actors.next actor! Message() Final Product // Actor creation val supervisor = Supervisor(SupervisorConfig( OneForOneStrategy(List(classOf[Exception]), RETRIES, WITH_IN_TIME), Supervise(myActors)) def myactors : List[Supervise] = { val mailbox = BoundedMailbox(false, QUEUE_SIZE, Duration(-1, "millis")) val dispatcher = Dispatchers.newExecutorBasedEventDrivenDispatcher( "my-dispatcher", 1, mailbox).setcorepoolsize(pool_size).build (1 to POOL_SIZE tolist).foldright(list[supervise]()) { (i, list) => Supervise(actorOf(new MyActor("my-actor-" + i, dispatcher)), Permanent) :: list } }

27

Akka: Simpler Concurrency, Scalability & Fault-tolerance through Actors. Jonas Bonér Viktor Klang

Akka: Simpler Concurrency, Scalability & Fault-tolerance through Actors. Jonas Bonér Viktor Klang Akka: Simpler Concurrency, Scalability & Fault-tolerance through Actors Jonas Bonér Viktor Klang We believe that... Writing correct concurrent applications is too hard Scaling out applications is too hard

More information

Akka: Simpler Concurrency, Scalability & Fault-tolerance through Actors. Jonas Bonér Scalable Solutions

Akka: Simpler Concurrency, Scalability & Fault-tolerance through Actors. Jonas Bonér Scalable Solutions Akka: Simpler Concurrency, Scalability & Fault-tolerance through Actors Jonas Bonér Scalable Solutions jonas@jonasboner.com twitter: @jboner The problem It is way too hard to build: 1. correct highly concurrent

More information

[ «*< > t] open source t. Akka Essentials. Akka's actor-based, distributed, concurrent, and scalable Java applications

[ «*< > t] open source t. Akka Essentials. Akka's actor-based, distributed, concurrent, and scalable Java applications Akka Essentials A practical, stepbystep guide to learn and build Akka's actorbased, distributed, concurrent, and scalable Java applications Munish K. Gupta [ «*< > I PUBLISHING t] open source t I I community

More information

CS Programming Languages: Scala

CS Programming Languages: Scala CS 3101-2 - Programming Languages: Scala Lecture 6: Actors and Concurrency Daniel Bauer (bauer@cs.columbia.edu) December 3, 2014 Daniel Bauer CS3101-2 Scala - 06 - Actors and Concurrency 1/19 1 Actors

More information

Akka Streams and Bloom Filters

Akka Streams and Bloom Filters Akka Streams and Bloom Filters Or: How I learned to stop worrying and love resilient elastic distributed real-time transaction processing using space efficient probabilistic data structures The Situation

More information

Actors in the Small. Making Actors more Useful. Bill La

Actors in the Small. Making Actors more Useful. Bill La Actors in the Small Making Actors more Useful Bill La Forge laforge49@gmail.com @laforge49 Actors in the Small I. Introduction II. Making Actors Fast III.Making Actors Easier to Program IV. Tutorial I.

More information

Reactive App using Actor model & Apache Spark. Rahul Kumar Software

Reactive App using Actor model & Apache Spark. Rahul Kumar Software Reactive App using Actor model & Apache Spark Rahul Kumar Software Developer @rahul_kumar_aws About Sigmoid We build realtime & big data systems. OUR CUSTOMERS Agenda Big Data - Intro Distributed Application

More information

Concurrency. Unleash your processor(s) Václav Pech

Concurrency. Unleash your processor(s) Václav Pech Concurrency Unleash your processor(s) Václav Pech About me Passionate programmer Concurrency enthusiast GPars @ Codehaus lead Groovy contributor Technology evangelist @ JetBrains http://www.jroller.com/vaclav

More information

All you need is fun. Cons T Åhs Keeper of The Code

All you need is fun. Cons T Åhs Keeper of The Code All you need is fun Cons T Åhs Keeper of The Code cons@klarna.com Cons T Åhs Keeper of The Code at klarna Architecture - The Big Picture Development - getting ideas to work Code Quality - care about the

More information

Evolution of an Apache Spark Architecture for Processing Game Data

Evolution of an Apache Spark Architecture for Processing Game Data Evolution of an Apache Spark Architecture for Processing Game Data Nick Afshartous WB Analytics Platform May 17 th 2017 May 17 th, 2017 About Me nafshartous@wbgames.com WB Analytics Core Platform Lead

More information

Microservices. Webservices with Scala (II) Microservices

Microservices. Webservices with Scala (II) Microservices Microservices Webservices with Scala (II) Microservices 2018 1 Content Deep Dive into Play2 1. Database Access with Slick 2. Database Migration with Flyway 3. akka 3.1. overview 3.2. akka-http (the http

More information

Philipp Wille. Beyond Scala s Standard Library

Philipp Wille. Beyond Scala s Standard Library Scala Enthusiasts BS Philipp Wille Beyond Scala s Standard Library OO or Functional Programming? Martin Odersky: Systems should be composed from modules. Modules should be simple parts that can be combined

More information

CS 6112 (Fall 2011) Foundations of Concurrency

CS 6112 (Fall 2011) Foundations of Concurrency . CS 6112 (Fall 2011) Foundations of Concurrency. 20 October 2011 Scribe: Alec Story.. Actors are a fairly old idea for concurrency, but a lot of the old work is confusing and hard to read. Actors have

More information

CS533 Concepts of Operating Systems. Jonathan Walpole

CS533 Concepts of Operating Systems. Jonathan Walpole CS533 Concepts of Operating Systems Jonathan Walpole SEDA: An Architecture for Well- Conditioned Scalable Internet Services Overview What does well-conditioned mean? Internet service architectures - thread

More information

Actor-Based Concurrency: Implementation and Comparative Analysis With Shared Data and Locks Alex Halter Randy Shepherd

Actor-Based Concurrency: Implementation and Comparative Analysis With Shared Data and Locks Alex Halter Randy Shepherd Actor-Based Concurrency: Implementation and Comparative Analysis With Shared Data and Locks Alex Halter Randy Shepherd 1. Introduction Writing correct concurrent programs using shared data and locks is

More information

THEATR An actor based language

THEATR An actor based language Group members: Beatrix Carroll (bac2108) Suraj Keshri (skk2142) Michael Lin (mbl2109) Linda Ortega Cordoves (lo2258) THEATR An actor based language Goal Create an actor-based language with fault-tolerance

More information

Design and Implementation of Modern Programming Languages (Seminar)

Design and Implementation of Modern Programming Languages (Seminar) Design and Implementation of Modern Programming Languages (Seminar) Outline Administrivia Intro Schedule Topics GENERAL INFORMATION Intro Introduce students to the core techniques of scientific work Give

More information

Using the SDACK Architecture to Build a Big Data Product. Yu-hsin Yeh (Evans Ye) Apache Big Data NA 2016 Vancouver

Using the SDACK Architecture to Build a Big Data Product. Yu-hsin Yeh (Evans Ye) Apache Big Data NA 2016 Vancouver Using the SDACK Architecture to Build a Big Data Product Yu-hsin Yeh (Evans Ye) Apache Big Data NA 2016 Vancouver Outline A Threat Analytic Big Data product The SDACK Architecture Akka Streams and data

More information

Akka Java Documentation

Akka Java Documentation Akka Java Documentation Release 2.2.3 1 Terminology, Concepts Concurrency vs. Parallelism Asynchronous vs. Synchronous Non-blocking vs. Blocking Deadlock vs. Starvation vs. Live-lock Race Condition 2 Non-blocking

More information

Effective v2.0. Jamie Allen Sr. Director of Global Services

Effective v2.0. Jamie Allen Sr. Director of Global Services Effective v2.0 Jamie Allen Sr. Director of Global Services @jamie_allen Reac%ve'Applica%ons' 2' Goal Communicate as much about what I ve learned in 6+ years of actor development within one hour We will

More information

CMPT 435/835 Tutorial 1 Actors Model & Akka. Ahmed Abdel Moamen PhD Candidate Agents Lab

CMPT 435/835 Tutorial 1 Actors Model & Akka. Ahmed Abdel Moamen PhD Candidate Agents Lab CMPT 435/835 Tutorial 1 Actors Model & Akka Ahmed Abdel Moamen PhD Candidate Agents Lab ama883@mail.usask.ca 1 Content Actors Model Akka (for Java) 2 Actors Model (1/7) Definition A general model of concurrent

More information

Chapter 13: I/O Systems. Operating System Concepts 9 th Edition

Chapter 13: I/O Systems. Operating System Concepts 9 th Edition Chapter 13: I/O Systems Silberschatz, Galvin and Gagne 2013 Chapter 13: I/O Systems Overview I/O Hardware Application I/O Interface Kernel I/O Subsystem Transforming I/O Requests to Hardware Operations

More information

The Actor Model. Towards Better Concurrency. By: Dror Bereznitsky

The Actor Model. Towards Better Concurrency. By: Dror Bereznitsky The Actor Model Towards Better Concurrency By: Dror Bereznitsky 1 Warning: Code Examples 2 Agenda Agenda The end of Moore law? Shared state concurrency Message passing concurrency Actors on the JVM More

More information

Programming Paradigms for Concurrency Lecture 10 The Actor Paradigm

Programming Paradigms for Concurrency Lecture 10 The Actor Paradigm Programming Paradigms for Concurrency Lecture 10 The Actor Paradigm Based on a course on Principles of Reactive Programming by Martin Odersky, Erik Meijer, Roland Kuhn Modified by Thomas Wies New York

More information

Suggested Solutions (Midterm Exam October 27, 2005)

Suggested Solutions (Midterm Exam October 27, 2005) Suggested Solutions (Midterm Exam October 27, 2005) 1 Short Questions (4 points) Answer the following questions (True or False). Use exactly one sentence to describe why you choose your answer. Without

More information

Scaling out with Akka Actors. J. Suereth

Scaling out with Akka Actors. J. Suereth Scaling out with Akka Actors J. Suereth Agenda The problem Recap on what we have Setting up a Cluster Advanced Techniques Who am I? Author Scala In Depth, sbt in Action Typesafe Employee Big Nerd ScalaDays

More information

Page 1. Analogy: Problems: Operating Systems Lecture 7. Operating Systems Lecture 7

Page 1. Analogy: Problems: Operating Systems Lecture 7. Operating Systems Lecture 7 Os-slide#1 /*Sequential Producer & Consumer*/ int i=0; repeat forever Gather material for item i; Produce item i; Use item i; Discard item i; I=I+1; end repeat Analogy: Manufacturing and distribution Print

More information

Problems with Concurrency. February 19, 2014

Problems with Concurrency. February 19, 2014 with Concurrency February 19, 2014 s with concurrency interleavings race conditions dead GUI source of s non-determinism deterministic execution model 2 / 30 General ideas Shared variable Access interleavings

More information

Last Class: Synchronization Problems. Need to hold multiple resources to perform task. CS377: Operating Systems. Real-world Examples

Last Class: Synchronization Problems. Need to hold multiple resources to perform task. CS377: Operating Systems. Real-world Examples Last Class: Synchronization Problems Reader Writer Multiple readers, single writer In practice, use read-write locks Dining Philosophers Need to hold multiple resources to perform task Lecture 10, page

More information

Tackling Concurrency With STM. Mark Volkmann 10/22/09

Tackling Concurrency With STM. Mark Volkmann 10/22/09 Tackling Concurrency With Mark Volkmann mark@ociweb.com 10/22/09 Two Flavors of Concurrency Divide and conquer divide data into subsets and process it by running the same code on each subset concurrently

More information

Tackling Concurrency With STM

Tackling Concurrency With STM Tackling Concurrency With Mark Volkmann mark@ociweb.com 10/22/09 Two Flavors of Concurrency Divide and conquer divide data into subsets and process it by running the same code on each subset concurrently

More information

Chapter 3: Processes. Operating System Concepts 8th Edition,

Chapter 3: Processes. Operating System Concepts 8th Edition, Chapter 3: Processes, Administrivia Friday: lab day. For Monday: Read Chapter 4. Written assignment due Wednesday, Feb. 25 see web site. 3.2 Outline What is a process? How is a process represented? Process

More information

Problems with Concurrency

Problems with Concurrency with Concurrency February 14, 2012 1 / 27 s with concurrency race conditions deadlocks GUI source of s non-determinism deterministic execution model interleavings 2 / 27 General ideas Shared variable Shared

More information

CONCURRENCY AND THE ACTOR MODEL

CONCURRENCY AND THE ACTOR MODEL CONCURRENCY AND THE ACTOR MODEL COMP 319 University of Liverpool slide 1 Concurrency review Multi-tasking - Task - Processes with isolated address space - Programming examples - Unix fork() processes -

More information

Overcoming the Challenges of Reusing Software

Overcoming the Challenges of Reusing Software Overcoming the Challenges of Reusing Software The amount of software produced per year is increasing exponentially. To enable producing more and more software, the most economical way is to reuse as much

More information

Chapter 3 Processes. Process Concept. Process Concept. Process Concept (Cont.) Process Concept (Cont.) Process Concept (Cont.)

Chapter 3 Processes. Process Concept. Process Concept. Process Concept (Cont.) Process Concept (Cont.) Process Concept (Cont.) Process Concept Chapter 3 Processes Computers can do several activities at a time Executing user programs, reading from disks writing to a printer, etc. In multiprogramming: CPU switches from program to

More information

Embedded Software Programming

Embedded Software Programming Embedded Software Programming Computer Science & Engineering Department Arizona State University Tempe, AZ 85287 Dr. Yann-Hang Lee yhlee@asu.edu (480) 727-7507 Event and Time-Driven Threads taskspawn (name,

More information

Processes and More. CSCI 315 Operating Systems Design Department of Computer Science

Processes and More. CSCI 315 Operating Systems Design Department of Computer Science Processes and More CSCI 315 Operating Systems Design Department of Computer Science Notice: The slides for this lecture have been largely based on those accompanying the textbook Operating Systems Concepts,

More information

Erlang 101. Google Doc

Erlang 101. Google Doc Erlang 101 Google Doc Erlang? with buzzwords Erlang is a functional concurrency-oriented language with extremely low-weight userspace "processes", share-nothing messagepassing semantics, built-in distribution,

More information

Programming Safe Agents in Blueprint. Alex Muscar University of Craiova

Programming Safe Agents in Blueprint. Alex Muscar University of Craiova Programming Safe Agents in Blueprint Alex Muscar University of Craiova Programmers are craftsmen, and, as such, they are only as productive as theirs tools allow them to be Introduction Agent Oriented

More information

Address spaces and memory management

Address spaces and memory management Address spaces and memory management Review of processes Process = one or more threads in an address space Thread = stream of executing instructions Address space = memory space used by threads Address

More information

Combining Concurrency Abstractions

Combining Concurrency Abstractions Combining Concurrency Abstractions Philipp Haller Typesafe, Switzerland Correctly and Efficiently Combining Concurrency Abstractions Philipp Haller Typesafe, Switzerland The Problem Tendency to combine

More information

Scala Actors. Scalable Multithreading on the JVM. Philipp Haller. Ph.D. candidate Programming Methods Lab EPFL, Lausanne, Switzerland

Scala Actors. Scalable Multithreading on the JVM. Philipp Haller. Ph.D. candidate Programming Methods Lab EPFL, Lausanne, Switzerland Scala Actors Scalable Multithreading on the JVM Philipp Haller Ph.D. candidate Programming Methods Lab EPFL, Lausanne, Switzerland The free lunch is over! Software is concurrent Interactive applications

More information

Integrity in Distributed Databases

Integrity in Distributed Databases Integrity in Distributed Databases Andreas Farella Free University of Bozen-Bolzano Table of Contents 1 Introduction................................................... 3 2 Different aspects of integrity.....................................

More information

Chapter 3: Process-Concept. Operating System Concepts 8 th Edition,

Chapter 3: Process-Concept. Operating System Concepts 8 th Edition, Chapter 3: Process-Concept, Silberschatz, Galvin and Gagne 2009 Chapter 3: Process-Concept Process Concept Process Scheduling Operations on Processes Interprocess Communication 3.2 Silberschatz, Galvin

More information

Following are a few basic questions that cover the essentials of OS:

Following are a few basic questions that cover the essentials of OS: Operating Systems Following are a few basic questions that cover the essentials of OS: 1. Explain the concept of Reentrancy. It is a useful, memory-saving technique for multiprogrammed timesharing systems.

More information

Executive Summary. It is important for a Java Programmer to understand the power and limitations of concurrent programming in Java using threads.

Executive Summary. It is important for a Java Programmer to understand the power and limitations of concurrent programming in Java using threads. Executive Summary. It is important for a Java Programmer to understand the power and limitations of concurrent programming in Java using threads. Poor co-ordination that exists in threads on JVM is bottleneck

More information

Easy Scalability with Akka. Distribute your domain

Easy Scalability with Akka. Distribute your domain Easy Scalability with Akka Distribute your domain Who? BoldRadius Solutions boldradius.com Typesafe Partner Scala, Akka and Play specialists Ottawa, Saskatoon, San Francisco, Boston, Chicago, Montreal,

More information

Computer Systems Assignment 4: Scheduling and I/O

Computer Systems Assignment 4: Scheduling and I/O Autumn Term 018 Distributed Computing Computer Systems Assignment : Scheduling and I/O Assigned on: October 19, 018 1 Scheduling The following table describes tasks to be scheduled. The table contains

More information

Chapter 13: I/O Systems

Chapter 13: I/O Systems Chapter 13: I/O Systems DM510-14 Chapter 13: I/O Systems I/O Hardware Application I/O Interface Kernel I/O Subsystem Transforming I/O Requests to Hardware Operations STREAMS Performance 13.2 Objectives

More information

Chapter 5: Processes & Process Concept. Objectives. Process Concept Process Scheduling Operations on Processes. Communication in Client-Server Systems

Chapter 5: Processes & Process Concept. Objectives. Process Concept Process Scheduling Operations on Processes. Communication in Client-Server Systems Chapter 5: Processes Chapter 5: Processes & Threads Process Concept Process Scheduling Operations on Processes Interprocess Communication Communication in Client-Server Systems, Silberschatz, Galvin and

More information

Scaling Up & Out. Haidar Osman

Scaling Up & Out. Haidar Osman Scaling Up & Out Haidar Osman 1- Crash course in Scala - Classes - Objects 2- Actors - The Actor Model - Examples I, II, III, IV 3- Apache Spark - RDD & DAG - Word Count Example 2 1- Crash course in Scala

More information

Department of Electrical Engineering and Computer Science MASSACHUSETTS INSTITUTE OF TECHNOLOGY Fall 2008.

Department of Electrical Engineering and Computer Science MASSACHUSETTS INSTITUTE OF TECHNOLOGY Fall 2008. Department of Electrical Engineering and Computer Science MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.828 Fall 2008 Quiz II Solutions 1 I File System Consistency Ben is writing software that stores data in

More information

An overview of (a)sync & (non-) blocking

An overview of (a)sync & (non-) blocking An overview of (a)sync & (non-) blocking or why is my web-server not responding? with funny fonts! Experiment & reproduce https://github.com/antonfagerberg/play-performance sync & blocking code sync &

More information

Processor speed. Concurrency Structure and Interpretation of Computer Programs. Multiple processors. Processor speed. Mike Phillips <mpp>

Processor speed. Concurrency Structure and Interpretation of Computer Programs. Multiple processors. Processor speed. Mike Phillips <mpp> Processor speed 6.037 - Structure and Interpretation of Computer Programs Mike Phillips Massachusetts Institute of Technology http://en.wikipedia.org/wiki/file:transistor_count_and_moore%27s_law_-

More information

CS 471 Operating Systems. Yue Cheng. George Mason University Fall 2017

CS 471 Operating Systems. Yue Cheng. George Mason University Fall 2017 CS 471 Operating Systems Yue Cheng George Mason University Fall 2017 Outline o Process concept o Process creation o Process states and scheduling o Preemption and context switch o Inter-process communication

More information

Dynamic Fine Grain Scheduling of Pipeline Parallelism. Presented by: Ram Manohar Oruganti and Michael TeWinkle

Dynamic Fine Grain Scheduling of Pipeline Parallelism. Presented by: Ram Manohar Oruganti and Michael TeWinkle Dynamic Fine Grain Scheduling of Pipeline Parallelism Presented by: Ram Manohar Oruganti and Michael TeWinkle Overview Introduction Motivation Scheduling Approaches GRAMPS scheduling method Evaluation

More information

Advances in Programming Languages

Advances in Programming Languages O T Y H Advances in Programming Languages APL5: Further language concurrency mechanisms David Aspinall (including slides by Ian Stark) School of Informatics The University of Edinburgh Tuesday 5th October

More information

Under the Hood, Part 1: Implementing Message Passing

Under the Hood, Part 1: Implementing Message Passing Lecture 27: Under the Hood, Part 1: Implementing Message Passing Parallel Computer Architecture and Programming CMU 15-418/15-618, Fall 2017 Today s Theme 2 Message passing model (abstraction) Threads

More information

Assignment 5. Georgia Koloniari

Assignment 5. Georgia Koloniari Assignment 5 Georgia Koloniari 2. "Peer-to-Peer Computing" 1. What is the definition of a p2p system given by the authors in sec 1? Compare it with at least one of the definitions surveyed in the last

More information

Chapter 12: I/O Systems

Chapter 12: I/O Systems Chapter 12: I/O Systems Chapter 12: I/O Systems I/O Hardware! Application I/O Interface! Kernel I/O Subsystem! Transforming I/O Requests to Hardware Operations! STREAMS! Performance! Silberschatz, Galvin

More information

Chapter 13: I/O Systems

Chapter 13: I/O Systems Chapter 13: I/O Systems Chapter 13: I/O Systems I/O Hardware Application I/O Interface Kernel I/O Subsystem Transforming I/O Requests to Hardware Operations STREAMS Performance Silberschatz, Galvin and

More information

Chapter 12: I/O Systems. Operating System Concepts Essentials 8 th Edition

Chapter 12: I/O Systems. Operating System Concepts Essentials 8 th Edition Chapter 12: I/O Systems Silberschatz, Galvin and Gagne 2011 Chapter 12: I/O Systems I/O Hardware Application I/O Interface Kernel I/O Subsystem Transforming I/O Requests to Hardware Operations STREAMS

More information

David DeFlyer Class notes CS162 January 26 th, 2009

David DeFlyer Class notes CS162 January 26 th, 2009 1. Class opening: 1. Handed out ACM membership information 2. Review of last lecture: 1. operating systems were something of an ad hoc component 2. in the 1960s IBM tried to produce a OS for all customers

More information

Scalable Streaming Analytics

Scalable Streaming Analytics Scalable Streaming Analytics KARTHIK RAMASAMY @karthikz TALK OUTLINE BEGIN I! II ( III b Overview Storm Overview Storm Internals IV Z V K Heron Operational Experiences END WHAT IS ANALYTICS? according

More information

Reminder from last time

Reminder from last time Concurrent systems Lecture 5: Concurrency without shared data, composite operations and transactions, and serialisability DrRobert N. M. Watson 1 Reminder from last time Liveness properties Deadlock (requirements;

More information

Silberschatz and Galvin Chapter 12

Silberschatz and Galvin Chapter 12 Silberschatz and Galvin Chapter 12 I/O Systems CPSC 410--Richard Furuta 3/19/99 1 Topic overview I/O Hardware Application I/O Interface Kernel I/O Subsystem Transforming I/O requests to hardware operations

More information

SEDA An architecture for Well Condi6oned, scalable Internet Services

SEDA An architecture for Well Condi6oned, scalable Internet Services SEDA An architecture for Well Condi6oned, scalable Internet Services Ma= Welsh, David Culler, and Eric Brewer University of California, Berkeley Symposium on Operating Systems Principles (SOSP), October

More information

An Almost Non- Blocking Stack

An Almost Non- Blocking Stack An Almost Non- Blocking Stack Hans-J. Boehm HP Labs 2004 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice Motivation Update data structures

More information

Lecture 2 Process Management

Lecture 2 Process Management Lecture 2 Process Management Process Concept An operating system executes a variety of programs: Batch system jobs Time-shared systems user programs or tasks The terms job and process may be interchangeable

More information

OPERATING SYSTEMS. UNIT II Sections A, B & D. An operating system executes a variety of programs:

OPERATING SYSTEMS. UNIT II Sections A, B & D. An operating system executes a variety of programs: OPERATING SYSTEMS UNIT II Sections A, B & D PREPARED BY ANIL KUMAR PRATHIPATI, ASST. PROF., DEPARTMENT OF CSE. PROCESS CONCEPT An operating system executes a variety of programs: Batch system jobs Time-shared

More information

IGL S AND MOUNT NS. Taking AKKA to Production

IGL S AND MOUNT NS. Taking AKKA to Production IGL S AND MOUNT NS Taking AKKA to Production THIS TALK Hello! I m Derek Wyatt, Senior Platform Developer at Auvik Networks! and author of Akka Concurrency Scala, Play and Akka form the foundational triad

More information

Chapter 6: Process Synchronization

Chapter 6: Process Synchronization Chapter 6: Process Synchronization Objectives Introduce Concept of Critical-Section Problem Hardware and Software Solutions of Critical-Section Problem Concept of Atomic Transaction Operating Systems CS

More information

Cliff Moon. Bottleneck Whack-A-Mole. Thursday, March 21, 13

Cliff Moon. Bottleneck Whack-A-Mole. Thursday, March 21, 13 Cliff Moon Bottleneck Whack-A-Mole Whack-A-Mole Production Experience Your Mileage May Vary. This is all folklore. Unless otherwise specified - R14B04. Down in the weeds. Collectors Terminates SSL and

More information

IT 4043 Data Structures and Algorithms

IT 4043 Data Structures and Algorithms IT 4043 Data Structures and Algorithms Budditha Hettige Department of Computer Science 1 Syllabus Introduction to DSA Abstract Data Types Arrays List Operation Using Arrays Recursion Stacks Queues Link

More information

Chapter 3: Processes. Chapter 3: Processes. Process in Memory. Process Concept. Process State. Diagram of Process State

Chapter 3: Processes. Chapter 3: Processes. Process in Memory. Process Concept. Process State. Diagram of Process State Chapter 3: Processes Chapter 3: Processes Process Concept Process Scheduling Operations on Processes Cooperating Processes Interprocess Communication Communication in Client-Server Systems 3.2 Silberschatz,

More information

Achieving Scalability and High Availability for clustered Web Services using Apache Synapse. Ruwan Linton WSO2 Inc.

Achieving Scalability and High Availability for clustered Web Services using Apache Synapse. Ruwan Linton WSO2 Inc. Achieving Scalability and High Availability for clustered Web Services using Apache Synapse Ruwan Linton [ruwan@apache.org] WSO2 Inc. Contents Introduction Apache Synapse Web services clustering Scalability/Availability

More information

Håkan Sundell University College of Borås Parallel Scalable Solutions AB

Håkan Sundell University College of Borås Parallel Scalable Solutions AB Brushing the Locks out of the Fur: A Lock-Free Work Stealing Library Based on Wool Håkan Sundell University College of Borås Parallel Scalable Solutions AB Philippas Tsigas Chalmers University of Technology

More information

Module 4: Processes. Process Concept Process Scheduling Operation on Processes Cooperating Processes Interprocess Communication

Module 4: Processes. Process Concept Process Scheduling Operation on Processes Cooperating Processes Interprocess Communication Module 4: Processes Process Concept Process Scheduling Operation on Processes Cooperating Processes Interprocess Communication Operating System Concepts 4.1 Process Concept An operating system executes

More information

Device-Functionality Progression

Device-Functionality Progression Chapter 12: I/O Systems I/O Hardware I/O Hardware Application I/O Interface Kernel I/O Subsystem Transforming I/O Requests to Hardware Operations Incredible variety of I/O devices Common concepts Port

More information

Chapter 12: I/O Systems. I/O Hardware

Chapter 12: I/O Systems. I/O Hardware Chapter 12: I/O Systems I/O Hardware Application I/O Interface Kernel I/O Subsystem Transforming I/O Requests to Hardware Operations I/O Hardware Incredible variety of I/O devices Common concepts Port

More information

Module 4: Processes. Process Concept Process Scheduling Operation on Processes Cooperating Processes Interprocess Communication

Module 4: Processes. Process Concept Process Scheduling Operation on Processes Cooperating Processes Interprocess Communication Module 4: Processes Process Concept Process Scheduling Operation on Processes Cooperating Processes Interprocess Communication 4.1 Process Concept An operating system executes a variety of programs: Batch

More information

Scala Concurrency and Parallel Collections

Scala Concurrency and Parallel Collections Scala Concurrency and Parallel Collections Concurrent Programming Keijo Heljanko Department of Computer Science University School of Science November 23rd, 2016 Slides by Keijo Heljanko Scala Scala Originally

More information

MySQL Performance Optimization and Troubleshooting with PMM. Peter Zaitsev, CEO, Percona

MySQL Performance Optimization and Troubleshooting with PMM. Peter Zaitsev, CEO, Percona MySQL Performance Optimization and Troubleshooting with PMM Peter Zaitsev, CEO, Percona In the Presentation Practical approach to deal with some of the common MySQL Issues 2 Assumptions You re looking

More information

Benchmarking Parallelism and Concurrency in the Encore Programming Language

Benchmarking Parallelism and Concurrency in the Encore Programming Language IT 16 081 Examensarbete 15 hp Oktober 2016 Benchmarking Parallelism and Concurrency in the Encore Programming Language Mikael Östlund Institutionen för informationsteknologi Department of Information Technology

More information

SEDA: An Architecture for Well-Conditioned, Scalable Internet Services

SEDA: An Architecture for Well-Conditioned, Scalable Internet Services SEDA: An Architecture for Well-Conditioned, Scalable Internet Services Matt Welsh, David Culler, and Eric Brewer Computer Science Division University of California, Berkeley Operating Systems Principles

More information

Clojure Concurrency Constructs. CSCI 5828: Foundations of Software Engineering Lecture 12 10/02/2014

Clojure Concurrency Constructs. CSCI 5828: Foundations of Software Engineering Lecture 12 10/02/2014 Clojure Concurrency Constructs CSCI 5828: Foundations of Software Engineering Lecture 12 10/02/2014 1 Goals Cover the material presented in Chapters 3 & 4 of our concurrency textbook! Books examples from

More information

Bullet Cache. Balancing speed and usability in a cache server. Ivan Voras

Bullet Cache. Balancing speed and usability in a cache server. Ivan Voras Bullet Cache Balancing speed and usability in a cache server Ivan Voras What is it? People know what memcached is... mostly Example use case: So you have a web page which is just dynamic

More information

Principles of Software Construction: Objects, Design, and Concurrency. Concurrency: More Design Tradeoffs School of Computer Science

Principles of Software Construction: Objects, Design, and Concurrency. Concurrency: More Design Tradeoffs School of Computer Science Principles of Software Construction: Objects, Design, and Concurrency Concurrency: More Design Tradeoffs Christian Kästner Bogdan Vasilescu School of Computer Science 1 2 So far on concurrency Primitives

More information

by I.-C. Lin, Dept. CS, NCTU. Textbook: Operating System Concepts 8ed CHAPTER 13: I/O SYSTEMS

by I.-C. Lin, Dept. CS, NCTU. Textbook: Operating System Concepts 8ed CHAPTER 13: I/O SYSTEMS by I.-C. Lin, Dept. CS, NCTU. Textbook: Operating System Concepts 8ed CHAPTER 13: I/O SYSTEMS Chapter 13: I/O Systems I/O Hardware Application I/O Interface Kernel I/O Subsystem Transforming I/O Requests

More information

I/O Systems. Amir H. Payberah. Amirkabir University of Technology (Tehran Polytechnic)

I/O Systems. Amir H. Payberah. Amirkabir University of Technology (Tehran Polytechnic) I/O Systems Amir H. Payberah amir@sics.se Amirkabir University of Technology (Tehran Polytechnic) Amir H. Payberah (Tehran Polytechnic) I/O Systems 1393/9/15 1 / 57 Motivation Amir H. Payberah (Tehran

More information

Improving Interrupt Response Time in a Verifiable Protected Microkernel

Improving Interrupt Response Time in a Verifiable Protected Microkernel Improving Interrupt Response Time in a Verifiable Protected Microkernel Bernard Blackham Yao Shi Gernot Heiser The University of New South Wales & NICTA, Sydney, Australia EuroSys 2012 Motivation The desire

More information

Locking: A necessary evil? Lecture 10: Avoiding Locks. Priority Inversion. Deadlock

Locking: A necessary evil? Lecture 10: Avoiding Locks. Priority Inversion. Deadlock Locking: necessary evil? Lecture 10: voiding Locks CSC 469H1F Fall 2006 ngela Demke Brown (with thanks to Paul McKenney) Locks are an easy to understand solution to critical section problem Protect shared

More information

Capriccio : Scalable Threads for Internet Services

Capriccio : Scalable Threads for Internet Services Capriccio : Scalable Threads for Internet Services - Ron von Behren &et al - University of California, Berkeley. Presented By: Rajesh Subbiah Background Each incoming request is dispatched to a separate

More information

Process Concept. Chapter 4: Processes. Diagram of Process State. Process State. Process Control Block (PCB) Process Control Block (PCB)

Process Concept. Chapter 4: Processes. Diagram of Process State. Process State. Process Control Block (PCB) Process Control Block (PCB) Chapter 4: Processes Process Concept Process Concept Process Scheduling Operations on Processes Cooperating Processes Interprocess Communication Communication in Client-Server Systems An operating system

More information

Chapter 4: Processes

Chapter 4: Processes Chapter 4: Processes Process Concept Process Scheduling Operations on Processes Cooperating Processes Interprocess Communication Communication in Client-Server Systems 4.1 Process Concept An operating

More information

Non-blocking Array-based Algorithms for Stacks and Queues. Niloufar Shafiei

Non-blocking Array-based Algorithms for Stacks and Queues. Niloufar Shafiei Non-blocking Array-based Algorithms for Stacks and Queues Niloufar Shafiei Outline Introduction Concurrent stacks and queues Contributions New algorithms New algorithms using bounded counter values Correctness

More information

Operating Systems. Lecture 4 - Concurrency and Synchronization. Master of Computer Science PUF - Hồ Chí Minh 2016/2017

Operating Systems. Lecture 4 - Concurrency and Synchronization. Master of Computer Science PUF - Hồ Chí Minh 2016/2017 Operating Systems Lecture 4 - Concurrency and Synchronization Adrien Krähenbühl Master of Computer Science PUF - Hồ Chí Minh 2016/2017 Mutual exclusion Hardware solutions Semaphores IPC: Message passing

More information

Last Class: Synchronization Problems!

Last Class: Synchronization Problems! Last Class: Synchronization Problems! Reader Writer Multiple readers, single writer In practice, use read-write locks Dining Philosophers Need to hold multiple resources to perform task Lecture 11, page

More information

Processes. Process Concept

Processes. Process Concept Processes These slides are created by Dr. Huang of George Mason University. Students registered in Dr. Huang s courses at GMU can make a single machine readable copy and print a single copy of each slide

More information