Intel s MMX. Why MMX?

Size: px
Start display at page:

Download "Intel s MMX. Why MMX?"

Transcription

1 Intel s MMX Dr. Richard Enbody CSE 820 Why MMX? Make the Common Case Fast Multimedia and Communication consume significant computing resources. Providing specific hardware support makes sense. 1

2 Goals accelerate multimedia and communications applications. maintain full compatibility with existing operating systems and applications. exploit inherent parallelism in multimedia and communication algorithms includes new instructions and data types to improve performance. First Step: examine code Examined a wide range of applications: graphics, MPEG video, music synthesis, speech compression, speech recognition, image processing, games, video conferencing. Identified and analyzed the most compute-intensive routines 2

3 Common Characteristics Small integer data types: e.g. 8-bit pixels, 16-bit audio samples Small, highly repetitive loops Frequent multiply-and-accumulate Compute-intensive algorithms Highly parallel operations MMX Technology A set of basic, general purpose integer instructions: Single Instruction, Multiple Data (SIMD) 57 new instructions Eight 64-bit wide MMX registers Four new data types 3

4 Data Types Data Types 4

5 Example Pixels are generally 8-bit integers. Pack eight pixels into a 64-bit MMX register. An MMX instruction takes all eight of the pixels at once from the MMX register, performs the arithmetic or logical operation on all eight elements in parallel, and writes the result into an MMX register. Compatibility No new exceptions or states are added. Aliases to existing FP registers: The exponent field of the corresponding floating-point register (bits 64-78) and the sign bit (bit 79) are set to ones (1's), making the value in the register a NaN (Not a Number) or infinity when viewed as a floating-point value. 5

6 57 Instructions Basic arithmetic: add, subtract, multiply, arithmetic shift and multiply-add Comparison Conversion: pack & unpack Logical Shift Move: register-to-register Load/Store: 64-bit and 32-bit 6

7 Packed Add Word with wrap around Each Addition is independent Rightmost overflows and wraps around Saturation Saturation: if addition results in overflow or underflow, the result is clamped to the largest or smallest value representable. This is important for pixel calculations where this would prevent a wrap-around add from causing a black pixel to suddenly turn white 7

8 No Mode There is no "saturation mode bit : a new mode bit would require a change to the operating system. Separate instructions are used to generate wrap-around and saturating results. Packed Add Word with unsigned saturation Each Addition is independent Rightmost saturates 8

9 Multiply-Accumulate multiply-accumulate operations are fundamental to many signal processing algorithms like vector-dot-products, matrix multiplies, FIR and IIR Filters, FFTs, DCTs etc Packed Multiply-Add Multiply bytes generating four 32-bit results. Add the 2 products on the left for one result and the 2 products on the right for the other result. 9

10 Packed Parallel Compare No new condition code flags No existing IA condition code flags are affected by this instruction. Result can be used as a mask to select elements from different inputs using a logical operation, eliminating branchs. Packed Parallel Compare 10

11 Pack/Unpack Important when an algorithm needs higher precision in its intermediate calculations, as in image filtering. For example, image filtering involves a set of intermediate multiply operations between filter coefficients and a set of adjacent image pixels, accumulating all the values together. Pack 11

12 Conditional Select The Chroma Keying example demonstrates how conditional selection using the MMX instruction set removes branch mis-predictions, in addition to performing multiple selection operations in parallel. Text overlay on a pix/video background, and sprite overlays in games are some of the other operations that would benefit from this technique. Chroma Keying 12

13 Chroma Keying (con t) Take pixels from the picture with the woman on a green background. A compare instruction builds a mask for that data. That mask is a sequence of bytes that are all ones or all zeros. We now know what is the unwanted background and what we want to keep. Create Mask Assume pixels alternate green/not_green 13

14 Combine:!AND, AND, OR Branch Removal Without MMX technology, each pixel is processed separately and requires a conditional branch. Using MMX instructions, eight 8-bit pixels can be processed in parallel and no conditional branches are involved. 14

15 Vector Dot Product The vector dot product is one of the most basic algorithms used in signalprocessing of natural data such as images, audio, video and sound. PMADD does 4 multiplies and 2 adds at a time. Coupled with PADD, eight multiply-accumulate operations can be performed: 2 PMADD and 2 PADD Vector Dot Product 15

16 Vector Dot Product Vector Dot Product Assuming precision is sufficient, a dotproduct on an 8-element vector can be completed using 8 MMX instructions: 2 PMADDs, 2 PADDs, two shifts (if needed to fix the precision after the multiply), and 2 loads for one of the vectors (the other vector is loaded by the PMADD instruction which can have one of its operands come from memory). 16

17 Compare Compare With MMX technology, one third of the number of instructions is needed. Most MMX instructions can be executed in one clock cycle, so the performance improvement will be more dramatic than the simple ratio of instruction counts. 17

18 Matrix Multiply 3D games: computations that manipulate 3D objects use 4-by-4 matrices that are multiplied with 4-element vectors many times. Each vector has the X,Y, Z and perspective corrective information for each pixel. The 4-by-4 matrix is used to rotate, scale, translate and update the perspective corrective information for each pixel. 18

19 Compare Matrix Multiply MMX required half the instructions. 19

20 Image Dissolve Using Alpha Blending Dissolve a Swan into a Flower Result_pixel = Flower_pixel * (alpha/255) + Swan_pixel * [1 - (alpha/255)] Assume 640x480 resolution Dissolve: Millions of Inst. 20

21 Dissolve 1 billion fewer instructions for the 640x480 dissolve 21

22 Conclusion MMX appeared in 1997 in Pentium processors (with bigger cache). According to Intel, an MMX microprocessor runs a multimedia application up to 60% faster. In addition, it runs other applications about 10% faster 22

MMX TM Technology Technical Overview

MMX TM Technology Technical Overview MMX TM Technology Technical Overview Information for Developers and ISVs From Intel Developer Services www.intel.com/ids Information in this document is provided in connection with Intel products. No license,

More information

Intel MMX Technology Overview

Intel MMX Technology Overview Intel MMX Technology Overview March 996 Order Number: 24308-002 E Information in this document is provided in connection with Intel products. No license under any patent or copyright is granted expressly

More information

Cannot increase performance by multiple issuing. -limitation of Instruction Fetch and decode rate (memory bottelneck) -Not enough ILP

Cannot increase performance by multiple issuing. -limitation of Instruction Fetch and decode rate (memory bottelneck) -Not enough ILP Vector Processors Motivations: Cannot increase performance with deeper pipeline because: -clock cycle time limitation (latch delay) -increase dependences with deeper pipeline Cannot increase performance

More information

Storage I/O Summary. Lecture 16: Multimedia and DSP Architectures

Storage I/O Summary. Lecture 16: Multimedia and DSP Architectures Storage I/O Summary Storage devices Storage I/O Performance Measures» Throughput» Response time I/O Benchmarks» Scaling to track technological change» Throughput with restricted response time is normal

More information

Media Instructions, Coprocessors, and Hardware Accelerators. Overview

Media Instructions, Coprocessors, and Hardware Accelerators. Overview Media Instructions, Coprocessors, and Hardware Accelerators Steven P. Smith SoC Design EE382V Fall 2009 EE382 System-on-Chip Design Coprocessors, etc. SPS-1 University of Texas at Austin Overview SoCs

More information

Evaluating MMX Technology Using DSP and Multimedia Applications

Evaluating MMX Technology Using DSP and Multimedia Applications Evaluating MMX Technology Using DSP and Multimedia Applications Ravi Bhargava * Lizy K. John * Brian L. Evans Ramesh Radhakrishnan * November 22, 1999 The University of Texas at Austin Department of Electrical

More information

CS802 Parallel Processing Class Notes

CS802 Parallel Processing Class Notes CS802 Parallel Processing Class Notes MMX Technology Instructor: Dr. Chang N. Zhang Winter Semester, 2006 Intel MMX TM Technology Chapter 1: Introduction to MMX technology 1.1 Features of the MMX Technology

More information

Instruction Set extensions to X86. Floating Point SIMD instructions

Instruction Set extensions to X86. Floating Point SIMD instructions Instruction Set extensions to X86 Some extensions to x86 instruction set intended to accelerate 3D graphics AMD 3D-Now! Instructions simply accelerate floating point arithmetic. Accelerate object transformations

More information

Using Streaming SIMD Extensions in a Fast DCT Algorithm for MPEG Encoding

Using Streaming SIMD Extensions in a Fast DCT Algorithm for MPEG Encoding Using Streaming SIMD Extensions in a Fast DCT Algorithm for MPEG Encoding Version 1.2 01/99 Order Number: 243651-002 02/04/99 Information in this document is provided in connection with Intel products.

More information

What's New in Computers

What's New in Computers feature ARTCLE What's New in Computers MMX Technology for Multimedia pes S Balakrishnan n this article we discuss ntel's MMX technology and its integration as part of multimedia pes. S Balakrishnan is

More information

Intel 64 and IA-32 Architectures Software Developer s Manual

Intel 64 and IA-32 Architectures Software Developer s Manual Intel 64 and IA-32 Architectures Software Developer s Manual Volume 1: Basic Architecture NOTE: The Intel 64 and IA-32 Architectures Software Developer's Manual consists of five volumes: Basic Architecture,

More information

Media Signal Processing

Media Signal Processing 39 Media Signal Processing Ruby Lee Princeton University Gerald G. Pechanek BOPS, Inc. Thomas C. Savell Creative Advanced Technology Center Sadiq M. Sait King Fahd University Habib Youssef King Fahd University

More information

Data Representation 1

Data Representation 1 1 Data Representation Outline Binary Numbers Adding Binary Numbers Negative Integers Other Operations with Binary Numbers Floating Point Numbers Character Representation Image Representation Sound Representation

More information

Advance CPU Design. MMX technology. Computer Architectures. Tien-Fu Chen. National Chung Cheng Univ. ! Basic concepts

Advance CPU Design. MMX technology. Computer Architectures. Tien-Fu Chen. National Chung Cheng Univ. ! Basic concepts Computer Architectures Advance CPU Design Tien-Fu Chen National Chung Cheng Univ. Adv CPU-0 MMX technology! Basic concepts " small native data types " compute-intensive operations " a lot of inherent parallelism

More information

COMP2611: Computer Organization. Data Representation

COMP2611: Computer Organization. Data Representation COMP2611: Computer Organization Comp2611 Fall 2015 2 1. Binary numbers and 2 s Complement Numbers 3 Bits: are the basis for binary number representation in digital computers What you will learn here: How

More information

The CPU and Memory. How does a computer work? How does a computer interact with data? How are instructions performed? Recall schematic diagram:

The CPU and Memory. How does a computer work? How does a computer interact with data? How are instructions performed? Recall schematic diagram: The CPU and Memory How does a computer work? How does a computer interact with data? How are instructions performed? Recall schematic diagram: 1 Registers A register is a permanent storage location within

More information

SWAR: MMX, SSE, SSE 2 Multiplatform Programming

SWAR: MMX, SSE, SSE 2 Multiplatform Programming SWAR: MMX, SSE, SSE 2 Multiplatform Programming Relatore: dott. Matteo Roffilli roffilli@csr.unibo.it 1 What s SWAR? SWAR = SIMD Within A Register SIMD = Single Instruction Multiple Data MMX,SSE,SSE2,Power3DNow

More information

Using Intel Streaming SIMD Extensions for 3D Geometry Processing

Using Intel Streaming SIMD Extensions for 3D Geometry Processing Using Intel Streaming SIMD Extensions for 3D Geometry Processing Wan-Chun Ma, Chia-Lin Yang Dept. of Computer Science and Information Engineering National Taiwan University firebird@cmlab.csie.ntu.edu.tw,

More information

C NUMERIC FORMATS. Overview. IEEE Single-Precision Floating-point Data Format. Figure C-0. Table C-0. Listing C-0.

C NUMERIC FORMATS. Overview. IEEE Single-Precision Floating-point Data Format. Figure C-0. Table C-0. Listing C-0. C NUMERIC FORMATS Figure C-. Table C-. Listing C-. Overview The DSP supports the 32-bit single-precision floating-point data format defined in the IEEE Standard 754/854. In addition, the DSP supports an

More information

VIII. DSP Processors. Digital Signal Processing 8 December 24, 2009

VIII. DSP Processors. Digital Signal Processing 8 December 24, 2009 Digital Signal Processing 8 December 24, 2009 VIII. DSP Processors 2007 Syllabus: Introduction to programmable DSPs: Multiplier and Multiplier-Accumulator (MAC), Modified bus structures and memory access

More information

Objectives. Connecting with Computer Science 2

Objectives. Connecting with Computer Science 2 Objectives Learn why numbering systems are important to understand Refresh your knowledge of powers of numbers Learn how numbering systems are used to count Understand the significance of positional value

More information

Microprocessor Extensions for Wireless Communications

Microprocessor Extensions for Wireless Communications Microprocessor Extensions for Wireless Communications Sridhar Rajagopal and Joseph R. Cavallaro DRAFT REPORT Rice University Center for Multimedia Communication Department of Electrical and Computer Engineering

More information

Intel 64 and IA-32 Architectures Software Developer s Manual

Intel 64 and IA-32 Architectures Software Developer s Manual Intel 64 and IA-32 Architectures Software Developer s Manual Volume 1: Basic Architecture NOTE: The Intel 64 and IA-32 Architectures Software Developer's Manual consists of seven volumes: Basic Architecture,

More information

Chapter 4. Operations on Data

Chapter 4. Operations on Data Chapter 4 Operations on Data 1 OBJECTIVES After reading this chapter, the reader should be able to: List the three categories of operations performed on data. Perform unary and binary logic operations

More information

History of the Intel 80x86

History of the Intel 80x86 Intel s IA-32 Architecture Cptr280 Dr Curtis Nelson History of the Intel 80x86 1971 - Intel invents the microprocessor, the 4004 1975-8080 introduced 8-bit microprocessor 1978-8086 introduced 16 bit microprocessor

More information

CO Computer Architecture and Programming Languages CAPL. Lecture 15

CO Computer Architecture and Programming Languages CAPL. Lecture 15 CO20-320241 Computer Architecture and Programming Languages CAPL Lecture 15 Dr. Kinga Lipskoch Fall 2017 How to Compute a Binary Float Decimal fraction: 8.703125 Integral part: 8 1000 Fraction part: 0.703125

More information

VICP Signal Processing Library. Further extending the performance and ease of use for VICP enabled devices

VICP Signal Processing Library. Further extending the performance and ease of use for VICP enabled devices Signal Processing Library Further extending the performance and ease of use for enabled devices Why is library effective for customer application? Get to market faster with ready-to-use signal processing

More information

Floating Point Arithmetic

Floating Point Arithmetic Floating Point Arithmetic CS 365 Floating-Point What can be represented in N bits? Unsigned 0 to 2 N 2s Complement -2 N-1 to 2 N-1-1 But, what about? very large numbers? 9,349,398,989,787,762,244,859,087,678

More information

Intel Architecture MMX Technology

Intel Architecture MMX Technology D Intel Architecture MMX Technology Programmer s Reference Manual March 1996 Order No. 243007-002 Subject to the terms and conditions set forth below, Intel hereby grants you a nonexclusive, nontransferable

More information

Implementation of DSP Algorithms

Implementation of DSP Algorithms Implementation of DSP Algorithms Main frame computers Dedicated (application specific) architectures Programmable digital signal processors voice band data modem speech codec 1 PDSP and General-Purpose

More information

Module 2: Computer Arithmetic

Module 2: Computer Arithmetic Module 2: Computer Arithmetic 1 B O O K : C O M P U T E R O R G A N I Z A T I O N A N D D E S I G N, 3 E D, D A V I D L. P A T T E R S O N A N D J O H N L. H A N N E S S Y, M O R G A N K A U F M A N N

More information

Introduction to Computer Science (I1100) Data Storage

Introduction to Computer Science (I1100) Data Storage Data Storage 145 Data types Data comes in different forms Data Numbers Text Audio Images Video 146 Data inside the computer All data types are transformed into a uniform representation when they are stored

More information

Representing and Manipulating Floating Points. Jo, Heeseung

Representing and Manipulating Floating Points. Jo, Heeseung Representing and Manipulating Floating Points Jo, Heeseung The Problem How to represent fractional values with finite number of bits? 0.1 0.612 3.14159265358979323846264338327950288... 2 Fractional Binary

More information

Representing and Manipulating Floating Points

Representing and Manipulating Floating Points Representing and Manipulating Floating Points Jin-Soo Kim (jinsookim@skku.edu) Computer Systems Laboratory Sungkyunkwan University http://csl.skku.edu The Problem How to represent fractional values with

More information

Chapter 3. Arithmetic Text: P&H rev

Chapter 3. Arithmetic Text: P&H rev Chapter 3 Arithmetic Text: P&H rev3.29.16 Arithmetic for Computers Operations on integers Addition and subtraction Multiplication and division Dealing with overflow Floating-point real numbers Representation

More information

Number Systems and Computer Arithmetic

Number Systems and Computer Arithmetic Number Systems and Computer Arithmetic Counting to four billion two fingers at a time What do all those bits mean now? bits (011011011100010...01) instruction R-format I-format... integer data number text

More information

Using MMX Instructions to Compute the AbsoluteDifference in Motion Estimation

Using MMX Instructions to Compute the AbsoluteDifference in Motion Estimation Using MMX Instructions to Compute the AbsoluteDifference in Motion Estimation Information for Developers and ISVs From Intel Developer Services www.intel.com/ids Information in this document is provided

More information

Dan Stafford, Justine Bonnot

Dan Stafford, Justine Bonnot Dan Stafford, Justine Bonnot Background Applications Timeline MMX 3DNow! Streaming SIMD Extension SSE SSE2 SSE3 and SSSE3 SSE4 Advanced Vector Extension AVX AVX2 AVX-512 Compiling with x86 Vector Processing

More information

DSP Platforms Lab (AD-SHARC) Session 05

DSP Platforms Lab (AD-SHARC) Session 05 University of Miami - Frost School of Music DSP Platforms Lab (AD-SHARC) Session 05 Description This session will be dedicated to give an introduction to the hardware architecture and assembly programming

More information

FLOATING POINT NUMBERS

FLOATING POINT NUMBERS Exponential Notation FLOATING POINT NUMBERS Englander Ch. 5 The following are equivalent representations of 1,234 123,400.0 x 10-2 12,340.0 x 10-1 1,234.0 x 10 0 123.4 x 10 1 12.34 x 10 2 1.234 x 10 3

More information

CS429: Computer Organization and Architecture

CS429: Computer Organization and Architecture CS429: Computer Organization and Architecture Dr. Bill Young Department of Computer Sciences University of Texas at Austin Last updated: September 18, 2017 at 12:48 CS429 Slideset 4: 1 Topics of this Slideset

More information

Enabling a Superior 3D Visual Computing Experience for Next-Generation x86 Computing Platforms One AMD Place Sunnyvale, CA 94088

Enabling a Superior 3D Visual Computing Experience for Next-Generation x86 Computing Platforms One AMD Place Sunnyvale, CA 94088 Enhanced 3DNow! Technology for the AMD Athlon Processor Enabling a Superior 3D Visual Computing Experience for Next-Generation x86 Computing Platforms ADVANCED MICRO DEVICES, INC. One AMD Place Sunnyvale,

More information

Inf2C - Computer Systems Lecture 2 Data Representation

Inf2C - Computer Systems Lecture 2 Data Representation Inf2C - Computer Systems Lecture 2 Data Representation Boris Grot School of Informatics University of Edinburgh Last lecture Moore s law Types of computer systems Computer components Computer system stack

More information

2. Define Instruction Set Architecture. What are its two main characteristics? Be precise!

2. Define Instruction Set Architecture. What are its two main characteristics? Be precise! Chapter 1: Computer Abstractions and Technology 1. Assume two processors, a CISC processor and a RISC processor. In order to run a particular program, the CISC processor must execute 10 million instructions

More information

IA-32 Intel Architecture Software Developer s Manual

IA-32 Intel Architecture Software Developer s Manual IA-32 Intel Architecture Software Developer s Manual Volume 1: Basic Architecture NOTE: The IA-32 Intel Architecture Software Developer s Manual consists of four volumes: Basic Architecture, Order Number

More information

INSTITUTO SUPERIOR TÉCNICO. Architectures for Embedded Computing

INSTITUTO SUPERIOR TÉCNICO. Architectures for Embedded Computing UNIVERSIDADE TÉCNICA DE LISBOA INSTITUTO SUPERIOR TÉCNICO Departamento de Engenharia Informática for Embedded Computing MEIC-A, MEIC-T, MERC Lecture Slides Version 3.0 - English Lecture 22 Title: and Extended

More information

Using MMX Instructions to Implement a Synthesis Sub-Band Filter for MPEG Audio Decoding

Using MMX Instructions to Implement a Synthesis Sub-Band Filter for MPEG Audio Decoding Using MMX Instructions to Implement a Synthesis Sub-Band Filter for MPEG Audio Information for Developers and ISVs From Intel Developer Services www.intel.com/ids Information in this document is provided

More information

The ALU consists of combinational logic. Processes all data in the CPU. ALL von Neuman machines have an ALU loop.

The ALU consists of combinational logic. Processes all data in the CPU. ALL von Neuman machines have an ALU loop. CS 320 Ch 10 Computer Arithmetic The ALU consists of combinational logic. Processes all data in the CPU. ALL von Neuman machines have an ALU loop. Signed integers are typically represented in sign-magnitude

More information

Computer Organisation CS303

Computer Organisation CS303 Computer Organisation CS303 Module Period Assignments 1 Day 1 to Day 6 1. Write a program to evaluate the arithmetic statement: X=(A-B + C * (D * E-F))/G + H*K a. Using a general register computer with

More information

CHAPTER 5: Representing Numerical Data

CHAPTER 5: Representing Numerical Data CHAPTER 5: Representing Numerical Data The Architecture of Computer Hardware and Systems Software & Networking: An Information Technology Approach 4th Edition, Irv Englander John Wiley and Sons 2010 PowerPoint

More information

Intel Architecture Software Developer s Manual

Intel Architecture Software Developer s Manual Intel Architecture Software Developer s Manual Volume 1: Basic Architecture NOTE: The Intel Architecture Software Developer s Manual consists of three books: Basic Architecture, Order Number 243190; Instruction

More information

Floating-point representations

Floating-point representations Lecture 10 Floating-point representations Methods of representing real numbers (1) 1. Fixed-point number system limited range and/or limited precision results must be scaled 100101010 1111010 100101010.1111010

More information

Floating-point representations

Floating-point representations Lecture 10 Floating-point representations Methods of representing real numbers (1) 1. Fixed-point number system limited range and/or limited precision results must be scaled 100101010 1111010 100101010.1111010

More information

CPE300: Digital System Architecture and Design

CPE300: Digital System Architecture and Design CPE300: Digital System Architecture and Design Fall 2011 MW 17:30-18:45 CBC C316 Arithmetic Unit 10122011 http://www.egr.unlv.edu/~b1morris/cpe300/ 2 Outline Recap Fixed Point Arithmetic Addition/Subtraction

More information

Edge Detection Using Streaming SIMD Extensions On Low Cost Robotic Platforms

Edge Detection Using Streaming SIMD Extensions On Low Cost Robotic Platforms Edge Detection Using Streaming SIMD Extensions On Low Cost Robotic Platforms Matthias Hofmann, Fabian Rensen, Ingmar Schwarz and Oliver Urbann Abstract Edge detection is a popular technique for extracting

More information

Computer Organization: A Programmer's Perspective

Computer Organization: A Programmer's Perspective A Programmer's Perspective Representing Numbers Gal A. Kaminka galk@cs.biu.ac.il Fractional Binary Numbers 2 i 2 i 1 4 2 1 b i b i 1 b 2 b 1 b 0. b 1 b 2 b 3 b j 1/2 1/4 1/8 Representation Bits to right

More information

Representing and Manipulating Floating Points. Computer Systems Laboratory Sungkyunkwan University

Representing and Manipulating Floating Points. Computer Systems Laboratory Sungkyunkwan University Representing and Manipulating Floating Points Jin-Soo Kim (jinsookim@skku.edu) Computer Systems Laboratory Sungkyunkwan University http://csl.skku.edu The Problem How to represent fractional values with

More information

Floating Point Puzzles. Lecture 3B Floating Point. IEEE Floating Point. Fractional Binary Numbers. Topics. IEEE Standard 754

Floating Point Puzzles. Lecture 3B Floating Point. IEEE Floating Point. Fractional Binary Numbers. Topics. IEEE Standard 754 Floating Point Puzzles Topics Lecture 3B Floating Point IEEE Floating Point Standard Rounding Floating Point Operations Mathematical properties For each of the following C expressions, either: Argue that

More information

IA-32 Intel Architecture Software Developer s Manual

IA-32 Intel Architecture Software Developer s Manual IA-32 Intel Architecture Software Developer s Manual Volume 1: Basic Architecture NOTE: The IA-32 Intel Architecture Software Developer s Manual consists of three volumes: Basic Architecture, Order Number

More information

Processing Unit CS206T

Processing Unit CS206T Processing Unit CS206T Microprocessors The density of elements on processor chips continued to rise More and more elements were placed on each chip so that fewer and fewer chips were needed to construct

More information

CS 101, Mock Computer Architecture

CS 101, Mock Computer Architecture CS 101, Mock Computer Architecture Computer organization and architecture refers to the actual hardware used to construct the computer, and the way that the hardware operates both physically and logically

More information

Systems I. Floating Point. Topics IEEE Floating Point Standard Rounding Floating Point Operations Mathematical properties

Systems I. Floating Point. Topics IEEE Floating Point Standard Rounding Floating Point Operations Mathematical properties Systems I Floating Point Topics IEEE Floating Point Standard Rounding Floating Point Operations Mathematical properties IEEE Floating Point IEEE Standard 754 Established in 1985 as uniform standard for

More information

AMD Extensions to the. Instruction Sets Manual

AMD Extensions to the. Instruction Sets Manual AMD Extensions to the 3DNow! TM and MMX Instruction Sets Manual TM 2000 Advanced Micro Devices, Inc. All rights reserved. The contents of this document are provided in connection with Advanced Micro Devices,

More information

Computer Architecture and IC Design Lab. Chapter 3 Part 2 Arithmetic for Computers Floating Point

Computer Architecture and IC Design Lab. Chapter 3 Part 2 Arithmetic for Computers Floating Point Chapter 3 Part 2 Arithmetic for Computers Floating Point Floating Point Representation for non integral numbers Including very small and very large numbers 4,600,000,000 or 4.6 x 10 9 0.0000000000000000000000000166

More information

Divide: Paper & Pencil

Divide: Paper & Pencil Divide: Paper & Pencil 1001 Quotient Divisor 1000 1001010 Dividend -1000 10 101 1010 1000 10 Remainder See how big a number can be subtracted, creating quotient bit on each step Binary => 1 * divisor or

More information

Preface. Intel Technology Journal Q3, Lin Chao Editor Intel Technology Journal

Preface. Intel Technology Journal Q3, Lin Chao Editor Intel Technology Journal Intel Technology Journal Q3, 1997 Preface Lin Chao Editor Intel Technology Journal Welcome to the Intel Technology Journal. After a decade as an internal R&D journal, we're broadening our audience and

More information

Chapter 13 Reduced Instruction Set Computers

Chapter 13 Reduced Instruction Set Computers Chapter 13 Reduced Instruction Set Computers Contents Instruction execution characteristics Use of a large register file Compiler-based register optimization Reduced instruction set architecture RISC pipelining

More information

Instruction Set Architecture

Instruction Set Architecture C Fortran Ada etc. Basic Java Instruction Set Architecture Compiler Assembly Language Compiler Byte Code Nizamettin AYDIN naydin@yildiz.edu.tr http://www.yildiz.edu.tr/~naydin http://akademik.bahcesehir.edu.tr/~naydin

More information

Giving credit where credit is due

Giving credit where credit is due CSCE 230J Computer Organization Floating Point Dr. Steve Goddard goddard@cse.unl.edu http://cse.unl.edu/~goddard/courses/csce230j Giving credit where credit is due Most of slides for this lecture are based

More information

Representing and Manipulating Floating Points

Representing and Manipulating Floating Points Representing and Manipulating Floating Points Jin-Soo Kim (jinsookim@skku.edu) Computer Systems Laboratory Sungkyunkwan University http://csl.skku.edu The Problem How to represent fractional values with

More information

Floating point. Today! IEEE Floating Point Standard! Rounding! Floating Point Operations! Mathematical properties. Next time. !

Floating point. Today! IEEE Floating Point Standard! Rounding! Floating Point Operations! Mathematical properties. Next time. ! Floating point Today! IEEE Floating Point Standard! Rounding! Floating Point Operations! Mathematical properties Next time! The machine model Chris Riesbeck, Fall 2011 Checkpoint IEEE Floating point Floating

More information

Floating Point. The World is Not Just Integers. Programming languages support numbers with fraction

Floating Point. The World is Not Just Integers. Programming languages support numbers with fraction 1 Floating Point The World is Not Just Integers Programming languages support numbers with fraction Called floating-point numbers Examples: 3.14159265 (π) 2.71828 (e) 0.000000001 or 1.0 10 9 (seconds in

More information

Floating Point Arithmetic. Jin-Soo Kim Computer Systems Laboratory Sungkyunkwan University

Floating Point Arithmetic. Jin-Soo Kim Computer Systems Laboratory Sungkyunkwan University Floating Point Arithmetic Jin-Soo Kim (jinsookim@skku.edu) Computer Systems Laboratory Sungkyunkwan University http://csl.skku.edu Floating Point (1) Representation for non-integral numbers Including very

More information

ASSEMBLY LANGUAGE MACHINE ORGANIZATION

ASSEMBLY LANGUAGE MACHINE ORGANIZATION ASSEMBLY LANGUAGE MACHINE ORGANIZATION CHAPTER 3 1 Sub-topics The topic will cover: Microprocessor architecture CPU processing methods Pipelining Superscalar RISC Multiprocessing Instruction Cycle Instruction

More information

Giving credit where credit is due

Giving credit where credit is due JDEP 284H Foundations of Computer Systems Floating Point Dr. Steve Goddard goddard@cse.unl.edu Giving credit where credit is due Most of slides for this lecture are based on slides created by Drs. Bryant

More information

Number Systems. Both numbers are positive

Number Systems. Both numbers are positive Number Systems Range of Numbers and Overflow When arithmetic operation such as Addition, Subtraction, Multiplication and Division are performed on numbers the results generated may exceed the range of

More information

UNIVERSITY OF MASSACHUSETTS Dept. of Electrical & Computer Engineering. Digital Computer Arithmetic ECE 666

UNIVERSITY OF MASSACHUSETTS Dept. of Electrical & Computer Engineering. Digital Computer Arithmetic ECE 666 UNIVERSITY OF MASSACHUSETTS Dept. of Electrical & Computer Engineering Digital Computer Arithmetic ECE 666 Part 4-C Floating-Point Arithmetic - III Israel Koren ECE666/Koren Part.4c.1 Floating-Point Adders

More information

Floating Point Puzzles. Lecture 3B Floating Point. IEEE Floating Point. Fractional Binary Numbers. Topics. IEEE Standard 754

Floating Point Puzzles. Lecture 3B Floating Point. IEEE Floating Point. Fractional Binary Numbers. Topics. IEEE Standard 754 Floating Point Puzzles Topics Lecture 3B Floating Point IEEE Floating Point Standard Rounding Floating Point Operations Mathematical properties For each of the following C expressions, either: Argue that

More information

Vertex Shader Design I

Vertex Shader Design I The following content is extracted from the paper shown in next page. If any wrong citation or reference missing, please contact ldvan@cs.nctu.edu.tw. I will correct the error asap. This course used only

More information

ECE232: Hardware Organization and Design

ECE232: Hardware Organization and Design ECE232: Hardware Organization and Design Lecture 4: Logic Operations and Introduction to Conditionals Adapted from Computer Organization and Design, Patterson & Hennessy, UCB Overview Previously examined

More information

IA-32 Intel Architecture Software Developer s Manual

IA-32 Intel Architecture Software Developer s Manual IA-32 Intel Architecture Software Developer s Manual Volume 1: Basic Architecture NOTE: The IA-32 Intel Architecture Software Developer's Manual consists of five volumes: Basic Architecture, Order Number

More information

Thomas Polzer Institut für Technische Informatik

Thomas Polzer Institut für Technische Informatik Thomas Polzer tpolzer@ecs.tuwien.ac.at Institut für Technische Informatik Operations on integers Addition and subtraction Multiplication and division Dealing with overflow Floating-point real numbers VO

More information

Module 2. Embedded Processors and Memory. Version 2 EE IIT, Kharagpur 1

Module 2. Embedded Processors and Memory. Version 2 EE IIT, Kharagpur 1 Module 2 Embedded Processors and Memory Version 2 EE IIT, Kharagpur 1 Lesson 8 General Purpose Processors - I Version 2 EE IIT, Kharagpur 2 In this lesson the student will learn the following Architecture

More information

FAST FIR FILTERS FOR SIMD PROCESSORS WITH LIMITED MEMORY BANDWIDTH

FAST FIR FILTERS FOR SIMD PROCESSORS WITH LIMITED MEMORY BANDWIDTH Key words: Digital Signal Processing, FIR filters, SIMD processors, AltiVec. Grzegorz KRASZEWSKI Białystok Technical University Department of Electrical Engineering Wiejska

More information

EEM336 Microprocessors I. Arithmetic and Logic Instructions

EEM336 Microprocessors I. Arithmetic and Logic Instructions EEM336 Microprocessors I Arithmetic and Logic Instructions Introduction We examine the arithmetic and logic instructions. The arithmetic instructions include addition, subtraction, multiplication, division,

More information

Binary representation and data

Binary representation and data Binary representation and data Loriano Storchi loriano@storchi.org http:://www.storchi.org/ Binary representation of numbers In a positional numbering system given the base this directly defines the number

More information

Chapter 2 Float Point Arithmetic. Real Numbers in Decimal Notation. Real Numbers in Decimal Notation

Chapter 2 Float Point Arithmetic. Real Numbers in Decimal Notation. Real Numbers in Decimal Notation Chapter 2 Float Point Arithmetic Topics IEEE Floating Point Standard Fractional Binary Numbers Rounding Floating Point Operations Mathematical properties Real Numbers in Decimal Notation Representation

More information

System Programming CISC 360. Floating Point September 16, 2008

System Programming CISC 360. Floating Point September 16, 2008 System Programming CISC 360 Floating Point September 16, 2008 Topics IEEE Floating Point Standard Rounding Floating Point Operations Mathematical properties Powerpoint Lecture Notes for Computer Systems:

More information

Chapter 12. CPU Structure and Function. Yonsei University

Chapter 12. CPU Structure and Function. Yonsei University Chapter 12 CPU Structure and Function Contents Processor organization Register organization Instruction cycle Instruction pipelining The Pentium processor The PowerPC processor 12-2 CPU Structures Processor

More information

This Material Was All Drawn From Intel Documents

This Material Was All Drawn From Intel Documents This Material Was All Drawn From Intel Documents A ROAD MAP OF INTEL MICROPROCESSORS Hao Sun February 2001 Abstract The exponential growth of both the power and breadth of usage of the computer has made

More information

Topics Power tends to corrupt; absolute power corrupts absolutely. Computer Organization CS Data Representation

Topics Power tends to corrupt; absolute power corrupts absolutely. Computer Organization CS Data Representation Computer Organization CS 231-01 Data Representation Dr. William H. Robinson November 12, 2004 Topics Power tends to corrupt; absolute power corrupts absolutely. Lord Acton British historian, late 19 th

More information

Representing and Manipulating Floating Points

Representing and Manipulating Floating Points Representing and Manipulating Floating Points Jinkyu Jeong (jinkyu@skku.edu) Computer Systems Laboratory Sungkyunkwan University http://csl.skku.edu SSE23: Introduction to Computer Systems, Spring 218,

More information

Floating Point Numbers

Floating Point Numbers Floating Point Numbers Summer 8 Fractional numbers Fractional numbers fixed point Floating point numbers the IEEE 7 floating point standard Floating point operations Rounding modes CMPE Summer 8 Slides

More information

Instruction Set Progression. from MMX Technology through Streaming SIMD Extensions 2

Instruction Set Progression. from MMX Technology through Streaming SIMD Extensions 2 Instruction Set Progression from MMX Technology through Streaming SIMD Extensions 2 This article summarizes the progression of change to the instruction set in the Intel IA-32 architecture, from MMX technology

More information

Representation of Numbers and Arithmetic in Signal Processors

Representation of Numbers and Arithmetic in Signal Processors Representation of Numbers and Arithmetic in Signal Processors 1. General facts Without having any information regarding the used consensus for representing binary numbers in a computer, no exact value

More information

UNIT 2 PROCESSORS ORGANIZATION CONT.

UNIT 2 PROCESSORS ORGANIZATION CONT. UNIT 2 PROCESSORS ORGANIZATION CONT. Types of Operand Addresses Numbers Integer/floating point Characters ASCII etc. Logical Data Bits or flags x86 Data Types Operands in 8 bit -Byte 16 bit- word 32 bit-

More information

applications with SIMD and Hyper-Threading Technology by Chew Yean Yam Intel Corporation

applications with SIMD and Hyper-Threading Technology by Chew Yean Yam Intel Corporation White Paper Intel Digital Security Surveillance Optimizing Video ompression for Intel Digital Security Surveillance applications with SIMD and Hyper-Threading Technology by hew Yean Yam Intel orporation

More information

Chapter 3: Arithmetic for Computers

Chapter 3: Arithmetic for Computers Chapter 3: Arithmetic for Computers Objectives Signed and Unsigned Numbers Addition and Subtraction Multiplication and Division Floating Point Computer Architecture CS 35101-002 2 The Binary Numbering

More information

Intel SIMD architecture. Computer Organization and Assembly Languages Yung-Yu Chuang

Intel SIMD architecture. Computer Organization and Assembly Languages Yung-Yu Chuang Intel SIMD architecture Computer Organization and Assembly Languages g Yung-Yu Chuang Overview SIMD MMX architectures MMX instructions examples SSE/SSE2 SIMD instructions are probably the best place to

More information

Floating Point Puzzles The course that gives CMU its Zip! Floating Point Jan 22, IEEE Floating Point. Fractional Binary Numbers.

Floating Point Puzzles The course that gives CMU its Zip! Floating Point Jan 22, IEEE Floating Point. Fractional Binary Numbers. class04.ppt 15-213 The course that gives CMU its Zip! Topics Floating Point Jan 22, 2004 IEEE Floating Point Standard Rounding Floating Point Operations Mathematical properties Floating Point Puzzles For

More information