Multimodal Information Spaces for Content-based Image Retrieval

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Multimodal Information Spaces for Content-based Image Retrieval"

Transcription

1 Research Proposal Multimodal Information Spaces for Content-based Image Retrieval Abstract Currently, image retrieval by content is a research problem of great interest in academia and the industry, due to the large collections of images available in different contexts. One of the main challenges to develop effective image retrieval systems is the automatic identification of semantic image contents. This research proposal aims to design a model for image retrieval able to take advantage of different data sources, i.e. using multimodal information, to improve the response of an image retrieval system. In particular two data modalities associated to contents and context of images are considered in this proposal: visual features and unstructured text annotations. The proposed framework is based on kernel methods that provide two main important advantages over the traditional multimodal approaches: first, the structure of each modality is preserved in a high dimensional feature space, and second, they provide natural ways to fuse feature spaces in a unique information space. This document presents the research agenda to build a Multimodal Information Space for searching images by content. Presented by Juan Carlos Caicedo Rueda Research Advisor Prof. Fabio A. González O. Ph.D Area Computer Science Research Fields Information Retrieval and Machine Learning. 1

2 1 INTRODUCTION 2 1 INTRODUCTION Content-Based Image Retrieval (CBIR) is an active research discipline focused on computational strategies to search for relevant images based on visual content analysis. In this proposal, multimodal analysis is considered to develop CBIR systems, specially for image collections in which there is some text associated to images. Multimodality in Information Retrieval is sometimes referred to the interaction mechanisms and devices used to query the system. However, since the Multimedia Information Retrieval perspective, multimodality is referred to those methods that take advantage of different data modalities to provide access to a digital library or a multimedia collection [1, 2]. Different data modalities in multimedia are used to better understand document contents, including textual annotations, audio, images and video. In this proposal, multimodal will refer to the ability to represent, process and analyze two data modalities simultaneously: unstructured texts and images. The study of multimodal information retrieval systems is proposed in this document. In particular, the design of computational strategies to take advantage of multimodal interactions between image contents and text descriptions is proposed to improve the response of an image retrieval system. In addition, the evaluation of different query paradigms is proposed, including query by example, a keyword based approach and multimodal queries to search for images. A unified framework is proposed in this document to manage data representation, search algorithms and query resolution. The study and evaluation of kernel methods to generate Multimodal Information Spaces is proposed. How can kernel methods be adapted to address the problems of a multimodal information retrieval system, is one of the main purposes of this research. This proposal aims to approach practical and theoretical aspects of a multimodal information representation for image retrieval systems. Kernel methods provide foundations to include structure in data representation and also to combine different heterogeneous data sources. Kernel methods for pattern analysis have been studied to design machine learning algorithms, and have been widely used for non-vectorial data, such as strings, trees and graphs among others [3]. Adapting such a framework for information retrieval, and specially for multimodal information retrieval may lead to more effective systems, and also may contribute to the understanding of the relationships between information retrieval and machine learning. 2 OBJECTIVES Main Goal: To design and evaluate a model to build multimodal information spaces for contentbased image retrieval. Specific goals: To define strategies to extract and represent visual and text contents separately using kernel functions. To propose a method for combining visual and text kernels to represent image contents together with text semantics in a multimodal information space. To design a ranking algorithm to search for images using different query paradigms in the multimodal information space induced by kernels. To evaluate the performance of the system using standard information retrieval measures.

3 3 PROPOSED RESEARCH 3 3 PROPOSED RESEARCH The proposed research focuses on strategies for early multimodal data fusion to model interactions between different data modalities. A Multimodal IR system under that approach has three main associated issues: content representation of each modality, information fusion and multimodal retrieval algorithms. The construction of a Multimodal Information Space for content-based image retrieval is proposed using kernel methods. Kernel methods have had a great impact in machine learning and pattern recognition, since they provide effective algorithms and strong theoretical properties. Taking advantage of these properties for image retrieval is the main problem of this research. The following subsections present the outline of the main phases that are considered to tackle the problems of how to represent image and text document contents, how to address the fusion and combination problem using kernels, and how to solve queries in a Multimodal Information Space. 3.1 Phase 1: Content Representation Content representation involves the analysis and extraction of information from each modality separately. The processing of image contents and text documents is the main task in this step. It allows the filtering of non-useful data and captures the most discriminative content as is usually done in information retrieval systems Image Content Representation Different features sets will be considered to represent image contents. Color, texture and edge histograms will be used to characterize global image properties, and the bag-of-words approach will be considered to model local features [4]. Since all these features are histograms, some similarity measures may be applied to evaluate feature likeness. A similarity measure such as the histogram intersection is proposed since it is provided with all needed properties to be a kernel function. The combination of all available visual features will be studied to lead to a unified image representation. A strategy to combine different visual features has been already approached by the proponent [5], in which an optimal linear combination of features is obtained using kernel methods. In this research proposal different visual features may also be considered as additional data modalities that have to be combined with text features. In that way, the combination of visual features may be followed using strategies defined in the Subsection 3.2, Information Fusion Text Content Representation The text associated to images will be represented using a Vector Space Model as is usually done in text information retrieval [6]. Standard operations will be applied to remove stop-words 1 and to perform stemming 2, so that a text vocabulary is identified in the text collection. This leads to a sparse representation for unstructured texts since each one is only composed of a few set of words and the representation is also a histogram that counts word ocurrences. Additional adaptations will be considered for this vector space model such as the inverse document frequency to weigth the more discriminative words in the collection. The kernel function used on this representation will be the cosine similarity Deliverables A set of programs to automatically process an image collection with their associated texts. A conference paper with an evaluation of image retrieval using text data and image features independently will be written, using a collection of medical images. 1 Usually conjuctions or articles with no semantic meaning, such as and, or, the, to 2 To find the stem of each word, such as work in working

4 3 PROPOSED RESEARCH Phase 2: Information Fusion The information fusion step, a particular aspect of Multimodal Information Retrieval systems, leads to the design of methods to find and represent the relationships between both modalities. How to discover the most meaningful associations between images and text and how to complete missing data or non-clear relationships, are the main problems in this step. In this research, the design of early fusion methods is proposed. At the end of this step, a new document representation is obtained containing both visual and textual information Low-level Kernel construction To fuse visual and text properties, operations and algorithms on both content representations will be evaluated. Given two kernel functions, each for a data modality, a set of operations on these kernel functions may be applied to combine information. Operations such as addition, multiplication and composition may be used to rescale and modify the geometry of a new combined feature space. For example, a linear combination of two kernel functions, one textual and one visual, will lead to a new feature space that share all the information from each original feature space. The resulting feature space depends on the coefficients of the linear combination, which may be chosen in an optimal fashion [5]. Other more complex combinations may be modeled using different kernel function operations. Other kernel-based strategies for information fusion will be studied. For instance, an ANOVA kernel may be designed to evaluate the joint occurrence of different feature sets, i.e. visual patterns and text words. Following the same family of algorithms, a kernel graph may be designed to model interactions between visual and textual features or a convolution kernel to evaluate structure and contents [7]. All these approaches lead to a Multimodal Information Space in which the data of visual and text contents is represented Semantic Kernel construction Once the Multimodal Information Space has been obtained through the operation of basic low-level data, it can be enhanced using pattern analysis algorithms to discover relationships and complex interactions between features and objects. Latent Semantic Analysis will be considered to re-embed multimodal information in a space in which different features are fused into a set of representative latent concepts. This approach may be applied on a kernel-based Multimodal Information Space since the dual algorithm for Latent Semantic Analysis has been developed by the machine learning community [8]. Other family of pattern analysis algorithms may be applied on the kernel-generated space to analyse multimodal interactions. For instance, Canonical Correlation Analysis between visual and text contents may be applied using two different kernel functions, each related to a data modality Deliverables Design and definition of the proposed algorithms. A software implementation of the algorithms to generate kernel functions will be relased. Two conference papers will be written describing the low-level construction of kernel functions. A journal paper will be written considering the evaluation of these kernels for semantic analysis and multimodal retrieval.

5 3 PROPOSED RESEARCH Phase 3: Information Retrieval Multimodal retrieval algorithms on the fused representation will be designed to identify the most relevant results for the user. The main research questions in this step are related to the query representation and how to solve unimodal and multimodal queries Ranking algorithms Since kernel functions may be interpreted as similarity functions, they provide a natural ranking to retrieve images. Depending on the particular kernel function and retrieval task, the ranking may be more or less effective. Kernel functions will be the main strategy to rank images under the proposed framework, however, other ranking algorithms may be considered according to the obtained results. For instance, learning to rank u[9] using multimodal kernel functions may be a potential approach to search for images Solving queries The proposed system to retrieve images using multimodal data may be queried using keywords, example images or both. So the query representation will be considered in this research. When both data modalities are available, the application of the proposed methods is straightforward. However, solving unimodal queries requires to define how to complete the missing data or avoid its utilization Deliverables A prototype system to rank a collection of images given a query will be implemented. This prototype will support experiments and evaluations of the proposed methods to find relevant images using different query paradigms. A journal paper will be written presenting the architecture of the complete system, the proposed methods and the results of this evaluation. 3.4 Phase 4: Evaluation There are a lot of document collections that include both, images and texts, in which users require to find information either illustrated in images or described in texts. This project has as goal to index the information of images and texts simultaneously to find relevant information independently of its original format. Although the kind of collections on which such a system may be applied is very diverse, this project aims to evaluate the proposed system in a collection of medical information, including images, medical records and scholarly papers. In particular, the collections provided in the ImageCLEFmed competition are planned to be used as well as the datasets collected in the Bioingenium Research Group, product of its operation. A prototype system will be implemented to operate with the proposed methods, particularly to search for relevant documents given multimodal or unimodal queries. The response of the system will be assessed using standard IR measures to compare results with reported baselines and state-of-the-art methods. The response of the proposed Multimodal Information Retrieval will be also compared with the response of a standard text search engine and a standard image retrieval system to evaluate their relative performance. It is expected that the Multimodal Information Space provide more accurate results.

6 3 PROPOSED RESEARCH Performance Considerations The proposed research is mainly based on kernel methods that may work on very high dimensional spaces. Kernel based algorithms do not need to operate explicitly in the high dimensional space, and that leads to the implementation of fast similarity measures between structured data. For example, the Pyramid Match Kernel [10], used to approximate the matching between two sets of image features, provides high accuracy and low computational effort compared to the optimal correspondences between the sets of features. However some learning algorithms need to process a kernel matrix that grows quadratically with the size of the sample. For instance, a Singular Value Decomposition (SVD) of the kernel matrix is useful for doing principal component analysis or latent semantic analysis [3]. But the SVD algorithm is O(n 3 ) and it would demand huge computational resources or may take a long time to process for large data collections. The complexity of the proposed algorithms will be studied to evaluate the impact on the system performance. The majority of the algorithms that require to process a kernel matrix are training algorithms that can be executed offline. Moreover, training algorithms are not needed to be applied on the complete document collection. That is, a representative sample may be taken from the collection to analyze patterns, structure and relationships, and later the obtained models may be generalized to the whole collection. When possible, parallel or distributed implementations will be considered for algorithms with high complexity. 3.6 Research Activities The research plan is presented in Figure 1 with the activities to be followed during two years. It comprises the four phases previously discussed: (1) Content Representation, (2) Information Fusion, (3) Information Retrieval and (4) Evaluation. Fig. 1: Research plan for 2 years.

7 4 SUMMARY 7 4 SUMMARY This document has presented a research agenda to study and evaluate Multimodal Information Spaces for Content-Based Image Retrieval. The main research question is how can we retrieve visual information from a large multimodal document collection, taking into account that both visual and textual contents may provide useful information to improve the retrieval performance. The use of kernel functions to construct Multimodal Information Spaces is proposed, and a framework based on kernel method solutions will be followed. Under the proposed framework, different image and text features may be fused in a high-dimensional space, in which a search algorithm may be designed. Each data modality in an image collection will be processed independently and will be integrated using the proposed framework. The image collection to be used is taken from the medical domain in which the multimodal structure may be found in health records and scholarly articles. The evaluation and analysis of standard information retrieval measures is also proposed to assess the contribution of the proposed research. References [1] M. S. Lew, N. Sebe, C. Djeraba, and R. Jain, Content-based multimedia information retrieval: State of the art and challenges, ACM Trans. Multimedia Comput. Commun. Appl., vol. 2, no. 1, pp. 1 19, February [2] R. Datta, D. Joshi, J. Li, and J. Z. Wang, Image retrieval: Ideas, influences, and trends of the new age, ACM Comput. Surv., vol. 40, no. 2, pp. 1 60, April [3] J. Shawe-Taylor and N. Cristianini, Kernel methods for pattern analysis. Cambridge University Press, [4] J. C. Caicedo, A. Cruz, and F. Gonzalez, Histopathology image classification using bag of features and kernel functions, Artificial Intelligence in Medicine Conference, AIME 2009, vol. LNAI 5651, pp , [5] J. C. Caicedo, F. A. Gonzalez, and E. Romero, Content-based medical image retrieval using a kernel-based semantic annotation framework. Technical Report UN-BI National University of Colombia. Submitted to the Artificial Intelligence in Medicine Journal, Tech. Rep., [6] C. D. Manning, P. Raghavan, and H. Schütze, Introduction to Information Retrieval. Cambridge University Press, [7] T. Gärtner, J. W. Lloyd, and P. A. Flach, Kernels and distances for structured data, Machine Learning, vol. 57, no. 3, pp , December [8] N. Cristianini, J. Shawe-Taylor, and H. Lodhi, Latent semantic kernels, Journal of Intelligent Information Systems, vol. 18, no. 2, pp , March [9] Z. Cao, T. Qin, T. Y. Liu, M. F. Tsai, and H. Li, Learning to rank: from pairwise approach to listwise approach, in ICML 07: Proceedings of the 24th international conference on Machine learning. New York, NY, USA: ACM, 2007, pp [10] K. Grauman and T. Darrell, The pyramid match kernel: discriminative classification with sets of image features, in Computer Vision, ICCV Tenth IEEE International Conference on, vol. 2, 2005.

A Comparative Study on Retrieved Images by Content Based Image Retrieval System based on Binary Tree, Color, Texture and Canny Edge Detection Approach

A Comparative Study on Retrieved Images by Content Based Image Retrieval System based on Binary Tree, Color, Texture and Canny Edge Detection Approach A Comparative Study on Retrieved Images by Content Based Image Retrieval System based on Binary Tree, Color, Texture and Canny Edge Detection Approach Saroj A. Shambharkar Department of Information Technology

More information

Content Based Image Retrieval: Survey and Comparison between RGB and HSV model

Content Based Image Retrieval: Survey and Comparison between RGB and HSV model Content Based Image Retrieval: Survey and Comparison between RGB and HSV model Simardeep Kaur 1 and Dr. Vijay Kumar Banga 2 AMRITSAR COLLEGE OF ENGG & TECHNOLOGY, Amritsar, India Abstract Content based

More information

Encoding Words into String Vectors for Word Categorization

Encoding Words into String Vectors for Word Categorization Int'l Conf. Artificial Intelligence ICAI'16 271 Encoding Words into String Vectors for Word Categorization Taeho Jo Department of Computer and Information Communication Engineering, Hongik University,

More information

A REVIEW ON IMAGE RETRIEVAL USING HYPERGRAPH

A REVIEW ON IMAGE RETRIEVAL USING HYPERGRAPH A REVIEW ON IMAGE RETRIEVAL USING HYPERGRAPH Sandhya V. Kawale Prof. Dr. S. M. Kamalapur M.E. Student Associate Professor Deparment of Computer Engineering, Deparment of Computer Engineering, K. K. Wagh

More information

Semantic text features from small world graphs

Semantic text features from small world graphs Semantic text features from small world graphs Jurij Leskovec 1 and John Shawe-Taylor 2 1 Carnegie Mellon University, USA. Jozef Stefan Institute, Slovenia. jure@cs.cmu.edu 2 University of Southampton,UK

More information

An Introduction to Content Based Image Retrieval

An Introduction to Content Based Image Retrieval CHAPTER -1 An Introduction to Content Based Image Retrieval 1.1 Introduction With the advancement in internet and multimedia technologies, a huge amount of multimedia data in the form of audio, video and

More information

A Content Vector Model for Text Classification

A Content Vector Model for Text Classification A Content Vector Model for Text Classification Eric Jiang Abstract As a popular rank-reduced vector space approach, Latent Semantic Indexing (LSI) has been used in information retrieval and other applications.

More information

Ranking Error-Correcting Output Codes for Class Retrieval

Ranking Error-Correcting Output Codes for Class Retrieval Ranking Error-Correcting Output Codes for Class Retrieval Mehdi Mirza-Mohammadi, Francesco Ciompi, Sergio Escalera, Oriol Pujol, and Petia Radeva Computer Vision Center, Campus UAB, Edifici O, 08193, Bellaterra,

More information

A Deep Relevance Matching Model for Ad-hoc Retrieval

A Deep Relevance Matching Model for Ad-hoc Retrieval A Deep Relevance Matching Model for Ad-hoc Retrieval Jiafeng Guo 1, Yixing Fan 1, Qingyao Ai 2, W. Bruce Croft 2 1 CAS Key Lab of Web Data Science and Technology, Institute of Computing Technology, Chinese

More information

MATRIX BASED SEQUENTIAL INDEXING TECHNIQUE FOR VIDEO DATA MINING

MATRIX BASED SEQUENTIAL INDEXING TECHNIQUE FOR VIDEO DATA MINING MATRIX BASED SEQUENTIAL INDEXING TECHNIQUE FOR VIDEO DATA MINING 1 D.SARAVANAN 2 V.SOMASUNDARAM Assistant Professor, Faculty of Computing, Sathyabama University Chennai 600 119, Tamil Nadu, India Email

More information

Generalized Fuzzy Clustering Model with Fuzzy C-Means

Generalized Fuzzy Clustering Model with Fuzzy C-Means Generalized Fuzzy Clustering Model with Fuzzy C-Means Hong Jiang 1 1 Computer Science and Engineering, University of South Carolina, Columbia, SC 29208, US jiangh@cse.sc.edu http://www.cse.sc.edu/~jiangh/

More information

DUTH at ImageCLEF 2011 Wikipedia Retrieval

DUTH at ImageCLEF 2011 Wikipedia Retrieval DUTH at ImageCLEF 2011 Wikipedia Retrieval Avi Arampatzis, Konstantinos Zagoris, and Savvas A. Chatzichristofis Department of Electrical and Computer Engineering, Democritus University of Thrace, Xanthi

More information

ScienceDirect. Reducing Semantic Gap in Video Retrieval with Fusion: A survey

ScienceDirect. Reducing Semantic Gap in Video Retrieval with Fusion: A survey Available online at www.sciencedirect.com ScienceDirect Procedia Computer Science 50 (2015 ) 496 502 Reducing Semantic Gap in Video Retrieval with Fusion: A survey D.Sudha a, J.Priyadarshini b * a School

More information

Spatial Hierarchy of Textons Distributions for Scene Classification

Spatial Hierarchy of Textons Distributions for Scene Classification Spatial Hierarchy of Textons Distributions for Scene Classification S. Battiato 1, G. M. Farinella 1, G. Gallo 1, and D. Ravì 1 Image Processing Laboratory, University of Catania, IT {battiato, gfarinella,

More information

Texture Image Segmentation using FCM

Texture Image Segmentation using FCM Proceedings of 2012 4th International Conference on Machine Learning and Computing IPCSIT vol. 25 (2012) (2012) IACSIT Press, Singapore Texture Image Segmentation using FCM Kanchan S. Deshmukh + M.G.M

More information

Improved DAG SVM: A New Method for Multi-Class SVM Classification

Improved DAG SVM: A New Method for Multi-Class SVM Classification 548 Int'l Conf. Artificial Intelligence ICAI'09 Improved DAG SVM: A New Method for Multi-Class SVM Classification Mostafa Sabzekar, Mohammad GhasemiGol, Mahmoud Naghibzadeh, Hadi Sadoghi Yazdi Department

More information

DWT-SVD Based Hybrid Approach for Digital Watermarking Using Fusion Method

DWT-SVD Based Hybrid Approach for Digital Watermarking Using Fusion Method DWT-SVD Based Hybrid Approach for Digital Watermarking Using Fusion Method Sonal Varshney M.tech Scholar Galgotias University Abhinandan Singh M.tech Scholar Galgotias University Abstract With the rapid

More information

Parallel Architecture & Programing Models for Face Recognition

Parallel Architecture & Programing Models for Face Recognition Parallel Architecture & Programing Models for Face Recognition Submitted by Sagar Kukreja Computer Engineering Department Rochester Institute of Technology Agenda Introduction to face recognition Feature

More information

Efficient Indexing and Searching Framework for Unstructured Data

Efficient Indexing and Searching Framework for Unstructured Data Efficient Indexing and Searching Framework for Unstructured Data Kyar Nyo Aye, Ni Lar Thein University of Computer Studies, Yangon kyarnyoaye@gmail.com, nilarthein@gmail.com ABSTRACT The proliferation

More information

Object and Action Detection from a Single Example

Object and Action Detection from a Single Example Object and Action Detection from a Single Example Peyman Milanfar* EE Department University of California, Santa Cruz *Joint work with Hae Jong Seo AFOSR Program Review, June 4-5, 29 Take a look at this:

More information

Easy Samples First: Self-paced Reranking for Zero-Example Multimedia Search

Easy Samples First: Self-paced Reranking for Zero-Example Multimedia Search Easy Samples First: Self-paced Reranking for Zero-Example Multimedia Search Lu Jiang 1, Deyu Meng 2, Teruko Mitamura 1, Alexander G. Hauptmann 1 1 School of Computer Science, Carnegie Mellon University

More information

Lecture Video Indexing and Retrieval Using Topic Keywords

Lecture Video Indexing and Retrieval Using Topic Keywords Lecture Video Indexing and Retrieval Using Topic Keywords B. J. Sandesh, Saurabha Jirgi, S. Vidya, Prakash Eljer, Gowri Srinivasa International Science Index, Computer and Information Engineering waset.org/publication/10007915

More information

highest cosine coecient [5] are returned. Notice that a query can hit documents without having common terms because the k indexing dimensions indicate

highest cosine coecient [5] are returned. Notice that a query can hit documents without having common terms because the k indexing dimensions indicate Searching Information Servers Based on Customized Proles Technical Report USC-CS-96-636 Shih-Hao Li and Peter B. Danzig Computer Science Department University of Southern California Los Angeles, California

More information

Information mining and information retrieval : methods and applications

Information mining and information retrieval : methods and applications Information mining and information retrieval : methods and applications J. Mothe, C. Chrisment Institut de Recherche en Informatique de Toulouse Université Paul Sabatier, 118 Route de Narbonne, 31062 Toulouse

More information

Partial Least Squares Regression on Grassmannian Manifold for Emotion Recognition

Partial Least Squares Regression on Grassmannian Manifold for Emotion Recognition Emotion Recognition In The Wild Challenge and Workshop (EmotiW 2013) Partial Least Squares Regression on Grassmannian Manifold for Emotion Recognition Mengyi Liu, Ruiping Wang, Zhiwu Huang, Shiguang Shan,

More information

Chapter 6: Information Retrieval and Web Search. An introduction

Chapter 6: Information Retrieval and Web Search. An introduction Chapter 6: Information Retrieval and Web Search An introduction Introduction n Text mining refers to data mining using text documents as data. n Most text mining tasks use Information Retrieval (IR) methods

More information

The Research of A multi-language supporting description-oriented Clustering Algorithm on Meta-Search Engine Result Wuling Ren 1, a and Lijuan Liu 2,b

The Research of A multi-language supporting description-oriented Clustering Algorithm on Meta-Search Engine Result Wuling Ren 1, a and Lijuan Liu 2,b Applied Mechanics and Materials Online: 2012-01-24 ISSN: 1662-7482, Vol. 151, pp 549-553 doi:10.4028/www.scientific.net/amm.151.549 2012 Trans Tech Publications, Switzerland The Research of A multi-language

More information

EXPLOITING SUBCLASS INFORMATION IN ONE-CLASS SUPPORT VECTOR MACHINE FOR VIDEO SUMMARIZATION

EXPLOITING SUBCLASS INFORMATION IN ONE-CLASS SUPPORT VECTOR MACHINE FOR VIDEO SUMMARIZATION EXPLOITING SUBCLASS INFORMATION IN ONE-CLASS SUPPORT VECTOR MACHINE FOR VIDEO SUMMARIZATION Vasileios Mygdalis, Alexandros Iosifidis, Anastasios Tefas and Ioannis Pitas Department of Informatics, Aristotle

More information

Efficient Tuning of SVM Hyperparameters Using Radius/Margin Bound and Iterative Algorithms

Efficient Tuning of SVM Hyperparameters Using Radius/Margin Bound and Iterative Algorithms IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 13, NO. 5, SEPTEMBER 2002 1225 Efficient Tuning of SVM Hyperparameters Using Radius/Margin Bound and Iterative Algorithms S. Sathiya Keerthi Abstract This paper

More information

Data Mining. Introduction. Hamid Beigy. Sharif University of Technology. Fall 1394

Data Mining. Introduction. Hamid Beigy. Sharif University of Technology. Fall 1394 Data Mining Introduction Hamid Beigy Sharif University of Technology Fall 1394 Hamid Beigy (Sharif University of Technology) Data Mining Fall 1394 1 / 20 Table of contents 1 Introduction 2 Data mining

More information

Representation/Indexing (fig 1.2) IR models - overview (fig 2.1) IR models - vector space. Weighting TF*IDF. U s e r. T a s k s

Representation/Indexing (fig 1.2) IR models - overview (fig 2.1) IR models - vector space. Weighting TF*IDF. U s e r. T a s k s Summary agenda Summary: EITN01 Web Intelligence and Information Retrieval Anders Ardö EIT Electrical and Information Technology, Lund University March 13, 2013 A Ardö, EIT Summary: EITN01 Web Intelligence

More information

Mining Web Data. Lijun Zhang

Mining Web Data. Lijun Zhang Mining Web Data Lijun Zhang zlj@nju.edu.cn http://cs.nju.edu.cn/zlj Outline Introduction Web Crawling and Resource Discovery Search Engine Indexing and Query Processing Ranking Algorithms Recommender Systems

More information

Self-organization of very large document collections

Self-organization of very large document collections Chapter 10 Self-organization of very large document collections Teuvo Kohonen, Samuel Kaski, Krista Lagus, Jarkko Salojärvi, Jukka Honkela, Vesa Paatero, Antti Saarela Text mining systems are developed

More information

Adaptive Feature Extraction with Haar-like Features for Visual Tracking

Adaptive Feature Extraction with Haar-like Features for Visual Tracking Adaptive Feature Extraction with Haar-like Features for Visual Tracking Seunghoon Park Adviser : Bohyung Han Pohang University of Science and Technology Department of Computer Science and Engineering pclove1@postech.ac.kr

More information

A Miniature-Based Image Retrieval System

A Miniature-Based Image Retrieval System A Miniature-Based Image Retrieval System Md. Saiful Islam 1 and Md. Haider Ali 2 Institute of Information Technology 1, Dept. of Computer Science and Engineering 2, University of Dhaka 1, 2, Dhaka-1000,

More information

IMPROVED FACE RECOGNITION USING ICP TECHNIQUES INCAMERA SURVEILLANCE SYSTEMS. Kirthiga, M.E-Communication system, PREC, Thanjavur

IMPROVED FACE RECOGNITION USING ICP TECHNIQUES INCAMERA SURVEILLANCE SYSTEMS. Kirthiga, M.E-Communication system, PREC, Thanjavur IMPROVED FACE RECOGNITION USING ICP TECHNIQUES INCAMERA SURVEILLANCE SYSTEMS Kirthiga, M.E-Communication system, PREC, Thanjavur R.Kannan,Assistant professor,prec Abstract: Face Recognition is important

More information

Analysis of Image and Video Using Color, Texture and Shape Features for Object Identification

Analysis of Image and Video Using Color, Texture and Shape Features for Object Identification IOSR Journal of Computer Engineering (IOSR-JCE) e-issn: 2278-0661,p-ISSN: 2278-8727, Volume 16, Issue 6, Ver. VI (Nov Dec. 2014), PP 29-33 Analysis of Image and Video Using Color, Texture and Shape Features

More information

CLASSIFICATION FOR SCALING METHODS IN DATA MINING

CLASSIFICATION FOR SCALING METHODS IN DATA MINING CLASSIFICATION FOR SCALING METHODS IN DATA MINING Eric Kyper, College of Business Administration, University of Rhode Island, Kingston, RI 02881 (401) 874-7563, ekyper@mail.uri.edu Lutz Hamel, Department

More information

Information Retrieval: Retrieval Models

Information Retrieval: Retrieval Models CS473: Web Information Retrieval & Management CS-473 Web Information Retrieval & Management Information Retrieval: Retrieval Models Luo Si Department of Computer Science Purdue University Retrieval Models

More information

ABSTRACT 1. INTRODUCTION

ABSTRACT 1. INTRODUCTION ABSTRACT A Framework for Multi-Agent Multimedia Indexing Bernard Merialdo Multimedia Communications Department Institut Eurecom BP 193, 06904 Sophia-Antipolis, France merialdo@eurecom.fr March 31st, 1995

More information

Sketch Based Image Retrieval Approach Using Gray Level Co-Occurrence Matrix

Sketch Based Image Retrieval Approach Using Gray Level Co-Occurrence Matrix Sketch Based Image Retrieval Approach Using Gray Level Co-Occurrence Matrix K... Nagarjuna Reddy P. Prasanna Kumari JNT University, JNT University, LIET, Himayatsagar, Hyderabad-8, LIET, Himayatsagar,

More information

CURRENT RESEARCH ON EXPLORATORY LANDSCAPE ANALYSIS

CURRENT RESEARCH ON EXPLORATORY LANDSCAPE ANALYSIS CURRENT RESEARCH ON EXPLORATORY LANDSCAPE ANALYSIS HEIKE TRAUTMANN. MIKE PREUSS. 1 EXPLORATORY LANDSCAPE ANALYSIS effective and sophisticated approach to characterize properties of optimization problems

More information

Tensor Decomposition of Dense SIFT Descriptors in Object Recognition

Tensor Decomposition of Dense SIFT Descriptors in Object Recognition Tensor Decomposition of Dense SIFT Descriptors in Object Recognition Tan Vo 1 and Dat Tran 1 and Wanli Ma 1 1- Faculty of Education, Science, Technology and Mathematics University of Canberra, Australia

More information

Writer Recognizer for Offline Text Based on SIFT

Writer Recognizer for Offline Text Based on SIFT Available Online at www.ijcsmc.com International Journal of Computer Science and Mobile Computing A Monthly Journal of Computer Science and Information Technology IJCSMC, Vol. 4, Issue. 5, May 2015, pg.1057

More information

TRANSFORM FEATURES FOR TEXTURE CLASSIFICATION AND DISCRIMINATION IN LARGE IMAGE DATABASES

TRANSFORM FEATURES FOR TEXTURE CLASSIFICATION AND DISCRIMINATION IN LARGE IMAGE DATABASES TRANSFORM FEATURES FOR TEXTURE CLASSIFICATION AND DISCRIMINATION IN LARGE IMAGE DATABASES John R. Smith and Shih-Fu Chang Center for Telecommunications Research and Electrical Engineering Department Columbia

More information

BUAA AUDR at ImageCLEF 2012 Photo Annotation Task

BUAA AUDR at ImageCLEF 2012 Photo Annotation Task BUAA AUDR at ImageCLEF 2012 Photo Annotation Task Lei Huang, Yang Liu State Key Laboratory of Software Development Enviroment, Beihang University, 100191 Beijing, China huanglei@nlsde.buaa.edu.cn liuyang@nlsde.buaa.edu.cn

More information

Facial Expression Classification with Random Filters Feature Extraction

Facial Expression Classification with Random Filters Feature Extraction Facial Expression Classification with Random Filters Feature Extraction Mengye Ren Facial Monkey mren@cs.toronto.edu Zhi Hao Luo It s Me lzh@cs.toronto.edu I. ABSTRACT In our work, we attempted to tackle

More information

IMAGE PROCESSING USING DISCRETE WAVELET TRANSFORM

IMAGE PROCESSING USING DISCRETE WAVELET TRANSFORM IMAGE PROCESSING USING DISCRETE WAVELET TRANSFORM Prabhjot kour Pursuing M.Tech in vlsi design from Audisankara College of Engineering ABSTRACT The quality and the size of image data is constantly increasing.

More information

LRLW-LSI: An Improved Latent Semantic Indexing (LSI) Text Classifier

LRLW-LSI: An Improved Latent Semantic Indexing (LSI) Text Classifier LRLW-LSI: An Improved Latent Semantic Indexing (LSI) Text Classifier Wang Ding, Songnian Yu, Shanqing Yu, Wei Wei, and Qianfeng Wang School of Computer Engineering and Science, Shanghai University, 200072

More information

K-Nearest Neighbor Classification Approach for Face and Fingerprint at Feature Level Fusion

K-Nearest Neighbor Classification Approach for Face and Fingerprint at Feature Level Fusion K-Nearest Neighbor Classification Approach for Face and Fingerprint at Feature Level Fusion Dhriti PEC University of Technology Chandigarh India Manvjeet Kaur PEC University of Technology Chandigarh India

More information

Fusion of Hand Geometry and Palmprint Biometrics

Fusion of Hand Geometry and Palmprint Biometrics (Working Paper, Dec. 2003) Fusion of Hand Geometry and Palmprint Biometrics D.C.M. Wong, C. Poon and H.C. Shen * Department of Computer Science, Hong Kong University of Science and Technology, Clear Water

More information

K-Means Based Matching Algorithm for Multi-Resolution Feature Descriptors

K-Means Based Matching Algorithm for Multi-Resolution Feature Descriptors K-Means Based Matching Algorithm for Multi-Resolution Feature Descriptors Shao-Tzu Huang, Chen-Chien Hsu, Wei-Yen Wang International Science Index, Electrical and Computer Engineering waset.org/publication/0007607

More information

IMAGE FUSION PARAMETER ESTIMATION AND COMPARISON BETWEEN SVD AND DWT TECHNIQUE

IMAGE FUSION PARAMETER ESTIMATION AND COMPARISON BETWEEN SVD AND DWT TECHNIQUE IMAGE FUSION PARAMETER ESTIMATION AND COMPARISON BETWEEN SVD AND DWT TECHNIQUE Gagandeep Kour, Sharad P. Singh M. Tech Student, Department of EEE, Arni University, Kathgarh, Himachal Pardesh, India-7640

More information

Faceted Navigation for Browsing Large Video Collection

Faceted Navigation for Browsing Large Video Collection Faceted Navigation for Browsing Large Video Collection Zhenxing Zhang, Wei Li, Cathal Gurrin, Alan F. Smeaton Insight Centre for Data Analytics School of Computing, Dublin City University Glasnevin, Co.

More information

2 Proposed Methodology

2 Proposed Methodology 3rd International Conference on Multimedia Technology(ICMT 2013) Object Detection in Image with Complex Background Dong Li, Yali Li, Fei He, Shengjin Wang 1 State Key Laboratory of Intelligent Technology

More information

Online Cross-Modal Hashing for Web Image Retrieval

Online Cross-Modal Hashing for Web Image Retrieval Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence (AAAI-6) Online Cross-Modal Hashing for Web Image Retrieval Liang ie Department of Mathematics Wuhan University of Technology, China

More information

PATTERN RECOGNITION USING NEURAL NETWORKS

PATTERN RECOGNITION USING NEURAL NETWORKS PATTERN RECOGNITION USING NEURAL NETWORKS Santaji Ghorpade 1, Jayshree Ghorpade 2 and Shamla Mantri 3 1 Department of Information Technology Engineering, Pune University, India santaji_11jan@yahoo.co.in,

More information

Visualization of Text Document Corpus

Visualization of Text Document Corpus Informatica 29 (2005) 497 502 497 Visualization of Text Document Corpus Blaž Fortuna, Marko Grobelnik and Dunja Mladenić Jozef Stefan Institute Jamova 39, 1000 Ljubljana, Slovenia E-mail: {blaz.fortuna,

More information

Dynamic Human Shape Description and Characterization

Dynamic Human Shape Description and Characterization Dynamic Human Shape Description and Characterization Z. Cheng*, S. Mosher, Jeanne Smith H. Cheng, and K. Robinette Infoscitex Corporation, Dayton, Ohio, USA 711 th Human Performance Wing, Air Force Research

More information

DATA WAREHOUSING AND MINING UNIT-V TWO MARK QUESTIONS WITH ANSWERS

DATA WAREHOUSING AND MINING UNIT-V TWO MARK QUESTIONS WITH ANSWERS DATA WAREHOUSING AND MINING UNIT-V TWO MARK QUESTIONS WITH ANSWERS 1. NAME SOME SPECIFIC APPLICATION ORIENTED DATABASES. Spatial databases, Time-series databases, Text databases and multimedia databases.

More information

Gender Classification Technique Based on Facial Features using Neural Network

Gender Classification Technique Based on Facial Features using Neural Network Gender Classification Technique Based on Facial Features using Neural Network Anushri Jaswante Dr. Asif Ullah Khan Dr. Bhupesh Gour Computer Science & Engineering, Rajiv Gandhi Proudyogiki Vishwavidyalaya,

More information

Information Retrieval. CS630 Representing and Accessing Digital Information. What is a Retrieval Model? Basic IR Processes

Information Retrieval. CS630 Representing and Accessing Digital Information. What is a Retrieval Model? Basic IR Processes CS630 Representing and Accessing Digital Information Information Retrieval: Retrieval Models Information Retrieval Basics Data Structures and Access Indexing and Preprocessing Retrieval Models Thorsten

More information

Enhanced Retrieval of Web Pages using Improved Page Rank Algorithm

Enhanced Retrieval of Web Pages using Improved Page Rank Algorithm Enhanced Retrieval of Web Pages using Improved Page Rank Algorithm Rekha Jain 1, Sulochana Nathawat 2, Dr. G.N. Purohit 3 1 Department of Computer Science, Banasthali University, Jaipur, Rajasthan ABSTRACT

More information

Vehicle Logo Recognition using Image Matching and Textural Features

Vehicle Logo Recognition using Image Matching and Textural Features Vehicle Logo Recognition using Image Matching and Textural Features Nacer Farajzadeh Faculty of IT and Computer Engineering Azarbaijan Shahid Madani University Tabriz, Iran n.farajzadeh@azaruniv.edu Negin

More information

3XL News: a Cross-lingual News Aggregator and Reader

3XL News: a Cross-lingual News Aggregator and Reader 3XL News: a Cross-lingual News Aggregator and Reader Evgenia Belyaeva 12, Jan Berčič 1, Katja Berčič 1, Flavio Fuart 1, Aljaž Košmerlj 1, Andrej Muhič 1, Aljoša Rehar 3, Jan Rupnik 1, and Mitja Trampuš

More information

A Study on the Effect of Codebook and CodeVector Size on Image Retrieval Using Vector Quantization

A Study on the Effect of Codebook and CodeVector Size on Image Retrieval Using Vector Quantization Computer Science and Engineering. 0; (): -7 DOI: 0. 593/j.computer.000.0 A Study on the Effect of Codebook and CodeVector Size on Image Retrieval Using Vector Quantization B. Janet *, A. V. Reddy Dept.

More information

Holistic and Compact Selectivity Estimation for Hybrid Queries over RDF Graphs

Holistic and Compact Selectivity Estimation for Hybrid Queries over RDF Graphs Holistic and Compact Selectivity Estimation for Hybrid Queries over RDF Graphs Authors: Andreas Wagner, Veli Bicer, Thanh Tran, and Rudi Studer Presenter: Freddy Lecue IBM Research Ireland 2014 International

More information

Tri-modal Human Body Segmentation

Tri-modal Human Body Segmentation Tri-modal Human Body Segmentation Master of Science Thesis Cristina Palmero Cantariño Advisor: Sergio Escalera Guerrero February 6, 2014 Outline 1 Introduction 2 Tri-modal dataset 3 Proposed baseline 4

More information

Application of partial differential equations in image processing. Xiaoke Cui 1, a *

Application of partial differential equations in image processing. Xiaoke Cui 1, a * 3rd International Conference on Education, Management and Computing Technology (ICEMCT 2016) Application of partial differential equations in image processing Xiaoke Cui 1, a * 1 Pingdingshan Industrial

More information

Real Time Motion Authoring of a 3D Avatar

Real Time Motion Authoring of a 3D Avatar Vol.46 (Games and Graphics and 2014), pp.170-174 http://dx.doi.org/10.14257/astl.2014.46.38 Real Time Motion Authoring of a 3D Avatar Harinadha Reddy Chintalapalli and Young-Ho Chai Graduate School of

More information

A METHOD FOR CONTENT-BASED SEARCHING OF 3D MODEL DATABASES

A METHOD FOR CONTENT-BASED SEARCHING OF 3D MODEL DATABASES A METHOD FOR CONTENT-BASED SEARCHING OF 3D MODEL DATABASES Jiale Wang *, Hongming Cai 2 and Yuanjun He * Department of Computer Science & Technology, Shanghai Jiaotong University, China Email: wjl8026@yahoo.com.cn

More information

Surrogate-assisted Self-accelerated Particle Swarm Optimization

Surrogate-assisted Self-accelerated Particle Swarm Optimization Surrogate-assisted Self-accelerated Particle Swarm Optimization Kambiz Haji Hajikolaei 1, Amir Safari, G. Gary Wang ±, Hirpa G. Lemu, ± School of Mechatronic Systems Engineering, Simon Fraser University,

More information

An Approach for Reduction of Rain Streaks from a Single Image

An Approach for Reduction of Rain Streaks from a Single Image An Approach for Reduction of Rain Streaks from a Single Image Vijayakumar Majjagi 1, Netravati U M 2 1 4 th Semester, M. Tech, Digital Electronics, Department of Electronics and Communication G M Institute

More information

DEVELOPMENT OF THE EFFECTIVE SET OF FEATURES CONSTRUCTION TECHNOLOGY FOR TEXTURE IMAGE CLASSES DISCRIMINATION

DEVELOPMENT OF THE EFFECTIVE SET OF FEATURES CONSTRUCTION TECHNOLOGY FOR TEXTURE IMAGE CLASSES DISCRIMINATION DEVELOPMENT OF THE EFFECTIVE SET OF FEATURES CONSTRUCTION TECHNOLOGY FOR TEXTURE IMAGE CLASSES DISCRIMINATION E. Biryukova 1, R. Paringer 1,2, A.V. Kupriyanov 1,2 1 Samara National Research University,

More information

A SURVEY- WEB MINING TOOLS AND TECHNIQUE

A SURVEY- WEB MINING TOOLS AND TECHNIQUE International Journal of Latest Trends in Engineering and Technology Vol.(7)Issue(4), pp.212-217 DOI: http://dx.doi.org/10.21172/1.74.028 e-issn:2278-621x A SURVEY- WEB MINING TOOLS AND TECHNIQUE Prof.

More information

Semi-supervised Data Representation via Affinity Graph Learning

Semi-supervised Data Representation via Affinity Graph Learning 1 Semi-supervised Data Representation via Affinity Graph Learning Weiya Ren 1 1 College of Information System and Management, National University of Defense Technology, Changsha, Hunan, P.R China, 410073

More information

Dynamic Visualization of Hubs and Authorities during Web Search

Dynamic Visualization of Hubs and Authorities during Web Search Dynamic Visualization of Hubs and Authorities during Web Search Richard H. Fowler 1, David Navarro, Wendy A. Lawrence-Fowler, Xusheng Wang Department of Computer Science University of Texas Pan American

More information

arxiv: v1 [cs.mm] 12 Jan 2016

arxiv: v1 [cs.mm] 12 Jan 2016 Learning Subclass Representations for Visually-varied Image Classification Xinchao Li, Peng Xu, Yue Shi, Martha Larson, Alan Hanjalic Multimedia Information Retrieval Lab, Delft University of Technology

More information

Human pose estimation using Active Shape Models

Human pose estimation using Active Shape Models Human pose estimation using Active Shape Models Changhyuk Jang and Keechul Jung Abstract Human pose estimation can be executed using Active Shape Models. The existing techniques for applying to human-body

More information

60-538: Information Retrieval

60-538: Information Retrieval 60-538: Information Retrieval September 7, 2017 1 / 48 Outline 1 what is IR 2 3 2 / 48 Outline 1 what is IR 2 3 3 / 48 IR not long time ago 4 / 48 5 / 48 now IR is mostly about search engines there are

More information

Comparison of Default Patient Surface Model Estimation Methods

Comparison of Default Patient Surface Model Estimation Methods Comparison of Default Patient Surface Model Estimation Methods Xia Zhong 1, Norbert Strobel 2, Markus Kowarschik 2, Rebecca Fahrig 2, Andreas Maier 1,3 1 Pattern Recognition Lab, Friedrich-Alexander-Universität

More information

Computing Curricula 2005

Computing Curricula 2005 Computing Curricula Santiago, Chile 6 March John Impagliazzo Computing Curricula An Overview Report John Impagliazzo Computer Science Hofstra University New York John Impagliazzo Computing Curricula Santiago,

More information

Off-Line Multi-Script Writer Identification using AR Coefficients

Off-Line Multi-Script Writer Identification using AR Coefficients 2009 10th International Conference on Document Analysis and Recognition Off-Line Multi-Script Writer Identification using AR Coefficients Utpal Garain Indian Statistical Institute 203, B.. Road, Kolkata

More information

LARGE-VOCABULARY CHINESE TEXT/SPEECH INFORMATION RETRIEVAL USING MANDARIN SPEECH QUERIES

LARGE-VOCABULARY CHINESE TEXT/SPEECH INFORMATION RETRIEVAL USING MANDARIN SPEECH QUERIES LARGE-VOCABULARY CHINESE TEXT/SPEECH INFORMATION RETRIEVAL USING MANDARIN SPEECH QUERIES Bo-ren Bai 1, Berlin Chen 2, Hsin-min Wang 2, Lee-feng Chien 2, and Lin-shan Lee 1,2 1 Department of Electrical

More information

3d Pose Estimation. Algorithms for Augmented Reality. 3D Pose Estimation. Sebastian Grembowietz Sebastian Grembowietz

3d Pose Estimation. Algorithms for Augmented Reality. 3D Pose Estimation. Sebastian Grembowietz Sebastian Grembowietz Algorithms for Augmented Reality 3D Pose Estimation by Sebastian Grembowietz - 1 - Sebastian Grembowietz index introduction 3d pose estimation techniques in general how many points? different models of

More information

A Model of Machine Learning Based on User Preference of Attributes

A Model of Machine Learning Based on User Preference of Attributes 1 A Model of Machine Learning Based on User Preference of Attributes Yiyu Yao 1, Yan Zhao 1, Jue Wang 2 and Suqing Han 2 1 Department of Computer Science, University of Regina, Regina, Saskatchewan, Canada

More information

Extraction, Description and Application of Multimedia Using MPEG-7

Extraction, Description and Application of Multimedia Using MPEG-7 Extraction, Description and Application of Multimedia Using MPEG-7 Ana B. Benitez Depart. of Electrical Engineering, Columbia University, 1312 Mudd, 500 W 120 th Street, MC 4712, New York, NY 10027, USA

More information

Face Detection using Hierarchical SVM

Face Detection using Hierarchical SVM Face Detection using Hierarchical SVM ECE 795 Pattern Recognition Christos Kyrkou Fall Semester 2010 1. Introduction Face detection in video is the process of detecting and classifying small images extracted

More information

Face recognition based on improved BP neural network

Face recognition based on improved BP neural network Face recognition based on improved BP neural network Gaili Yue, Lei Lu a, College of Electrical and Control Engineering, Xi an University of Science and Technology, Xi an 710043, China Abstract. In order

More information

CONTENT BASED VIDEO RETRIEVAL SYSTEM

CONTENT BASED VIDEO RETRIEVAL SYSTEM CONTENT BASED RETRIEVAL SYSTEM Madhav Gitte 1, Harshal Bawaskar 2, Sourabh Sethi 3, Ajinkya Shinde 4 1 B.E. Scholar, Department of Information Technology, Sinhgad College of Engineering Pune-41, University

More information

The Application Research of 3D Simulation Modeling Technology in the Sports Teaching YANG Jun-wa 1, a

The Application Research of 3D Simulation Modeling Technology in the Sports Teaching YANG Jun-wa 1, a 4th National Conference on Electrical, Electronics and Computer Engineering (NCEECE 2015) The Application Research of 3D Simulation Modeling Technology in the Sports Teaching YANG Jun-wa 1, a 1 Zhengde

More information

SVM-based CBIR of Breast Masses on Mammograms

SVM-based CBIR of Breast Masses on Mammograms SVM-based CBIR of Breast Masses on Mammograms Lazaros Tsochatzidis, Konstantinos Zagoris, Michalis Savelonas, and Ioannis Pratikakis Visual Computing Group, Dept. of Electrical and Computer Engineering,

More information

A novel supervised learning algorithm and its use for Spam Detection in Social Bookmarking Systems

A novel supervised learning algorithm and its use for Spam Detection in Social Bookmarking Systems A novel supervised learning algorithm and its use for Spam Detection in Social Bookmarking Systems Anestis Gkanogiannis and Theodore Kalamboukis Department of Informatics Athens University of Economics

More information

Web Data mining-a Research area in Web usage mining

Web Data mining-a Research area in Web usage mining IOSR Journal of Computer Engineering (IOSR-JCE) e-issn: 2278-0661, p- ISSN: 2278-8727Volume 13, Issue 1 (Jul. - Aug. 2013), PP 22-26 Web Data mining-a Research area in Web usage mining 1 V.S.Thiyagarajan,

More information

A Vector Space Equalization Scheme for a Concept-based Collaborative Information Retrieval System

A Vector Space Equalization Scheme for a Concept-based Collaborative Information Retrieval System A Vector Space Equalization Scheme for a Concept-based Collaborative Information Retrieval System Takashi Yukawa Nagaoka University of Technology 1603-1 Kamitomioka-cho, Nagaoka-shi Niigata, 940-2188 JAPAN

More information

NExT++: Center for Extreme Search

NExT++: Center for Extreme Search NExT++: Center for Extreme Search A Joint Center between NUS, Tsinghua and Southampton University CHUA Tat-Seng National University of Singapore OUTLINE Welcome Key Research Focuses Summary Users at Center

More information

modern database systems lecture 4 : information retrieval

modern database systems lecture 4 : information retrieval modern database systems lecture 4 : information retrieval Aristides Gionis Michael Mathioudakis spring 2016 in perspective structured data relational data RDBMS MySQL semi-structured data data-graph representation

More information

A COMPARISON OF WAVELET-BASED AND RIDGELET- BASED TEXTURE CLASSIFICATION OF TISSUES IN COMPUTED TOMOGRAPHY

A COMPARISON OF WAVELET-BASED AND RIDGELET- BASED TEXTURE CLASSIFICATION OF TISSUES IN COMPUTED TOMOGRAPHY A COMPARISON OF WAVELET-BASED AND RIDGELET- BASED TEXTURE CLASSIFICATION OF TISSUES IN COMPUTED TOMOGRAPHY Lindsay Semler Lucia Dettori Intelligent Multimedia Processing Laboratory School of Computer Scienve,

More information

Semantic Clickstream Mining

Semantic Clickstream Mining Semantic Clickstream Mining Mehrdad Jalali 1, and Norwati Mustapha 2 1 Department of Software Engineering, Mashhad Branch, Islamic Azad University, Mashhad, Iran 2 Department of Computer Science, Universiti

More information

Introduction to Computer Science

Introduction to Computer Science DM534 Introduction to Computer Science Clustering and Feature Spaces Richard Roettger: About Me Computer Science (Technical University of Munich and thesis at the ICSI at the University of California at

More information